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Abstract We study a classical firing squad synchroniza-
tion problem for a large scale of one- and two-dimensional
cellular automata having 1-bit inter-cell communications
(CAi_pit). First, it is shown that there exists a one-
dimensional CA;_pit that can synchronize n cells with
the general on the left cell in optimum 2n — 2 steps.
In addition we show that there exists a one-dimensional
CA1_pit that can synchronize n cells with the general on
the k-th cell in n 4+ max(k,n — k 4+ 1) steps, where the
performance is two steps larger than the optimum one
that was developed for O(1)-bit communication model.
Next, we give a two-dimensional CA;_p;; which can syn-
chronize any n xn square and m X n rectangular arrays in
2n—1 and m+n+max(m, n) steps, respectively. Lastly,
we propose a generalized synchronization algorithm that
operates in m +n + max(r + s,m +n —r —s) + O(1)
steps on two-dimensional m X n rectangular arrays with
the general located at an arbitrary position (r,s) of the
array, where 1 < r < m and 1 < s < n. The time
complexities for the first three algorithms developed are
one to four steps larger than optimum ones proposed for
O(1)-bit communication models. We show that there still
exist several new interesting synchronization algorithms
on CAi_pit although more than 40 years have passed
since the development of the problem.

1 Introduction

In recent years cellular automata (CA) have been
establishing increasing interests in the study of mod-
eling real phenomena occurring in biology, chem-
istry, ecology, economy, geology, mechanical engi-
neering, medicine, physics, sociology, public traffic,
etc. Cellular automata are considered to be a good
model of complex systems in which an infinite one-
dimensional array of finite state machines (cells) up-
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dates itself in synchronous manner according to a
uniform local rule.

In this paper, we study a famous firing squad syn-
chronization problem on a newly introduced 1-bit
CA model for which solution gives a finite-state pro-
tocol for synchronizing a large scale of cellular au-
tomata. The synchronization for cellular automata
has been known as the firing squad synchronization
problem since its development, where it was origi-
nally proposed by J. Myhill to synchronize all parts
of self-reproducing cellular automata [9]. The firing
squad synchronization problem has been studied ex-
tensively in more than 40 years [1-19].

An O(1)-bit communication model is a conven-
tional CA where the amount of communication
bits exchanged at one step between neighboring
cells is assumed to be O(1)-bit, however, such
bit-information exchanged between inter-cells has
been hidden behind the definition of conventional
automata-theoretic finite state descriptions. On the
other hand, a 1-bit inter-cell communication model
studied in this paper is a new CA whose inter-cell
communication is restricted to 1-bit. We call the
model 1-bit CA in short. The number of internal
states of the 1-bit CA is assumed to be finite in a
usual way. The next state of each cell is determined
by the present state of itself and two binary 1-bit
inputs from its left and right neighbor cells. Thus
the 1-bit CA can be thought to be one of the most
powerless and simplest models in a variety of CAs.

In the next section 2, we define a (generalized)
firing squad synchronization problem on the cellu-
lar automata whose inter-cell communication is re-
stricted to 1-bit. In section 3, we propose a new
generalized synchronization algorithm that operates
in n+max(k,n — k + 1) steps for firing n cells on 1-
D CAj_pit, where the general is located on the k-th
cell from the left end. The algorithm is a generalized
extension of Mazoyer [6] and Nishimura, Sogabe and
Umeo [11]. In section 4, three 1-bit implementations
of synchronization algorithms for two-dimensional
square and rectangular arrays will be given. Due to
the space available, we omit the proofs of theorems
given below.
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Figure 1: One-dimensional cellular automaton hav-
ing 1-bit inter-cell communication links.
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Figure 2: Snapshots of the time-optimum 1-bit fir-
ing squad synchronization algorithm operating on 15
cells with a general on the left end.

2 Firing Squad Synchroniza-
tion Problem on CA;_;;

The firing squad synchronization problem is formal-
ized in terms of the model of cellular automata. Fig.
1 shows a finite one-dimensional (1-D) cellular array
consisting of n cells. Each cell is an identical (except
the end cells) finite state automaton. The array op-
erates in lock-step mode in such a way that the next
state of each cell (except both end cells) is deter-
mined by both its own present state and the present
binary inputs of its right and left neighbors. Let k
be any integer such that 1 < k < n. All cells (sol-
diers), except the k-th cell C from the left end, are
initially in the quiescent state at time ¢t = 0 with the
property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At
time t = 0 the general cell Cy is in fire-when-ready
state that is an initiation signal to the array. The
generalized firing squad synchronization problem [7,
10, 13, 17, 18] is stated as follows:

Given an array of n identical cellular automata,
including a general on the k-th cell which is activated
at time ¢t = 0, we want to give the description (state
set and next-state function) of the automata so that,
at some future time, all the cells will simultaneously
and, for the first time, enter a special firing state.
The set of states must be independent of k and n.
The tricky part of the problem is that the same kind
of soldier with a fixed number of states is required to
synchronize, regardless of the length n of the array.

3 Synchronization Algorithms
on 1-D Arrays

Nishimura, Sogabe and Umeo [11] designed an
optimum-step firing squad synchronization algo-
rithm on CA;_y;;, where 2n—2 steps are required for
synchronizing n cells on 1-D array and the general is
located at the left end of the array. The algorithm,
referred to as NSU algorithm, is stated as follows:

[Theorem 1] There exists a CAj_p;; which can syn-
chronize n cells with the general on the left end in
2n — 2 steps. The CA1_p;; constructed has 78 inter-
nal states and 208 transition rules.

In Fig. 2, we show snapshots of the time-optimum
firing synchronization algorithm on 15 cells with a
general on the left end. Small right- and left-oriented
black triangles, » and <, shown in the figure, indi-
cate a 1-bit signal transfer in the right or left di-
rection between neighbor cells. A symbol in a cell
shows its internal state. The total number of inter-
nal states and transition rules of the CA;_p; realized
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Figure 3: Snapshots of the generalized 1-bit fir-
ing squad synchronization algorithm operating on 24
cells with a general on Cs.

Figure 4: Two-dimensional cellular automaton.

on a computer is 78 and 208, respectively.

The generalized synchronization algorithm that we
are going to design is based on the NSU algorithm.
In our construction additional two steps are required
for transmitting a signal to the nearest end, where
the signal has been kept for min(2k — 2, 2n — 2k — 2)
steps by the general cell.

In Fig. 3, we show snapshots of the generalized
firing synchronization algorithm on 24 cells with a
general on Cg. The total number of internal states
and transition rules of the CAq_p; realized on a com-
puter is 282 and 721, respectively. We checked the
validity of the rule set for arrays of length n = 2 to
100 at any position of the general. Thus we have:

[Theorem 2] There exists a CAj_p;; which can syn-
chronize n cells in n+max(k,n — k + 1) steps, where
k is any integer such that 1 < k < n and a general
is located on the k-th cell from the left end of the
array.

4  Synchronization Algorithms
on 2-D Arrays

In this section we develop some synchronization al-
gorithms for 2-D 1-bit inter-cell communication CA
models. Fig. 4 shows a finite two-dimensional cellu-
lar array consisting of m x n cells. A cell on (4, j) is
denoted by C; ;. Each cell is an identical (except the
border cells) finite state automaton.

The array operates in lock-step mode in such a
way that the next state of each cell (except border
cells) is determined by both its own present state and
the present binary inputs from its north, south, east
and west neighbors. All cells, except the general cell,
are initially in the quiescent state with the property
that the next state of a quiescent cell with quiescent
neighbors is the quiescent state again. Several 2-
D synchronization algorithms and their implementa-
tions have been presented in Beyer [2], Grasselli [4],
Shinar [12], Szwerinski [13] and Torre, Napoli and
Parente [14] for O(1)-bit communication models.

4.1 Synchronization Algorithm on
Square Arrays

We present a new synchronization algorithm that
runs in (2n —1) steps on n x n square arrays. Our al-
gorithm is one step slower than that of Shinahr [13]
for O(1)-bit communication model and operates as
follows. By dividing the entire square array into n
L-shaped 1-D arrays such that the length of the i-th
Lis2n—2i+1 (1 < i < n), we treat the square
firing as n independent 1-D firings with the general
located at the center cell. On the i-th L, a general
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Figure 5: Snapshots of our (2n—1)-step square firing
squad synchronization algorithm with the general on
the north west corner.

is generated at C;; at time ¢t = 2¢ — 1, and the gen-
eral initiates the horizontal and vertical firings on
the row and column arrays. In our construction, we
apply the previous NSU algorithm [11] for each row
and column firing. The array fires in optimum time
t=2i—1+2n—i+1)—2=2n—-1.

We have tested our transition rule set on squares of
size 2x 2 to 1000 x 1000. The total number of internal
states and transition rules of the CAj_yp; realized
on a computer is 127 and 405, respectively. Figure
5 shows snapshots of configurations of our 127-state
synchronization algorithm running on a square of size
8 x 8. Thus we have:

[Theorem 3] There exists a 2-D CA;_p;, which can
synchronize n x n cells in 2n — 1 steps.

4.2 Synchronization Algorithm on
Rectangular Arrays

The generalized firing squad synchronization algo-
rithm presented in [Theorem 2] can be applied to the
problem of synchronizing rectangular arrays with the
general at the north-west corner. The configuration
of the generalized firing on 1-D arrays can be mapped
on 2-D array.

The rectangular array is regarded as min(m,n) L-
shaped 1-D arrays, where they are synchronized in-
dependently using the generalized firing squad syn-
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Figure 6: Snapshots of our rectangular firing squad
synchronization algorithm with the general at the
north-west corner.

chronization algorithm. We have implemented the
algorithm on a computer. In Fig. 6, we show snap-
shots of the synchronization process on 5 x 8 rectan-
gular array. The total number of internal states and
transition rules of the CAj_y; realized on a com-
puter are 862 and 2217, respectively. Thus we have:

[Theorem 4] There exists a 2-D CA;_p;, which can
synchronize m x n rectangular arrays in m + n +
max(m, n) steps.

4.3 Generalized Synchronization Al-
gorithm on 2-D Rectangular Ar-
rays

In this subsection, we study the generalized synchro-
nization algorithm on rectangular arrays. Let 7, s be
any integer such that 1 < r < m, 1 < s < n. At
time ¢t = 0 the general cell C, ; is in fire-when-ready
state that is an initiation signal to the array. Before
presenting the 1-bit algorithm, we show a simple and
efficient mapping scheme developed for O(1)-bit CA
model that embeds any generalized one-dimensional
synchronization algorithms onto two-dimensional ar-
rays [16].

Now we consider a 2-D array of size m x n. We
divide mn cells into m +mn — 1 groups gx, 1 < k <



m +n — 1, defined as follows;
g ={Cisli =)+ (G —-1)=k—1}

That is,

g1 ={Ci1},

g2 = {C1,2,C21},

93 =1{C1,3,C22,C31},

Im+n—1 = {Cm,n}

Let M be any one-dimensional CA;_y; that fires ¢
cells in T'(¢, k) steps, where the general is on Cg. We
assume that M has m +n — 1 cells. We consider the
one-to-one correspondence between the i-th group g;
and the i-th cell C; on M such that g; < C;, where
1 <i<m+n—1. We can construct a 2-D CA1_p;
N so that all cells in g; simulates the i-th cell C; in
real-time and N can fire any m X n arrays with the
general C, 5 at time ¢t = T(m+n—1,r+s—1) if and
only if M fires 1-D arrays of length m+n—1 with the
general on C, 441 at time t = T'(m+n—1,r+s—1).

Based on the generalized 1-D algorithm given in
[Theorem 2], we get the following 2-D generalized
synchronization algorithm that fires in T'(m,n,r,s)
steps given below. The total number of internal
states and transition rules of the CAj_yp; realized
on a computer is 300 and 2333, respectively. In Fig.
7 we show snapshots of the 300-state generalized syn-
chronization algorithm running on rectangular array
of size 5 x 8 with the general on Cs 4. Thus we have:

[Theorem 5] There exists a 2-D 1-bit communica-
tion CAj_p;y that can synchronize any m x n rect-
angular arrays in T'(m,n,r,s) steps, where (r,s)
is an arbitrary initial position of the general and
T(m,n,r,s) is defined as follows: T'(m,n,r,s) =
m+n—2+max(r+s,m+n—r—s+2).

Szwerinski [13] proposed an optimum-time gen-
eralized 2-D firing algorithm with 25600 inter-
nal states that fires any m X m array in m +
n4max(m,n)—min(r,m—r+1)—min(s,n—s+1)—1
steps. Our 2-D generalized synchronization algo-
rithm is relatively larger than the optimum one pro-
posed by Szwerinski [13], however, the number of
internal states required for the firing is the smallest
known at present.

5 Conclusion

We have proposed several new generalized synchro-
nization algorithms for one- and two-dimensional cel-
lular arrays having 1-bit inter-cell communication
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Figure 7: Snapshots of our generalized rectangular
firing squad synchronization algorithm operating for
an array of size 5 x 8 with the general on Cj 4.

and implemented them on a computer. Most of the
algorithms proposed are one to four steps larger than
optimum ones proposed for O(1)-bit communication
model. We are convinced that there still exist in-
teresting new synchronization algorithms, although
more than 40 years have passed since the develop-
ment of the problem.
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