

MULTI-AGENT SYSTEMS AS AN INTEGRATION ENVIRONMENT FOR CLASSICAL AND AI COMPONENTS

Lenka Lhotska
Gerstner Laboratory, Department of Cybernetics,
Czech Technical University in Prague, Faculty of

Electrical Engineering,
Technická 2, CZ-166 27 Prague 6, Czech Republic
Phone: +420-2-24353933, Fax: +420-2-24311081

E-mail:lhotska@fel.cvut.cz

Olga Stepankova
Gerstner Laboratory, Department of Cybernetics,
Czech Technical University in Prague, Faculty of

Electrical Engineering,
Technická 2, CZ-166 27 Prague 6, Czech Republic
Phone: +420-2-24357233, Fax: +420-2-24311081

E-mail: step@labe.felk.cvut.cz

ABSTRACT

The multi-agent technology has been recently considered
to be much more suitable for creating open, flexible
environment able to integrate software pieces of diverse nature
written in different languages and running on different types of
computers. It enables to design, develop and implement a
comparatively open multi-agent environment suitable for
efficient creating of complex knowledge-based or decision
support systems. Such an environment is able to integrate
geographically distributed knowledge sources or problem
solving units. The task under consideration is located just on
the borderline between Software Engineering and Artificial
Intelligence. The idea of software integration based on efficient
communication among parallel computational processes as well
as that of the open architecture (enabling to add new elements
without any change in the others) has been provided by the
Software Engineering area. On the other hand, the multi-agent
approach stemming from the theory of agency, from behavioral
models of agents and methods of agentification of stand-alone
programs can be considered as a contribution of Artificial
Intelligence. Multi-agent systems have useful properties, such
as parallelism, robustness, and scalability. Therefore they are
applicable in many domains which cannot be handled by
centralized systems, in particular, they are well suited for
domains which require, for example, resolution of interest and
goal conflicts, integration of multiple knowledge sources and
other resources, time-bounded processing of very large data
sets, or on-line interpretation of data arising in different
geographical locations.

INTRODUCTION

Recently multi-agent systems have become one of the
dominating topics of research in artificial intelligence. This part
is gradually separating from distributed artificial intelligence as
an independent discipline, based on research results both in
other parts of artificial intelligence and in the area of computer
science. From AI the multi-agent systems take over methods of

knowledge representation and utilization, methods of
formalization of knowledge models using expression tools of
special logics and algorithms of machine learning. From
computer science the multi-agent systems draw knowledge of
communication tools, especially on lower levels. Great interest
in multi-agent paradigm is quite natural because a number of
software systems have reached such a degree of complexity that
it is impossible to control and operate them as monolithic
systems. Therefore the effort of decomposition of such systems
is a natural procedure. The complex systems should be
decomposed into natural functional units that solve partial tasks
relatively autonomously and communicate in inevitably
minimum range only with the aim to co-ordinate their activities
with other units with which they share a global goal.

Most of nowadays existing multi-agent systems are
systems developed ad hoc while they are making use of only
the simplest, usually reactive, models of behaviour. Agent
architectures and global architectures of multi-agent systems
are designed more or less intuitively without utilizing deeper
formalization that would enable to plan and correctly realize
even more complex scenarios requiring exactly co-ordinated
co-operation of a greater number of agents. Similar situation is
in communication among agents. Agent communication
languages only gradually start to utilize open communication
standards. However using these standards is a very important
requirement for mutual interoperability and reusability of multi-
agent solutions, which is a substantial part of multi-agent
system practical potential.

Many real world problems such as production planning,
supply chain management, engineering design, intelligent
search, medical diagnostics, robotics, etc. are naturally
distributed. Hence multiagent systems (Weiss, 1999),
(Wooldridge, 1995), (Huang, 1995) offer efficient problem
solving platform. They eliminate limitations on the processing
power of a single monolithic system. Distribution also brings
inherent advantages of distributed systems, such as scalability,
fault-tolerance, parallelism, robustness, etc. However, there are

questions connected with mutual behaviour of the agents, of
ownership of global knowledge, of structure and content of this
knowledge. The applicability of agent architecture developed in
the Gerstner Laboratory has been verified by applications in
several areas, e.g. in the field of production planning and
scheduling (ProPlanT system), supply chain management
(ExPlanTech project), coalition formation (CPlanT system)
(Marik, 2002), (Agents, 2002).

Most of the application domains are characterized by
distributed data, information, knowledge, and competence. In
addition, all three components (data, information, knowledge)
may have different nature: descriptions in natural language, 2D
images, measured signals, results of various tests or
measurements (usually lists of numbers). They are stored on
different media: sheets of paper, photographies, slides,
electronic files, books (when considering "classical"
knowledge), sometimes personal communications. Usually they
are not available in a single place at a particular moment. This
distribution represents a major problem when decisions have to
be made in a timely fashion. Knowledge, decision making,
planning, and actions are distributed functionally,
geographically, and temporally as well. There exists a
requirement of information flow among all participating
subjects with the aim to satisfy the global goal – successful
solution of the defined task. Of course, it is not usually
predictable in extend and structure but it develops in time due
to new knowledge and reactions. This requires high flexibility
of supporting systems. To satisfy these requirements and
provide adequate decision support, the use of intelligent
software support is becoming increasingly desired. The agent
technology offers an efficient and natural solution because it
corresponds to main properties of most application domains, as
for example industrial production or medical domain, namely
distribution of information, problem-solving capabilities,
resources, and responsibilities, decision-making with
incomplete information, iterative refinement of plans.

MOTIVATION FOR APPLICATION OF MULTIAGENT
SYSTEMS

In recent years there has been a growing interest in the
application of agent-based systems in both industrial and
service domains. Some domains in which agents have already
been considered or even successfully implemented are the
following: information retrieval from distributed information
sources (Gomoluch, 2002); decision support systems for
monitoring and diagnosis tasks (Larsson, 1998); distributed
planning and scheduling (Říha, 2002); electronic business
(Müller, 2002). This list serves as an illustrative example since
the complete list would be much longer.

Considering the whole life-cycle nearly in any application
domain, it is possible to identify (at least) five separate areas
that can be computer supported, namely diagnostics, prediction,
monitoring, information processing, workflow management and
planning and scheduling. Let us describe briefly these areas and
potential or existing utilization of computer support in them.

Diagnostics as a process of identifying a cause of a
problem from its signs and symptoms is the most obvious area
for application of computer support. The systems can help to
focus the attention to the most probable causes, to suggest other
special examinations or measurements, etc. At present, there
exist various knowledge-based systems for decision support in

diagnostics, in medical diagnostics see for example
(http://medexpert.imc.akh-wien.ac.at/start.html). Many of them
are used for differential diagnostics. Many of these systems are
routinely used as stand-alone systems.

Prediction means in medicine inference regarding future
disease development after application of certain treatment; in
technical domain inference regarding future development of
e.g. energy consumption with respect to several aspects
(weekday, daytime, weather forecast, etc.). Prediction as well
as diagnostics require vast amount of knowledge and
experience on the user's side. Prediction may be supported by
various tools as simulation systems or some of the machine
learning methods (Klema, 2000).

Monitoring is life critical activity in intensive care units
where delayed information can decide about patient's survival.
Therefore it requires (at least partial) real-time data processing
and evaluation. In this context, computer support represents
significant time saving of personnel. Such a system can warn in
time if there is suspicious development of one or more followed
patient's parameters that would not lead to alarm in "classical"
device and thus to initiate an appropriate action. The same
description holds for monitoring of a technological process in
an industrial plant where delayed information can cause high
financial loss or lead to extreme damages (e.g. in chemical
industry).

Information processing represents a big problem in nearly
all application domains. Isolated “island” solutions are typical
as many stand-alone systems were developed for particular
tasks. Probably medicine is the most obvious example. There
exist high degree of distribution; great extend of knowledge,
and heterogeneity of information (findings, images, treatment
protocols, laboratory results). If this information is to be used
efficiently in diagnostics and treatment it must be easily
accessible and must be as consistent as possible.

Workflow management and planning and scheduling
requires high degree of co-operation and communication. There
exist already practical examples of successfully implemented
systems (Říha, 2002). Computer supported solutions promise
increasing efficiency, and decreasing costs.

All these areas can benefit from new options offered by the
modern information technologies: in diagnostics and prediction
there is possible to involve agents who can search for similar
cases appearing elsewhere. However, it is necessary in such a
case that the agent is able to generate a proper query and these
cases must be accessible via Internet. Another possibility is to
use agents for preparation and evocation of electronic
consilium.

SOFTWARE AGENTS
A multi-agent system is a collection of independent,

autonomous agents that communicate, co-operate and co-
ordinate their activities with the aim to reach solution of a
complex task. Heterogeneity of individual agents and
integration of legacy systems are further basic characteristics
that are advantageous for many applications. An agent is
usually defined as an autonomous software entity that receives
inputs and interacts with its environment (including other
agents), performing tasks in the pursuit of a set of goals. By an
agent, we mean a software entity that exhibits the following
properties (Wooldridge, 1995):

Autonomy: Agents operate without the direct intervention
of humans or others, and have some kind of control over their
actions and internal state.

Social ability: Agents interact with other agents (and
humans) via some kind of agent-communication language when
they recognize necessity of such communication (usually with
the aim to complete their own problem solving and to help
others with their activities).

Reactivity (responsiveness): Agents perceive their
environment (physical world, a user, a collection of agents, the
Internet, or combination of all mentioned entities) and respond
in a timely fashion to changes that occur in it.

Proactiveness: Agents do not simply act in response to
their environment, they are able to exhibit goal-directed,
opportunistic behavior and take the initiative when appropriate.

The strengths of Agent Technologies (mainly proactivity
and autonomy) make such technologies well-suited for both
technical and non-technical applications. We will summarize
here only some of their arguments:
•

•

•
•
•

the capability of agents to anticipate pro-actively the
information needs of users;
their support of synchronous and asynchronous
communication among parties;
their suitability to support distributed decision making;
their ability to adapt to unpredicted situations;
their capability to adapt the services to the user needs.
Although each agent has a different task in the system and

therefore requires different kind of reasoning capabilities, all of
them share a common basic structure. The characteristics of the
environment have a great influence in the way agents have to
be designed. Let us summarize the most important
characteristics:

If the environment is persistent, then the agents should be
constantly running without interruption.

If the environment is asynchronous, then messages can
arrive at any time. An agent should be always ready to deal
with new messages.

According to the application domain we can identify
different types of tasks. However, in general we have to
consider that the priority of tasks may change along time and
that tasks may be cancelled as well. The priority of a task
increases as long as the deadline to finish it is getting closer. It
is important to take into account that how and when this
priority should change is task dependent. This point and the
previous one implies that an agent cannot be blocked waiting
for an answer or spend a lot of time performing a single task.
Periodically it has to check the environment (e.g. the message
queue) to decide which is the most sensible thing to do next. To
do that, agents use threads to parallelize task execution.
Cancelling a task implies not only stopping its execution but
also taking some „cleaning“ actions that will be different
depending on the current progress of the task.

There exist many different practical solutions and
architectures of multi-agent systems. Typically we can identify
three large groups: multi-agent systems in which no agent has
any knowledge of other community members and has to use
broadcasting whenever it wants to send any information; multi-
agent systems using a central agent (facilitator) that serves as a
mediator, although this approach is frequently used it has many
disadvantages of a central element; multi-agent systems using
social models that represent a compromise solution between the

first two alternatives. Each agent maintains social model of its
environment, models of behaviour of cooperating agents, their
load and readiness to cooperate. Representatives of social
models are twin-base model (Cao, 1996, 1997) and tri-base
model (Pěchouček, 2000).

TRI-BASE ACQUAINTANCE MODEL
The basic architecture of an agent in the system consists of

a functional body (usually a stand-alone program with a well-
defined functionality) and a wrapper (which is responsible for
involvement of the agent into the community of agents) – see
figure 1.

Agent's
wrapper

Agent's
body

Figure 1. Structure of an agent

The tri-base acquaintance (3bA) models are encoded in

agents’ wrappers (see figure 2). The 3bA models have several
important purposes:
• to limit explosive communication in multiagent system;
• to ensure immediate reply in time-critical situation;
• to generate and maintain databases of information sources.

Within the 3bA model each agent maintains three
knowledge bases where all the relevant information about the
rest of the community is stored, namely the Co-operator Base,
the Task Base, and the State Base.

The Co-operator Base (CB) maintains permanent
information on co-operating agents, i.e. their address,
communication language, and their predefined responsibility
(including information about required form of input data for
agent’s body). This may speed up process of selection of a
proper agent that is able to perform required task since in all
areas of the life-cycle there is usually used large volume of
input data of different nature and form. This type of knowledge
is expected not to be changed very often.

The State Base (SB) contains the information about
collaborating agents, i.e. about their current state. The SB stores
in its agent section (AS) all information on current load of
cooperating agents. This part of the state base is updated
frequently and informs the agent which of the collaborating
agents are busy and which of them are available for
collaboration. In the task section (TS) there is stored
information on statuses of tasks the agent is currently solving.
For example, if the agent is to process data that must be pre-
processed by another agent, the former agent must know
whether the latter has already started/finished the pre-
processing.

The Task Base (TB) has two sections: problem section and
plan section. In the plan section (PLS) it maintains the actual
and most up-to-date plans on how to carry out those tasks,

agent

agent

agent

agent

agent

agent's acquaintance model

state base cooperator
base

task base

PRS

PLS

which are the most frequently delegated to the agent. In
addition, it maintains information about the most suitable
chains of agents that can perform certain tasks from collecting,
pre-processing to evaluation. This information is updated by the
metaagent that learns from successful and failed cases in the
past (see below). The Task Base stores in its problem section
(PRS) general problem solving knowledge on possible decision
making with respect to input data type and expected output. In
case of an agent responsible for certain data pre-processing the
task base will contain knowledge about data types that can be
pre-processed by the agent’s body and about the results, which
can be obtained in this way. It may contain knowledge about
possible outputs of the agent’s activity, namely whether the
output represents intermediate results that should be sent for
further processing or whether it represents final results that
should be sent to the user. In case of an agent responsible for
evaluation of pre-processed data its task base will contain
information about data types that may arrive at its input and
about procedure for checking data consistency. Considering
time critical applications, response time of agents is important
as well. Therefore information about average, maximum and
minimum response time of the agent is attached to description
of tasks the agent’s body is able to execute. If the response is
required in shorter time than the agent is able to deliver then
another agent must be found that is able to deliver response in
required time. Depending on type of the task, suboptimal
solution delivered in shorter time can be preferred to late
optimal solution. For example, classification using neural
network or decision tree is usually faster than using case-based
reasoning.

How is the knowledge maintained and updated in
individual bases? As we have already mentioned, the co-
operator base collects knowledge of rather permanent nature
and we do not expect to update it very often besides the register
phase. Once a new agent registers with a community (by means
of contacting a central agent – facilitator that administers all the
data about the community members), the facilitator replies the

newcomer by providing information about the community
members. In addition, it informs other agents about the
newcomer.

Figure 2. Tri-base acquaintance model

The state base, which models the actual state of the
collaborating agents, is maintained by a simple
subscribe/advertise mechanism. After parsing the problem
solving knowledge (in PRS), each agent identifies possible
collaborators and subscribes them for reporting on their
statuses. The subscribe/advertise mechanism facilitates the
subscriber to make the best decision with no further
communication.

The task base is kept up-to-date by periodic revisions of
the pre-prepared plans in the PLS. Such a revision represents
verification/modification of the plan by exploring the
information kept updated in both the co-operator and state
bases – this update can be done whenever the agent finds the
time for that (idle time activity). The knowledge contained in
the PRS can be maintained e.g. by the meta-agents.

Content of all three bases is dependent on the tasks the
agents are supposed to solve. In case of planning agents the
dominant role is played by knowledge of task decomposition
and responsibility delegation. In case of configuration agents
the knowledge stored in the task base can be used to lead the
communication scenarios. The diagnostic agents contain the
social knowledge about data sources, about the process of
finding appropriate data and about the current progress in
required data processing by the other agents.

Instead of communicating with all the involved agents in
order to find out certain information about the community, an
agent equipped with the acquaintance model consults this social
knowledge stored in its wrapper instead. This feature is very
closely linked with the second one. If we require immediate
reply to an input or stimulation there is usually not much time
for communication with collaborating agents. The agent must
react without any delay and therefore it must have relevant
information at hand, e.g. which agent should execute the task.
Using negotiation in such cases is not acceptable. The agents

can browse the Internet and search for relevant information. If
such information is later used the source is included on the list
of potential sources of information for further use.

Now let us briefly describe two applications of this model,
namely diagnostics and planning.

CASE STUDIES

PLANNING

The ProPlanT (Mařík, 2000) system was developed for
planning of the project-oriented production. The traditional
production planning activity is substituted by agent driven
service negotiations, intelligent decomposition and distributed
decision-making. The system is a collection of agents, which
reflect the information and organizational structure of the
industrial enterprise and models the scheduling and planning
process from product configuration phase to resource
allocation. Agents may be divided into two fundamental super-
classes: intra-enterprise agents (IAE) and inter-enterprise
agents (IEE) (Říha, 2002). The following basic classes of
agents in ProPlanT (see Figure 3) represent the IAE category:
PRODUCTION PLANNING AGENT (PPA) is in charge of
project planning. Its aim is to construct an exhaustive, partially
ordered set of tasks that need to be carried out in order to
accomplish the given project. It builds product configuration
and contracts PMA agents. PRODUCTION MANAGEMENT
AGENT (PMA) performs project management in terms of
contracting the best possible PA agents (in terms of operational
costs, the delivery time and current capacity availability). PMA

delegates its responsibility either to another PMA or it controls
work of a group of PA agents contracted for the considered
task. PRODUCTION AGENT (PA) represents the lowest level
production units that simulates or encapsulates shop floor
production processes on the IAE. PA carries out the parallel-

machinery scheduling of given tasks and manages resources
allocation via special type of database agents. DATABASE
AGENT (DBA) can be classified as both IAE and IEE. It
maintains local database. This database can be used as agents
knowledge backup or as representation of external resources
availability. Another IEE agent is a CUSTOMER AGENT
(CA). CA agent is the actor that may trigger the course of
production planning. It negotiates with the PPA agent in order
to specify the production requirement and both deadline and
other production constraints. The role of the remaining IEE
agents depends on specific business case. They correspond to
customers and partners outside of the system and they can be
represented e.g. by a special instance of PA or PMA.

The described system models a multi-level managing
structure and performs intelligent reasoning about the enterprise
resources with the aim to produce an estimate of project's
deadline and costs as accurate as possible. The agent's
knowledge structures providing information necessary for
agent's efficient reasoning processes have been carefully
studied and experimentally verified. The resulting transparent
tri-base acquaintance (3ba) model (Mařík, 2002) is general
enough to be applied for solving tasks in diverse context. It
successfully covers the product specification and configuration
phase, product flow configuration and resource allocation
phases and partially the integration requirements of the
production planning process. Moreover, it has been
successfully used for coalition planning in humanitarian relief
operations (Pěchouček, 2002) and it proved useful in the design
of MAS system for medical diagnosis – see below.

project planning agent

project managing
agent

production agent

meta agent

Figure 3 ProPlanT architecture

In ProPlanT, there is included a special monitoring agent -
META AGENT (MA). It ensures analysis of behaviour of the
agents' community as a whole and it offers advise how to
improve system's efficiency (including material and work flow
visualisation). Meta-agent can be viewed as one of the means of

MAS adaptation. One of its main advantages is that it does not
undermine robustness of the whole system: the community of
agents can survive even when meta-agent is switched-off or
destroyed. "Ordinary" agents are able to communicate in peer-
to-peer manner, but the meta-agent is able to induce a specific
efficiency consideration from observation of the community
workflow.

DIAGNOSTICS

Medical diagnostics in general is a complex process
requiring vast amount of specialised knowledge and
experience. Depending on the patient's symptoms, the general
practitioner GP is able to determine a probable diagnosis more
or less precisely. If the symptoms are the same for more
diseases he/she has to perform further examinations (locally or
send the patient to a specialised clinics). Some examinations
are based on measurement of signals or parameters (e.g. blood
pressure blood analysis). Most of these data need interpretation
(= explanation of the semantic content).

Traditionally, vast quantities of measured data (EEG, ECG
signals, etc.) have been interpreted by human experts with only
minimal software assistance. However, such manual
interpretation is a painstakingly slow and tedious process
(imagine 24hour ECG record). Moreover, since interpretation
involves subjective judgments and each interpreter has different
scientific knowledge and experience, formulation of an
effective interpretation often requires the co-operation of
several such experts. Therefore it would be very useful to have
a software system in which individual interpretations can be
generated automatically and then refined through the use of
cooperative reasoning and information sharing. Of course, it
must be stressed that in any case the final decision is done by
the medical doctor and not by a computer system. The
computer system is always considered as a decision support
tool.

Medical diagnosis was one of the application domains of
expert systems in 1970s. Since that time many problem-
oriented systems have been developed. However, most of them
have had a narrow focus of expertise. They have taken the form
of a single software methodology or technique (Shapiro, 1990),
(Stefik, 1995), (Lhotská, 2001). First step to distributed
organisation was introduction of blackboard architecture
(Englemore, 1989). Logical continuation is the multiagent
systems (Weiss, 1999) in which a number of interrelated tasks
are performed by a network of cooperating agents. They may
be heterogeneous utilizing different methods or techniques for
their problem solving. Then their results can be combined or
the best solution can be used.

When we look at medical data and information more
closely we find out that there is no generally applicable best
method or technique for evaluation of particular data. Each one
has its relative strengths and weaknesses. Some can only
produce an approximate solution, but do so comparatively
quickly; others are more accurate, but relatively slow.
Furthermore, a given technique’s performance is often
dependent on the nature of the data set (some work well with
noisy data, others do not; some work well with data that has a
high signal strength, others work comparatively better with a
low signal strength, some can cope with missing data, others do
not). However, the things are even more complicated. It is often
impossible to determine a priori which technique is the most

appropriate for a given data set or its part. There are several
reasons for that, namely if the data set is too large the user is
usually not able to evaluate the quality of data manually, the
user may not be very experienced, the user may skip important
part of data, etc. From that basic requirement on the system
being developed follows: the system needs to be responsive to
its problem-solving context.

To overcome the problems associated with selecting a
single technique, there can be developed a system that allows
multiple methods to co-exist. However, as examples from other
domains show (e.g. image processing), such systems or tools
typically place a significant burden on the user. For each
technique, the user is expected to know its problem solving
characteristics, be able to judge when, where, and how to apply
it, and to determine how best to integrate and fuse the results it
produces. It would be too demanding to solve this problem
using a single monolithic system (e.g. expert system) because it
does not allow integration of different techniques and
evaluation of partial results reached by these techniques.
Therefore we have decided to design and develop an open
system that will provide a wide range of uncoupled base
techniques (represented by separate modules) and allow the
software system to determine at run-time which of them are
appropriate in which circumstances. The interchange of partial
and final results between individual modules will be directly
supported at the software level.

Each data and signal pre-processing and evaluation
technique can be regarded to be an autonomous software agent
that cooperates, communicates and coordinates, if necessary,
with other agents to try to satisfy the global goal. Components
of the ADIA system (Agents for DIAgnostics) can be divided
into three main layers, namely agents for data collection, agents
for pre-processing and processing (determination of diagnosis),
and agent for final evaluation. In addition to these agents, we
propose a meta-agent that is an independent agent observing the
community. It has two roles: passive role (visualisation of
community structure, distributed solutions, user interface, etc.)
and active role (it affects community operation - invokes
operation sequences, learns from observations and tries to
improve behavior of the whole community). The architecture is
illustrated in figure 4. It is assumed that the agents are running
on different machines and connected via Internet. The system
architecture uses the same basic ideas as the ProPlanT system.

A very important question is how the agents should
recognize which one is to start the pre-processing or directly
processing (without pre-processing step) of accepted input data.
As it has been mentioned above, it is advantageous to use
different methods for different data types, depending on the
nature of the data, presence of noise, etc. In some cases, e.g.
processing of anamnestic data or numerical values from
laboratory tests, there is usually not necessary to apply any pre-
processing and processing step can be initiated.

Whenever data (measurements) enter the multi-agent
system, their rough evaluation has to be done first with
intention to distinguish life critical situations: multi-agent
system has to work in completely different mode in such a case
(Hernando, 2002).

As it has been already mentioned and following this
analysis we have decided to introduce a meta-agent into the
system architecture that would be able to learn from experience
and thus to control co-operation of agents more efficiently.

evaluation
agent

preprocessing
and
processing
agent

data collecting
agent

metaagent

Since there is certain knowledge about advantages and
disadvantages of application of individual methods to various
data processing it is possible to formulate a set of initial rules
(prior knowledge) for such a meta-agent. If previously
processed data type arrives and the meta-agent informs the
processing agents about it, they will know which sequence of
pre-processing methods and successive processing and
evaluation to use (because such sequence was successful in the
past case). If unknown (unrecognised) data type arrives, then all
agents should be given the opportunity to try to solve the
problem. However, in this case we get a number of different
results. The question is how to decide which of them are
relevant, and which are the best. The meta-agent serves as user
interface as well. It enables visualization of the decision-
making process and interaction with the user. If the suggested
solution does not seem appropriate to the user, he/she can enter
the decision making process and invoke certain agents
manually.

Although the original 3bA model does not support
proactive information search and retrieval, it is possible to
equip the agents with this ability (adding relevant knowledge in
the knowledge bases in agents’ wrappers). This ability enables
to locate and connect the ultimate service provider with the
ultimate requesters in open environments. This is the case of
connecting a human user with required processing agent. Since
the user communicates with the agents using user interface
agent we can equip this agent with necessary knowledge. Then
it can ensure all functions that are realised, for example, by
middle agents in the RETSINA system (Sycara, 2001). Let us
describe one such scenario. The user has received ECG data
from another source, thus he/she does not need any of the data

collecting agents, but the services of pre-processing, processing
and evaluating agents are required. The user interface agent
starts communication with relevant agents and sends them data.
When the whole processing and evaluation process is finished
the user receives results. The user may ask, for example, for
additional information about suggested diagnosis. The user
interface agent starts communication with agents responsible
for information search and retrieval that are able to find
relevant information on the Internet and pass it to the user.

Figure 4. ADIA system architecture

There are described in literature and WWW other
multiagent systems and their applications in various domains -
see for example (www.multiagent.com, www.agentlink.org). It
is possible to identify several common features besides the
basic agent characteristics, as heterogeneity of agents,
integration of legacy systems, effort to add ability to learn to
the agents, search for evaluation criteria, use of
metaknowledge, etc.

CONCLUSIONS AND FUTURE WORK

In this paper we have illustrated strengths of the multi-
agent approach on the examples of planning and diagnostics.
Co-operating agents provide a very natural means of
automating pre-processing and (at least partially) evaluation of
vast amount of data utilizing all available knowledge. The
multi-agent systems integrate very efficiently existing software
systems by the agentification process. The agentified software
system is encapsulated within the agent wrapper that
administers agent-to-agent communication and collects the
agents´ social knowledge. Such a software system becomes an
agent – a fully-fledged member of the multi-agent system. That
means that it is not necessary to replace the entire operational

information or knowledge-based systems by a new technology.
Instead, it is possible to make a best use of a combination of the
existing software infrastructure and the novel, agent-based
technology.

There are a number of issues that require further
investigation. First, a more comprehensive set of pre-processing
and processing techniques is required. Second, the agents
should be able to adapt and learn from the social interactions
they experience. Agents should learn which acquaintances give
reliable results in which circumstances. Based on this
knowledge they should be able to adapt their selection
appropriately. The 3bA model represents general acquaintance
model that allows construction of various global community
functional architectures. As practical applications in different
fields show (Marik, 2002), the 3bA architecture can be used by
meta-agents accomplishing meta-level reasoning as well.

ACKNOWLEDGMENTS

The research described in the paper has been supported by
the research program No. MSM 210000012 "Transdisciplinary
Biomedical Engineering Research" of the CTU Prague,
sponsored by the Ministry of Education, Youth and Sports of
the Czech Republic and by MIRACLE - Machine Intelligent
Research and Application Centre for Learning Excellence, EU
project "Centre of Excellence", ICA1-CT-2000-70002.

REFERENCES

Agents, 2002:
http://agents.felk.cvut.cz/main/index.php?home

Cao W., Bian C.-G., Hartvigsen G., 1996: Cooperator
Base and Task Base for Agent Modeling: The Virtual Secretary
Approach. In Proceedings of AAAI-96 Workshop on Agent
Modeling, AAAI Press

Cao W., Bian C.-G., Hartvigsen G., 1997: Achieving
Efficient Cooperation in a Multi-Agent System: The Twin-Base
Modeling. In Kandzia P. et al., editors, Co-operative
Information Agents, Heidelberg, Springer-Verlag LNAI 1202

Englemore R., Morgan T., editors, 1989: Blackboard
Systems. Addison-Wesley, Reading, MA

Gomoluch J., Schroeder M., 2002: Flexible Load
Balancing in Distributed Information Agent Systems. In Mařík
V. et al., editors, Multi-Agent Systems and Applications II,
Heidelberg, Springer-Verlag LNAI 2322

Hernando M.E., Gomez E.J., Alvarez P. and del Pozo
F., 2002: Intelligent Alarms Integrated in a Multi-Agent
Architecture for Diabetes Management. In Intelligent E-Health
Applications in Medicine and Other Medical Applications of
Adaptive/Hybrid Intelligent Systems. Aegean : University of
the Aegean, 2002, vol. 1

Huang J., Jennings N.R., Fox J., 1995: An Agent-Based
Approach to Health Care Management. Applied Artificial
Intelligence 9(4)

Kléma J.; Lhotská L.; Štěpánková O.; Palouš J., 2000:
Instance-Based Modelling in Medical Systems. In Cybernetics
and Systems 2000. Vol. 2. Vienna: Austrian Society for
Cybernetics Studies

Larsson J.E., Hayes-Roth B., 1998: Guardian: an
intelligent autonomous agent for medical monitoring and
diagnosis. IEEE Intelligent Systems, January-February 1998

Lhotská L., Mařík V., Vlček T., 2001: Medical
applications of enhanced rule-based expert systems.
International Journal of Medical Informatics 63

Mařík V., Pěchouček M., Štěpánková O., 2002:
Organization of social knowledge in multi-agent systems.
Integrated Computer-Aided Engineering 9

Mařík V., Pěchouček M., Štěpánková O., Lažanský J.,
2000: ProPlanT: Multi-Agent System for Production Planning.
Applied Artificial Intelligence 14(7)

Müller J.P., Bauer B., Berger M., 2002: Software Agents
for Electronic Business: Opportunities and Challenges. In
Mařík V. et al., editors, Multi-Agent Systems and Applications
II, Heidelberg, Springer-Verlag LNAI 2322

Pěchouček M., Mařík V., Štěpánková O., 2000: Role of
Acquaintance Models in Agent-Based Production Planning
Systems. In Klusch M., Kerschberg L., editors, Co-operative
Information Agents IV, Heidelberg, Springer-Verlag LNAI
1860

Říha A., Pěchouček M., Vokřínek J., Mařík V., 2002:
From Intra-Enterprise towards Extra-Enterprise Production
Planning. In Mařík V. et al., editors, Knowledge and
Technology Integration in Production and Services, Kluwer
Academic Publishers, Boston

Shapiro S.C., editor, 1990: Encyclopedia of Artificial
Intelligence. John Willey & Sons Publ. New York

Stefik M., 1995: Introduction to Knowledge Systems. San
Francisco. Morgan Kaufmann

Sycara K., 2001: Multiagent infrastructure, agent
discovery, middle agents for web services and interoperation.
In Luck M. et al., editors, ACAI 2001, Heidelberg, Springer-
Verlag LNAI 2086

Weiss G., editor, 1999: Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. Cambridge,
Mass. The MIT Press

Wooldridge M., Jennings N.R., 1995: Agent Theories,
Architectures, and Languages: A Survey. In Wooldridge M.,
Jennings N.R., editors, Intelligent Agents. Heidelberg,
Springer-Verlag LNAI 890

http://agents.felk.cvut.cz/main/index.php?home

	MOTIVATION FOR APPLICATION OF MULTIAGENT SYSTEMS
	TRI-BASE ACQUAINTANCE MODEL
	DIAGNOSTICS

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

