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Abstract We study a classical firing squad synchroniza-

tion problem for a large scale of one- and two-dimensional

cellular automata having 1-bit inter-cell communications

(CA1−bit). First, it is shown that there exists a one-

dimensional CA1−bit that can synchronize n cells with

the general on the left cell in optimum 2n − 2 steps.

In addition we show that there exists a one-dimensional

CA1−bit that can synchronize n cells with the general on

the k-th cell in n + max(k, n − k + 1) steps, where the

performance is two steps larger than the optimum one

that was developed for O(1)-bit communication model.

Next, we give a two-dimensional CA1−bit which can syn-

chronize any n×n square and m×n rectangular arrays in

2n−1 and m+n+max(m, n) steps, respectively. Lastly,

we propose a generalized synchronization algorithm that

operates in m + n + max(r + s,m + n − r − s) + O(1)

steps on two-dimensional m × n rectangular arrays with

the general located at an arbitrary position (r, s) of the

array, where 1 ≤ r ≤ m and 1 ≤ s ≤ n. The time

complexities for the first three algorithms developed are

one to four steps larger than optimum ones proposed for

O(1)-bit communication models. We show that there still

exist several new interesting synchronization algorithms

on CA1−bit although more than 40 years have passed

since the development of the problem.

1 Introduction

In recent years cellular automata (CA) have been
establishing increasing interests in the study of mod-
eling real phenomena occurring in biology, chem-
istry, ecology, economy, geology, mechanical engi-
neering, medicine, physics, sociology, public traffic,
etc. Cellular automata are considered to be a good
model of complex systems in which an infinite one-
dimensional array of finite state machines (cells) up-
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dates itself in synchronous manner according to a
uniform local rule.

In this paper, we study a famous firing squad syn-
chronization problem on a newly introduced 1-bit
CA model for which solution gives a finite-state pro-
tocol for synchronizing a large scale of cellular au-
tomata. The synchronization for cellular automata
has been known as the firing squad synchronization
problem since its development, where it was origi-
nally proposed by J. Myhill to synchronize all parts
of self-reproducing cellular automata [9]. The firing
squad synchronization problem has been studied ex-
tensively in more than 40 years [1-19].

An O(1)-bit communication model is a conven-
tional CA where the amount of communication
bits exchanged at one step between neighboring
cells is assumed to be O(1)-bit, however, such
bit-information exchanged between inter-cells has
been hidden behind the definition of conventional
automata-theoretic finite state descriptions. On the
other hand, a 1-bit inter-cell communication model
studied in this paper is a new CA whose inter-cell
communication is restricted to 1-bit. We call the
model 1-bit CA in short. The number of internal
states of the 1-bit CA is assumed to be finite in a
usual way. The next state of each cell is determined
by the present state of itself and two binary 1-bit
inputs from its left and right neighbor cells. Thus
the 1-bit CA can be thought to be one of the most
powerless and simplest models in a variety of CAs.

In the next section 2, we define a (generalized)
firing squad synchronization problem on the cellu-
lar automata whose inter-cell communication is re-
stricted to 1-bit. In section 3, we propose a new
generalized synchronization algorithm that operates
in n+max(k, n − k + 1) steps for firing n cells on 1-
D CA1−bit, where the general is located on the k-th
cell from the left end. The algorithm is a generalized
extension of Mazoyer [6] and Nishimura, Sogabe and
Umeo [11]. In section 4, three 1-bit implementations
of synchronization algorithms for two-dimensional
square and rectangular arrays will be given. Due to
the space available, we omit the proofs of theorems
given below.
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Figure 1: One-dimensional cellular automaton hav-
ing 1-bit inter-cell communication links.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 PW Q Q Q Q Q Q Q Q Q Q Q Q Q QW

1 PW AR’ Q Q Q Q Q Q Q Q Q Q Q Q QW

2 PW BR01 AR’ Q Q Q Q Q Q Q Q Q Q Q QW

3 PW BR00 sub AR’ Q Q Q Q Q Q Q Q Q Q QW

4 PW BR0S odd sub AR’ Q Q Q Q Q Q Q Q Q QW

5 PW QR0S BR11 QRB sub AR’ Q Q Q Q Q Q Q Q QW

6 PW BR0u1 BR10 QRC odd sub AR’ Q Q Q Q Q Q Q QW

7 PW BR0u0 BR1S QRD QRC QRB sub AR’ Q Q Q Q Q Q QW

8 PW BR0uS QR10 BR01 QRD QRC odd sub AR’ Q Q Q Q Q QW

9 PW BR0v0 QR11 BR00 QRA QRD QRC QRB sub AR’ Q Q Q Q QW

10 PW BR0v1 QR10 BR0S QRB QRA QRD QRC odd sub AR’ Q Q Q QW

11 PW BR0v0 RL1 QR00 BR11 QRB QRA QRD QRC QRB sub AR’ Q Q QW

12 PW BR0vS QR1S QR01 BR10 QRC QRB QRA QRD QRC odd sub AR’ Q QW

13 PW QR0S BR1u1 QR00 BR1S QRD QRC QRB QRA QRD QRC QRB sub AR’ QW

14 PW BR0u1 BR1u0 RL0 QR10 BR01 QRD QRC QRB QRA QRD QRC odd sub PW

15 PW BR0u0 BR1uS QR0S QR11 BR00 QRA QRD QRC QRB QRA QRD QRC AL0 PW

16 PW BR0u1 BR1v0 QR01 QR10 BR0S QRB QRA QRD QRC QRB QRA AL BL01 PW

17 PW BR0u0 BR1v1 QR00 RL1 QR00 BR11 QRB QRA QRD QRC AL QLA BL00 PW

18 PW BR0u1 BR1v0 RL0 QR1S QR01 BR10 QRC QRB QRA AL QLA QLB BL0S PW

19 PW BR0u0 BR1vS QR0S QR11 QR00 BR1S QRD QRC AL QLA QLB BL11 QL0S PW

20 PW BR0uS QR10 BR0u1 QR10 RL0 QR10 BR01 AL QLA QLB QLC BL10 BL0u1 PW

21 PW BR0v0 QR11 BR0u0 RL1 QR0S QR11 P1s QLA QLB QLC QLD BL1S BL0u0 PW

22 PW BR0v1 QR10 BR0uS QR1S QR01 AL P1 AR QLC QLD BL01 QL10 BL0uS PW

23 PW BR0v0 QR11 BR0v0 QR11 AL QLA P1 QRA AR QLA BL00 QL11 BL0v0 PW

24 PW BR0v1 QR10 BR0v1 AL QLA BL01 P1 BR01 QRA AR BL0S QL10 BL0v1 PW

25 PW BR0v0 QR11 P1d PA QLB BL00 P1 BR00 QRB PA P1d RR1 BL0v0 PW

26 PW BR0v1 AL P1 P1 AR BL0S P1 BR0S AL P1 P1 AR BL0vS PW

27 PW P1 PA P1 P1 PA P1 P1 P1 PA P1 P1 PA P1 PW

28 T T T T T T T T T T T T T T T

Figure 2: Snapshots of the time-optimum 1-bit fir-
ing squad synchronization algorithm operating on 15
cells with a general on the left end.

2 Firing Squad Synchroniza-
tion Problem on CA1−bit

The firing squad synchronization problem is formal-
ized in terms of the model of cellular automata. Fig.
1 shows a finite one-dimensional (1-D) cellular array
consisting of n cells. Each cell is an identical (except
the end cells) finite state automaton. The array op-
erates in lock-step mode in such a way that the next
state of each cell (except both end cells) is deter-
mined by both its own present state and the present
binary inputs of its right and left neighbors. Let k
be any integer such that 1 ≤ k ≤ n. All cells (sol-
diers), except the k-th cell Ck from the left end, are
initially in the quiescent state at time t = 0 with the
property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At
time t = 0 the general cell Ck is in fire-when-ready
state that is an initiation signal to the array. The
generalized firing squad synchronization problem [7,
10, 13, 17, 18] is stated as follows:

Given an array of n identical cellular automata,
including a general on the k-th cell which is activated
at time t = 0, we want to give the description (state
set and next-state function) of the automata so that,
at some future time, all the cells will simultaneously
and, for the first time, enter a special firing state.
The set of states must be independent of k and n.
The tricky part of the problem is that the same kind
of soldier with a fixed number of states is required to
synchronize, regardless of the length n of the array.

3 Synchronization Algorithms
on 1-D Arrays

Nishimura, Sogabe and Umeo [11] designed an
optimum-step firing squad synchronization algo-
rithm on CA1−bit, where 2n−2 steps are required for
synchronizing n cells on 1-D array and the general is
located at the left end of the array. The algorithm,
referred to as NSU algorithm, is stated as follows:

[Theorem 1] There exists a CA1−bit which can syn-
chronize n cells with the general on the left end in
2n − 2 steps. The CA1−bit constructed has 78 inter-
nal states and 208 transition rules.

In Fig. 2, we show snapshots of the time-optimum
firing synchronization algorithm on 15 cells with a
general on the left end. Small right- and left-oriented
black triangles, � and �, shown in the figure, indi-
cate a 1-bit signal transfer in the right or left di-
rection between neighbor cells. A symbol in a cell
shows its internal state. The total number of inter-
nal states and transition rules of the CA1−bit realized



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 QX Q Q Q Q Q Q P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QX

1 QX Q Q Q Q Q L D1 S Q Q Q Q Q Q Q Q Q Q Q Q Q Q QX

2 QX Q Q Q Q L QLS D2 QRS S Q Q Q Q Q Q Q Q Q Q Q Q Q QX

3 QX Q Q Q L QLS QL2 D1 QR2 QRS S Q Q Q Q Q Q Q Q Q Q Q Q QX

4 QX Q Q L QLS QL2 QL1 D2 QR1 QR2 QRS S Q Q Q Q Q Q Q Q Q Q Q QX

5 QX Q L QLS QL2 QL1 QL2 D1 QR2 QR1 QR2 QRS S Q Q Q Q Q Q Q Q Q Q QX

6 QX L QLS QL2 QL1 QL2 QL1 D2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q Q Q Q Q Q QX

7 KXs QLS QL2 QL1 QL2 QL1 QL2 D1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q Q Q Q Q QX

8 KX IX QL1 QL2 QL1 QL2 QL1 D2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q Q Q Q QX

9 KX AR1 I0 QL1 QL2 QL1 QL2 D1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q Q Q QX

10 KX AR2 QRA I0 QL1 QL2 QL1 D2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q Q QX

11 KX AR3 QRB QRA I0 QL1 QL2 D1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q Q QX

12 KX QRE0 BR1 QRB QRA I0 QL1 D2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q Q QX

13 KX ARA BR2 QRC QRB QRA I0 D1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q Q QX

14 KX ARB BR3 QRD QRC QRB <S X QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S Q QX

15 KX ARC QRO1 AR1 QRD <S <FS FXA W QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS S QX

16 KX ARE QRO2 AR2 <S <FS QRo2 Ar2 FW W QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QRS KXs

17 KX ARD QRO1 sARD <FS QRe2 QRo1 Ar3 QRb FW W QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 GX KX

18 KX ARE QRO2 SARD QRo2 QRe1 Ro QRe1 Br1 QRb FW W QR1 QR2 QR1 QR2 QR1 QR2 QR1 QR2 QR1 G0 AL1 KX

19 KX ARD <O2 ARd QRo1 Re QRo0 QRe2 Br2 QRc QRb FW W QR1 QR2 QR1 QR2 QR1 QR2 QR1 G0 QLA AL2 KX

20 KX fARD QRo2 ARe Ro QRe0 QRo2 QRe1 Br3 QRd QRc QRb FW W QR1 QR2 QR1 QR2 QR1 G0 QLA QLB AL3 KX

21 KX ARd QRo1 ARf QRo0 QRe2 QRo1 Re QRo1 Ar1 QRd QRc QRb FW W QR1 QR2 QR1 G0 QLA QLB BL1 QLE0 KX

22 KX ARe Ro QRe1 BRa QRe1 Ro QRe0 QRo2 Ar2 QRa QRd QRc QRb FW W QR1 G0 QLA QLB QLC BL2 ALA KX

23 KX ARf QRo0 QRe2 BRb Re QRo0 QRe2 QRo1 Ar3 QRb QRa QRd QRc QRb FW GW QLA QLB QLC QLD BL3 ALB KX

24 KX QRe0 BRa QRe1 BRc QRe0 QRo2 QRe1 Ro QRe1 Br1 QRb QRa QRd QRc QRb FGW B> QLC QLD AL1 QLO1 ALC KX

25 KX ARa BRb QRe2 BRe QRe2 QRo1 Re QRo0 QRe2 Br2 QRc QRb QRa QRd QRc G FB> D> QLA AL2 QLO2 ALE KX

26 KX ARb BRa QRe1 BRd QRe1 Ro QRe0 QRo2 QRe1 Br3 QRd QRc QRb QRa G QLa QLb FD> B> AL3 QLO1 ALD KX

27 KX ARa BRb QRe2 BRe Re QRo0 QRe2 QRo1 Re QRo1 Ar1 QRd QRc G QLa QLb QLc QLd FB> fAL3 HO ALE KX

28 KX ARb BRa QRe1 BRf QRe0 QRo2 QRe1 Ro QRe0 QRo2 Ar2 QRa G QLa QLb QLc QLd QLa QLb FAL3 fHO ALF KX

29 KX ARa BRb Re QRo1 ARa QRo1 Re QRo0 QRe2 QRo1 Ar3 G QLa QLb QLc QLd QLa QLb QLc Al3 FHO fALF KX

30 KX ARb BRc QRe0 QRo2 ARb Ro QRe0 QRo2 QRe1 Ro K1d KA QLb QLc QLd QLa QLb QLc Bl1 QLe1 Ho FALF KX

31 KX ARa BRe QRe2 QRo1 ARc QRo0 QRe2 QRo1 Re G K1 K1 I QLd QLa QLb QLc QLd Bl2 QLe2 QLo0 ALf KX

32 KX ARb BRd QRe1 QRo2 ARe QRo2 QRe1 Ro G QLa K1 K1 QRa I QLb QLc QLd QLa Bl3 QLe1 BLa QLe0 KX

33 KX ARa BRe QRe2 QRo1 ARd QRo1 Re G QLa Al1 K1 K1 Ar1 QRa I QLd QLa Al1 QLo1 He BLb ALa KX

34 KX ARb BRd QRe1 QRo2 ARe Ro G QLa QLb Al2 K1 K1 Ar2 QRb QRa I QLb Al2 QLo2 QLe0 BLc ALb KX

35 KX ARa BRe QRe2 QRo1 ARf G QLa QLb QLc Al3 K1 K1 Ar3 QRc QRb QRa I Al3 QLo1 QLe2 BLe ALa KX

36 KX ARb BRd QRe1 Ro K1d KA QLb QLc Bl1 QLe0 K1 K1 QRe0 Br1 QRc QRb KA K1d Ho QLe1 BLd ALb KX

37 KX ARa BRe Re G K1 K1 I QLd Bl2 ALa K1 K1 ARa Br2 QRd G K1 K1 I He BLe ALa KX

38 KX ARb BRf G QLa K1 K1 QRa I Bl3 ALb K1 K1 ARb Br3 G QLa K1 K1 QRa I BLf ALb KX

39 KX ARc K0d KA Al1 K1 K1 Ar1 KA K0d ALc K1 K1 ARc K0d KA Al1 K1 K1 Ar1 KA K0d ALc KX

40 KX K0 K0 K0 K0 K1 K1 K0 K0 K0 K0 K1 K1 K0 K0 K0 K0 K1 K1 K0 K0 K0 K0 KX

41 T T T T T T T T T T T T T T T T T T T T T T T T

Figure 3: Snapshots of the generalized 1-bit fir-
ing squad synchronization algorithm operating on 24
cells with a general on C8.
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Figure 4: Two-dimensional cellular automaton.

on a computer is 78 and 208, respectively.
The generalized synchronization algorithm that we

are going to design is based on the NSU algorithm.
In our construction additional two steps are required
for transmitting a signal to the nearest end, where
the signal has been kept for min(2k− 2, 2n− 2k− 2)
steps by the general cell.

In Fig. 3, we show snapshots of the generalized
firing synchronization algorithm on 24 cells with a
general on C8. The total number of internal states
and transition rules of the CA1−bit realized on a com-
puter is 282 and 721, respectively. We checked the
validity of the rule set for arrays of length n = 2 to
100 at any position of the general. Thus we have:

[Theorem 2] There exists a CA1−bit which can syn-
chronize n cells in n+max(k, n− k + 1) steps, where
k is any integer such that 1 ≤ k ≤ n and a general
is located on the k-th cell from the left end of the
array.

4 Synchronization Algorithms
on 2-D Arrays

In this section we develop some synchronization al-
gorithms for 2-D 1-bit inter-cell communication CA
models. Fig. 4 shows a finite two-dimensional cellu-
lar array consisting of m × n cells. A cell on (i, j) is
denoted by Ci,j . Each cell is an identical (except the
border cells) finite state automaton.

The array operates in lock-step mode in such a
way that the next state of each cell (except border
cells) is determined by both its own present state and
the present binary inputs from its north, south, east
and west neighbors. All cells, except the general cell,
are initially in the quiescent state with the property
that the next state of a quiescent cell with quiescent
neighbors is the quiescent state again. Several 2-
D synchronization algorithms and their implementa-
tions have been presented in Beyer [2], Grasselli [4],
Shinar [12], Szwerinski [13] and Torre, Napoli and
Parente [14] for O(1)-bit communication models.

4.1 Synchronization Algorithm on
Square Arrays

We present a new synchronization algorithm that
runs in (2n−1) steps on n×n square arrays. Our al-
gorithm is one step slower than that of Shinahr [13]
for O(1)-bit communication model and operates as
follows. By dividing the entire square array into n
L-shaped 1-D arrays such that the length of the i-th
L is 2n − 2i + 1 (1 ≤ i ≤ n), we treat the square
firing as n independent 1-D firings with the general
located at the center cell. On the i-th L, a general



1 2 3 4 5 6 7 8

1 PWLT Q Q Q Q Q Q QW

2 Q Q Q Q Q Q Q QW

3 Q Q Q Q Q Q Q QW

4 Q Q Q Q Q Q Q QW

5 Q Q Q Q Q Q Q QW

6 Q Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 0
1 2 3 4 5 6 7 8

1 PWLT xPWLT Q Q Q Q Q QW

2 xPWLT Q Q Q Q Q Q QW

3 Q Q Q Q Q Q Q QW

4 Q Q Q Q Q Q Q QW

5 Q Q Q Q Q Q Q QW

6 Q Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 1
1 2 3 4 5 6 7 8

1 PWLT AR’ xPWLT Q Q Q Q QW

2 aR’ xPWLT Q Q Q Q Q QW

3 xPWLT Q Q Q Q Q Q QW

4 Q Q Q Q Q Q Q QW

5 Q Q Q Q Q Q Q QW

6 Q Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 2
1 2 3 4 5 6 7 8

1 PWLT BR01 AR’ xPWLT Q Q Q QW

2 bR01 PWLT xPWLT Q Q Q Q QW

3 aR’ xPWLT Q Q Q Q Q QW

4 xPWLT Q Q Q Q Q Q QW

5 Q Q Q Q Q Q Q QW

6 Q Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 3

1 2 3 4 5 6 7 8

1 PWLT BR00 subH AR’ xPWLT Q Q QW

2 bR00 PWLT AR’ xPWLT Q Q Q QW

3 subV aR’ xPWLT Q Q Q Q QW

4 aR’ xPWLT Q Q Q Q Q QW

5 xPWLT Q Q Q Q Q Q QW

6 Q Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 4
1 2 3 4 5 6 7 8

1 PWLT BR0S odd subH AR’ xPWLT Q QW

2 bR0S PWLT BR01 AR’ xPWLT Q Q QW

3 odd bR01 PWLT xPWLT Q Q Q QW

4 subV aR’ xPWLT Q Q Q Q QW

5 aR’ xPWLT Q Q Q Q Q QW

6 xPWLT Q Q Q Q Q Q QW

7 Q Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 5
1 2 3 4 5 6 7 8

1 PWLT QR0S BR11 QRB subH AR’ xPWLT QW

2 QR0S PWLT BR00 subH AR’ xPWLT Q QW

3 bR11 bR00 PWLT AR’ xPWLT Q Q QW

4 QRB subV aR’ xPWLT Q Q Q QW

5 subV aR’ xPWLT Q Q Q Q QW

6 aR’ xPWLT Q Q Q Q Q QW

7 xPWLT Q Q Q Q Q Q QW

8 QW QW QW QW QW QW QW QW

step 6
1 2 3 4 5 6 7 8

1 PWLT BR0u1 BR10 QRC odd subH AR’ xPWRB

2 bR0u1 PWLT BR0S odd subH AR’ xPWLT QW

3 bR10 bR0S PWLT BR01 AR’ xPWLT Q QW

4 QRC odd bR01 PWLT xPWLT Q Q QW

5 odd subV aR’ xPWLT Q Q Q QW

6 subV aR’ xPWLT Q Q Q Q QW

7 aR’ xPWLT Q Q Q Q Q QW

8 xPWRB QW QW QW QW QW QW QW

step 7

1 2 3 4 5 6 7 8

1 PWLT BR0u0 BR1S QRD QRC QRB subH PWRB

2 bR0u0 PWLT QR0S BR11 QRB subH AR’ xPWRB

3 bR1S QR0S PWLT BR00 subH AR’ xPWLT QW

4 QRD bR11 bR00 PWLT AR’ xPWLT Q QW

5 QRC QRB subV aR’ xPWLT Q Q QW

6 QRB subV aR’ xPWLT Q Q Q QW

7 subV aR’ xPWLT Q Q Q Q QW

8 PWRB xPWRB QW QW QW QW QW QW

step 8
1 2 3 4 5 6 7 8

1 PWLT BR0uS QR10 BR01 QRD QRC AL1 PWRB

2 bR0uS PWLT BR0u1 BR10 QRC odd subH PWRB

3 QR10 bR0u1 PWLT BR0S odd subH AR’ xPWRB

4 bR01 bR10 bR0S PWLT BR01 AR’ xPWLT QW

5 QRD QRC odd bR01 PWLT xPWLT Q QW

6 QRC odd subV aR’ xPWLT Q Q QW

7 AL1 subV aR’ xPWLT Q Q Q QW

8 PWRB PWRB xPWRB QW QW QW QW QW

step 9
1 2 3 4 5 6 7 8

1 PWLT BR0v0 QR11 BR00 QRA AL QLA PWRB

2 bR0v0 PWLT BR0u0 BR1S QRD QRC AL0 PWRB

3 QR11 bR0u0 PWLT QR0S BR11 QRB subH PWRB

4 bR00 bR1S QR0S PWLT BR00 subH AR’ xPWRB

5 QRA QRD bR11 bR00 PWLT AR’ xPWLT QW

6 AL QRC QRB subV aR’ xPWLT Q QW

7 QLA AL0 subV aR’ xPWLT Q Q QW

8 PWRB PWRB PWRB xPWRB QW QW QW QW

step 10
1 2 3 4 5 6 7 8

1 PWLT BR0v1 QR10 BR0S AL QLA BL01 PWRB

2 bR0v1 PWLT BR0uS QR10 BR01 AL BL01 PWRB

3 QR10 bR0uS PWLT BR0u1 BR10 QRC AL1 PWRB

4 bR0S QR10 bR0u1 PWLT BR0S odd subH PWRB

5 AL bR01 bR10 bR0S PWLT BR01 AR’ xPWRB

6 QLA AL QRC odd bR01 PWLT xPWLT QW

7 bL01 bL01 AL1 subV aR’ xPWLT Q QW

8 PWRB PWRB PWRB PWRB xPWRB QW QW QW

step 11

1 2 3 4 5 6 7 8

1 PWLT BR0v0 RL1 P1d PA QLB BL00 PWRB

2 bR0v0 PWLT BR0v0 QR11 P1s QLA BL00 PWRB

3 RL1 bR0v0 PWLT BR0u0 BR1S AL QLA PWRB

4 p1d QR11 bR0u0 PWLT QR0S BR11 AL0 PWRB

5 pA p1s bR1S QR0S PWLT BR00 subH PWRB

6 QLB QLA AL bR11 bR00 PWLT AR’ xPWRB

7 bL00 bL00 QLA AL0 subV aR’ xPWLT QW

8 PWRB PWRB PWRB PWRB PWRB xPWRB QW QW

step 12
1 2 3 4 5 6 7 8

1 PWLT BR0vS AL P1 P1 AR BL0S PWRB

2 bR0vS PWLT BR0v1 AL P1 AR BL0S PWRB

3 AL bR0v1 PWLT BR0uS P0d PA BL01 PWRB

4 p1 AL bR0uS PWLT BR0u1 P0s BL01 PWRB

5 p1 p1 p0d bR0u1 PWLT BR0S AL1 PWRB

6 AR AR pA p0s bR0S PWLT BR01 PWRB

7 bL0S bL0S bL01 bL01 AL1 bR01 PWLT xPWRB

8 PWRB PWRB PWRB PWRB PWRB PWRB xPWRB QW

step 13
1 2 3 4 5 6 7 8

1 PWLT P1 PA P1 P1 PA P1 PWRB

2 p1 PWLT P1 PA P1 PA P1 PWRB

3 pA p1 PWLT P0 P0 P0 P0 PWRB

4 p1 pA p0 PWLT P0 P0 P0 PWRB

5 p1 p1 p0 p0 PWLT P1 P1 PWRB

6 pA pA p0 p0 p1 PWLT P0 PWRB

7 p1 p1 p0 p0 p1 p0 PWLT PWRB

8 PWRB PWRB PWRB PWRB PWRB PWRB PWRB xPWRB

step 14
1 2 3 4 5 6 7 8

1 T T T T T T T T

2 T T T T T T T T

3 T T T T T T T T

4 T T T T T T T T

5 T T T T T T T T

6 T T T T T T T T

7 T T T T T T T T

8 T T T T T T T T

step 15

Figure 5: Snapshots of our (2n−1)-step square firing
squad synchronization algorithm with the general on
the north west corner.

is generated at Ci,i at time t = 2i − 1, and the gen-
eral initiates the horizontal and vertical firings on
the row and column arrays. In our construction, we
apply the previous NSU algorithm [11] for each row
and column firing. The array fires in optimum time
t = 2i − 1 + 2(n − i + 1) − 2 = 2n − 1.

We have tested our transition rule set on squares of
size 2×2 to 1000×1000. The total number of internal
states and transition rules of the CA1−bit realized
on a computer is 127 and 405, respectively. Figure
5 shows snapshots of configurations of our 127-state
synchronization algorithm running on a square of size
8 × 8. Thus we have:

[Theorem 3] There exists a 2-D CA1−bit which can
synchronize n × n cells in 2n − 1 steps.

4.2 Synchronization Algorithm on
Rectangular Arrays

The generalized firing squad synchronization algo-
rithm presented in [Theorem 2] can be applied to the
problem of synchronizing rectangular arrays with the
general at the north-west corner. The configuration
of the generalized firing on 1-D arrays can be mapped
on 2-D array.

The rectangular array is regarded as min(m,n) L-
shaped 1-D arrays, where they are synchronized in-
dependently using the generalized firing squad syn-

1 2 3 4 5 6 7 8

1 xJ Q Q Q Q Q Q CQX

2 Q Q Q Q Q Q Q HQX

3 Q Q Q Q Q Q Q HQX

4 Q Q Q Q Q Q Q HQX

5 CQX VQX VQX VQX VQX VQX VQX JQ X

step 0

1 2 3 4 5 6 7 8

1 JP xH Q Q Q Q Q CQX

2 xV Q Q Q Q Q Q HQX

3 Q Q Q Q Q Q Q HQX

4 Q Q Q Q Q Q Q HQX

5 CQX VQX VQX VQX VQX VQX VQX JQ X

step 1

1 2 3 4 5 6 7 8

1 JD 1 HQR2 HQRS HS xH Q Q CQX

2 VQL 2 JP xH xJ2 Q Q Q HQX

3 VQL S xV xJ2 Q Q Q Q HQX

4 VL xJ2 Q Q Q Q Q HQX

5 xCQX VQX VQX VQX VQX VQX VQX JQ X

step 4

1 2 3 4 5 6 7 8

1 JD2 HQR1 HQR2 HQRS HS xH Q CQX

2 VQL 1 JD 1 HS xH xJ2 Q Q HQX

3 VQL 2 VL xJ2 xJ2 Q Q Q HQX

4 VQL S xV xJ2 Q Q Q Q HQX

5 VKXs xVQX1 VQX VQX VQX VQX VQX JQ X

step 5

1 2 3 4 5 6 7 8

1 JD 1 HQR2 HQR1 HQR2 HQR1 HQR2 HQRS HKXs

2 VI 0 JD2 HQR1 HQR2 HQRS HS xH xHQX1

3 VQRA VQL 1 JD 1 HS xH xJ2 xJ2 HQX

4 VAR2 VI X VL xJ2 xJ2 xJ2 Q HQX

5 VKX VKX xCQX xVQX1 xVQX1 VQX VQX JQ X

step 8

1 2 3 4 5 6 7 8

1 JRo HK1d HKA HQL b HQL c HBl 1 HFAL A HKX

2 VQRe 1 JQRe 1 HBr 3 HG HQL a HQLb HFAL 3 HKX

3 VBRd VBRa JQRo 2 HAr2 HQRa HG HFAL 1 HKX

4 VARb VQRe 0 VARe JQRe 0 HBr1 HQRb HFGOX HKX

5 VKX VKX VKX VKX HKX HTSX HtSX HKXs

step 16

1 2 3 4 5 6 7 8

1 JG HK1 HK1 HI HQL d HBl 2 HAL a HKX

2 VRe JRe HK0d HKA HQL b HQL c HAl3 HKX

3 VBRe VBRb JQRo 1 HAr3 HG HQL a HAl1 HKX

4 VARa VARa VARd JARa HBr2 HQRc HGOx HKX

5 VKX VKX VKX VKX HKX HAr1 HTSX HKX

step 17

1 2 3 4 5 6 7 8

1 JK0 HK1 HK1 HK0 HK0 HK0 HK0 HKX

2 VK0 JK0 HK0 HK0 HK0 HK0 HK0 HKX

3 VK0 VK0 JKA HK1 HK1 HKA HK1 HKX

4 VK0 VK0 VK1 JK0 HK0 HK0 HK0 HKX

5 VKX VKX VKX VKX HKX HK1 HKA HKX

step 20

1 2 3 4 5 6 7 8

1 T T T T T T T T

2 T T T T T T T T

3 T T T T T T T T

4 T T T T T T T T

5 T T T T T T T T

step 21

1 2 3 4 5 6 7 8

1 JQLa HK1 HK1 HQRa HI HBl 3 HAL b HKX

2 VG JG HK0 HK0 HI HBl1 HQLe0 HKX

3 VBRf VBRc JRo HK1d HKA HQL b HAl2 HKX

4 VARb VARb VARe JARb HBr 3 HG HQL a HKX

5 VKX VKX VKX VKX HKX HAr2 Hsubr HKX

step 18

1 2 3 4 5 6 7 8

1 JAl1 HK1 HK1 HAr1 HKA HK0d HAL c HKX

2 VKA JAl1 HK0 HK0 HAr1 HK0s HAL a HKX

3 VK0d VK0s JG HK1 HK1 HI HAl3 HKX

4 VARc VARa VARf JARc HK0d HKA HAl1 HKX

5 VKX VKX VKX VKX HKX HAr3 HGOx HKX

step 19

1 2 3 4 5 6 7 8

1 JBr3 HQRd HF W HGW HQL A HQL B HAL 3 HKX

2 VQRe 1 JAr2 HF W HW HQR1 HG0 HAL 1 HKX

3 VBRa VQRo2 JFX B HW HQR1 HQR2 HQRS HKXs

4 VfARA VSARD VSARA JX HQRS HS xH xHQX1

5 VKX VKX VKX VKX xH xVQX1 xVQX1 JQ X

step 12

1 2 3 4 5 6 7 8

1 JQRo 1 HAr1 HQRd HFGW HB> HBL1 HQLE0 HKX

2 VRe JAr3 HQRb HF W HGW HQLA HAL 2 HKX

3 VBRb VQRo 1 JBr2 HFW HW HQR1 HGX HKX

4 VARa VARd VARa JFX A HW HQRS HS xCQX

5 VKX VKX VKX VKX HPX xH xVQX1 JQ X

step 13

1 2 3 4 5 6 7 8

1 JQRo 2 HAr2 HQRa HG HFB> HfBL 1 HAL A HKX

2 VQRe 0 JQRe 1 HBr1 HQRb HFGW HB> HAL 3 HKX

3 VBRc VRo JBr3 HQRd HFW HGW HAL 1 HKX

4 VARb VARe VARb JAr2 HFW HW HQRS HKXs

5 VKX VKX VKX VKX HfPX HS xH JQ X

step 14

1 2 3 4 5 6 7 8

1 JQRo 1 HAr3 HG HQL a HQLb HFBL 1 HfAL A HKX

2 VQRe 2 JQRe 2 HBr2 HQRc HG HFB> HfAL 3 HKX

3 VBRe VQRo 0 JQRo 1 HAr1 HQRd HFGW HfAL 1 HKX

4 VARa VARf VARc JAr3 HQRb HF W HGXX HKX

5 VKX VKX VKX VKX HFPX HtSX HS xJQ X

step 15

1 2 3 4 5 6 7 8

1 JX HQR1 HQR2 HQR1 HQR2 HQR1 HGX HKX

2 V<S JD 1 HQR2 HQR1 HQR2 HQRS HS xCQX

3 VQRB VI 0 JD2 HQRS HS xH xJ2 xHQX1

4 VAR3 VAR1 VQL S xJ xJ2 xJ2 xJ2 HQX

5 VKX VKX VKXs xVQX1 xVQX1 xVQX1 VQX JQ X

step 9

1 2 3 4 5 6 7 8

1 JFXB HW HQR1 HQR2 HQR1 HG0 HAL 1 HKX

2 V<FS JX HQR1 HQR2 HQR1 HQR2 HQRS HKXs

3 VsBRA V<S JD 1 HQR2 HQRS HS xH xHQX1

4 VQRE0 VAR2 VI X JP xH xJ2 xJ2 xHQX1

5 VKX VKX VKX xCQX xVQX1 xVQX1 xVQX1 JQ X

step 10

1 2 3 4 5 6 7 8

1 JBr2 HFW HW HQR1 HG0 HQLA HAL 2 HKX

2 VQRe2 JFX A HW HQR1 HQR2 HQR1 HGX HKX

3 VSBRA V<FS JX HQR1 HQR2 HQRS HS xCQX

4 VARA VsARD VsARA JD 1 HS xH xJ2 xHQX1

5 VKX VKX VKX VKXs xVQX1 xVQX1 xVQX1 JQ X

step 11

1 2 3 4 5 6 7 8

1 JD 1 HQR2 HQR1 HQR2 HQRS HS xH CQX

2 VQL 2 JD2 HQRS HS xH xJ2 Q HQX

3 VQL 1 VQL S xJ xJ2 xJ2 Q Q HQX

4 VI X VL xJ2 xJ2 Q Q Q HQX

5 VKX xCQX xVQX1 VQX VQX VQX VQX JQ X

step 6

1 2 3 4 5 6 7 8

1 JD2 HQR1 HQR2 HQR1 HQR2 HQRS HS xCQX

2 VQL 1 JD 1 HQR2 HQRS HS xH xJ2 HQX

3 VI 0 VQL 2 JP xH xJ2 xJ2 Q HQX

4 VAR1 VQL S xV xJ2 xJ2 Q Q HQX

5 VKX VKXs xVQX1 xVQX1 VQX VQX VQX JQ X

step 7

1 2 3 4 5 6 7 8

1 JD 1 HS xH Q Q Q Q CQX

2 VL xJ2 Q Q Q Q Q HQX

3 xV Q Q Q Q Q Q HQX

4 Q Q Q Q Q Q Q HQX

5 CQX VQX VQX VQX VQX VQX VQX JQ X

step 2
1 2 3 4 5 6 7 8

1 JD2 HQRS HS xH Q Q Q CQX

2 VQL S xJ xJ2 Q Q Q Q HQX

3 VL xJ2 Q Q Q Q Q HQX

4 xV Q Q Q Q Q Q HQX

5 CQX VQX VQX VQX VQX VQX VQX JQ X

step 3

Figure 6: Snapshots of our rectangular firing squad
synchronization algorithm with the general at the
north-west corner.

chronization algorithm. We have implemented the
algorithm on a computer. In Fig. 6, we show snap-
shots of the synchronization process on 5× 8 rectan-
gular array. The total number of internal states and
transition rules of the CA1−bit realized on a com-
puter are 862 and 2217, respectively. Thus we have:

[Theorem 4] There exists a 2-D CA1−bit which can
synchronize m × n rectangular arrays in m + n +
max(m, n) steps.

4.3 Generalized Synchronization Al-
gorithm on 2-D Rectangular Ar-
rays

In this subsection, we study the generalized synchro-
nization algorithm on rectangular arrays. Let r, s be
any integer such that 1 ≤ r ≤ m, 1 ≤ s ≤ n. At
time t = 0 the general cell Cr,s is in fire-when-ready
state that is an initiation signal to the array. Before
presenting the 1-bit algorithm, we show a simple and
efficient mapping scheme developed for O(1)-bit CA
model that embeds any generalized one-dimensional
synchronization algorithms onto two-dimensional ar-
rays [16].

Now we consider a 2-D array of size m × n. We
divide mn cells into m + n − 1 groups gk, 1 ≤ k ≤



m + n − 1, defined as follows;

gk = {Ci,j |(i − 1) + (j − 1) = k − 1}.
That is,
g1 = {C1,1},
g2 = {C1,2, C2,1},
g3 = {C1,3, C2,2, C3,1},
.
.
.
,
gm+n−1 = {Cm,n}.

Let M be any one-dimensional CA1−bit that fires �
cells in T (�, k) steps, where the general is on Ck. We
assume that M has m + n− 1 cells. We consider the
one-to-one correspondence between the i-th group gi

and the i-th cell Ci on M such that gi ↔ Ci, where
1 ≤ i ≤ m + n− 1. We can construct a 2-D CA1−bit

N so that all cells in gi simulates the i-th cell Ci in
real-time and N can fire any m × n arrays with the
general Cr,s at time t = T (m+n−1, r+s−1) if and
only if M fires 1-D arrays of length m+n−1 with the
general on Cr+s−1 at time t = T (m+n−1, r+s−1).

Based on the generalized 1-D algorithm given in
[Theorem 2], we get the following 2-D generalized
synchronization algorithm that fires in T (m,n, r, s)
steps given below. The total number of internal
states and transition rules of the CA1−bit realized
on a computer is 300 and 2333, respectively. In Fig.
7 we show snapshots of the 300-state generalized syn-
chronization algorithm running on rectangular array
of size 5× 8 with the general on C3,4. Thus we have:

[Theorem 5] There exists a 2-D 1-bit communica-
tion CA1−bit that can synchronize any m × n rect-
angular arrays in T (m,n, r, s) steps, where (r, s)
is an arbitrary initial position of the general and
T(m,n, r, s) is defined as follows: T (m,n, r, s) =
m + n − 2 + max(r + s, m + n − r − s + 2).

Szwerinski [13] proposed an optimum-time gen-
eralized 2-D firing algorithm with 25600 inter-
nal states that fires any m × n array in m +
n+max(m, n)−min(r,m−r+1)−min(s, n−s+1)−1
steps. Our 2-D generalized synchronization algo-
rithm is relatively larger than the optimum one pro-
posed by Szwerinski [13], however, the number of
internal states required for the firing is the smallest
known at present.

5 Conclusion

We have proposed several new generalized synchro-
nization algorithms for one- and two-dimensional cel-
lular arrays having 1-bit inter-cell communication

1 2 3 4 5 6 7 8

1 QX QXT QXT QXT QXT QXT QXT QXX

2 QXL Q Q Q Q Q Q QXR

3 QXL Q Q P Q Q Q QXR

4 QXL Q Q Q Q Q Q QXR

5 QXX QXB QXB QXB QXB QXB QXB QX

1 2 3 4 5 6 7 8

1 QX QXT QXT QXT QXT QXT QXT QXX

2 QXL Q Q ctrl Q Q Q QXR

3 QXL Q ctrl D1 ctrl Q Q QXR

4 QXL Q Q ctrl Q Q Q QXR

5 QXX QXB QXB QXB QXB QXB QXB QX

1 2 3 4 5 6 7 8

1 QX QXT QXT ctrl QXT QXT QXT QXX

2 QXL Q L QLS D2 Q Q QXR

3 QXL ctrl QLS D2 QRS ctrl Q QXR

4 QXL Q D2 QRS S Q Q QXR

5 QXX QXB QXB ctrl QXB QXB QXB QX

step 0 step 1 step 2
1 2 3 4 5 6 7 8

1 QX QXT L QLS D2 QXT QXT QXX

2 QXL L QLS QL2 D1 D2 Q QXR

3 ctrl QLS QL2 D1 QR2 QRS ctrl QXR

4 QXL D2 D1 QR2 QRS S Q QXR

5 QXX QXB D2 QRS S QXB QXB QX

step 3

1 2 3 4 5 6 7 8

1 QX L QLS QL2 QL1 D2 QXT QXX

2 L QLS QL2 QL1 D2 QR1 D2 QXR

3 QLS QL2 QL1 D2 QR1 QR2 QRS ctrl

4 D2 QL1 D2 QR1 QR2 QRS S QXR

5 QXX D2 QR1 QR2 QRS S QXB QX

1 2 3 4 5 6 7 8

1 KXs QLS QL2 QL1 QL2 D1 D2 QXX

2 QLS QL2 QL1 QL2 D1 QR2 QR1 D2

3 QL2 QL1 QL2 D1 QR2 QR1 QR2 QRS

4 QL1 QL2 D1 QR2 QR1 QR2 QRS S

5 D2 D1 QR2 QR1 QR2 QRS S QX

step 4 step 5
1 2 3 4 5 6 7 8

1 KX IX QL1 QL2 QL1 D2 QR1 D2

2 IX QL1 QL2 QL1 D2 QR1 QR2 QR1

3 QL1 QL2 QL1 D2 QR1 QR2 QR1 QR2

4 QL2 QL1 D2 QR1 QR2 QR1 QR2 QRS

5 QL1 D2 QR1 QR2 QR1 QR2 QRS KXs

1 2 3 4 5 6 7 8

1 KX AR1 I0 QL1 QL2 D1 QR2 QR1

2 AR1 I0 QL1 QL2 D1 QR2 QR1 QR2

3 I0 QL1 QL2 D1 QR2 QR1 QR2 QR1

4 QL1 QL2 D1 QR2 QR1 QR2 QR1 GX

5 QL2 D1 QR2 QR1 QR2 QR1 GX KX

step 6 step 7

1 2 3 4 5 6 7 8

1 KX AR2 QRA I0 QL1 D2 QR1 QR2

2 AR2 QRA I0 QL1 D2 QR1 QR2 QR1

3 QRA I0 QL1 D2 QR1 QR2 QR1 G0

4 I0 QL1 D2 QR1 QR2 QR1 G0 AL1

5 QL1 D2 QR1 QR2 QR1 G0 AL1 KX

step 8

1 2 3 4 5 6 7 8

1 KX AR3 QRB QRA I0 D1 QR2 QR1

2 AR3 QRB QRA I0 D1 QR2 QR1 G0

3 QRB QRA I0 D1 QR2 QR1 G0 QLA

4 QRA I0 D1 QR2 QR1 G0 QLA AL2

5 I0 D1 QR2 QR1 G0 QLA AL2 KX

1 2 3 4 5 6 7 8

1 KX QRE0 BR1 QRB <S X QR1 G0

2 QRE0 BR1 QRB <S X QR1 G0 QLA

3 BR1 QRB <S X QR1 G0 QLA QLB

4 QRB <S X QR1 G0 QLA QLB AL3

5 <S X QR1 G0 QLA QLB AL3 KX

1 2 3 4 5 6 7 8

1 KX ARA BR2 <S <FS FXA GW QLA

2 ARA BR2 <S <FS FXA GW QLA QLB

3 BR2 <S <FS FXA GW QLA QLB BL1

4 <S <FS FXA GW QLA QLB BL1 QLE0

5 <FS FXA GW QLA QLB BL1 QLE0 KX

step 9 step 10 step 11

1 2 3 4 5 6 7 8

1 KX ARB sBRD <FS QRo2 Ar2 FGW B>

2 ARB sBRD <FS QRo2 Ar2 FGW B> QLC

3 sBRD <FS QRo2 Ar2 FGW B> QLC BL2

4 <FS QRo2 Ar2 FGW B> QLC BL2 ALA

5 QRo2 Ar2 FGW B> QLC BL2 ALA KX

1 2 3 4 5 6 7 8

1 KX ARA SBRD QRe2 QRo1 Ar3 G FB>

2 ARA SBRD QRe2 QRo1 Ar3 G FB> D>

3 SBRD QRe2 QRo1 Ar3 G FB> D> BL3

4 QRe2 QRo1 Ar3 G FB> D> BL3 ALB

5 QRo1 Ar3 G FB> D> BL3 ALB KX

1 2 3 4 5 6 7 8

1 KX fARA BRd QRe1 Ro K1d KA QLb

2 fARA BRd QRe1 Ro K1d KA QLb FD>

3 BRd QRe1 Ro K1d KA QLb FD> fBL3

4 QRe1 Ro K1d KA QLb FD> fBL3 ALC

5 Ro K1d KA QLb FD> fBL3 ALC KX

step 12 step 13 step 14

1 2 3 4 5 6 7 8

1 KX ARa BRe Re G K1 K1 I

2 ARa BRe Re G K1 K1 I QLd

3 BRe Re G K1 K1 I QLd FBL3

4 Re G K1 K1 I QLd FBL3 fALC

5 G K1 K1 I QLd FBL3 fALC KX

step 15

1 2 3 4 5 6 7 8

1 KX ARb BRf G QLa K1 K1 QRa

2 ARb BRf G QLa K1 K1 QRa I

3 BRf G QLa K1 K1 QRa I Bl3

4 G QLa K1 K1 QRa I Bl3 FALC

5 QLa K1 K1 QRa I Bl3 FALC KX

1 2 3 4 5 6 7 8

1 KX ARc K0d KA Al1 K1 K1 Ar1

2 ARc K0d KA Al1 K1 K1 Ar1 KA

3 K0d KA Al1 K1 K1 Ar1 KA K0d

4 KA Al1 K1 K1 Ar1 KA K0d ALc

5 Al1 K1 K1 Ar1 KA K0d ALc KX

step 16 step 17

1 2 3 4 5 6 7 8

1 KX K0 K0 K0 K0 K1 K1 K0

2 K0 K0 K0 K0 K1 K1 K0 K0

3 K0 K0 K0 K1 K1 K0 K0 K0

4 K0 K0 K1 K1 K0 K0 K0 K0

5 K0 K1 K1 K0 K0 K0 K0 KX

1 2 3 4 5 6 7 8

1 T T T T T T T T

2 T T T T T T T T

3 T T T T T T T T

4 T T T T T T T T

5 T T T T T T T T

step 18 step 19

Figure 7: Snapshots of our generalized rectangular
firing squad synchronization algorithm operating for
an array of size 5 × 8 with the general on C3,4.

and implemented them on a computer. Most of the
algorithms proposed are one to four steps larger than
optimum ones proposed for O(1)-bit communication
model. We are convinced that there still exist in-
teresting new synchronization algorithms, although
more than 40 years have passed since the develop-
ment of the problem.
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