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Abstract

In many social systems, individuals are able
to learn new behaviors by observing others.
This paper describes experiments in aug-
menting reinforcement learners in an ar-
tificial society with the ability to observe
each others’ actions and rewards; the ini-
tial hypothesis was that observant agents
would have an advantage over their non-
observant counterparts. Experimentation
shows that observation helps most when
experienced teachers are available, and is
most effective early in an agent’s life-cycle.

1 Introduction

The field of Artificial Societies (AS) ap-
plies computer science techniques to study
the many facets of sociology with a “bot-
tom up” approach, as opposed to the tradi-
tional sociology approach, which attempts
to answer questions from the top down.
Using AS, simple models can be created
which allow researchers to manipulate some
set of interesting variables and remove or
hold constant the uninteresting ones. This
technique allows researchers to observe how
variations in individual agents’ traits or be-
haviors affect the qualities of the society
as a whole. Examples of work in this field
include the Schelling’s model of racial seg-
regation [10], the Echo environment [4, 5],
and Sugarscape [3].

In many social systems, individuals are
able to learn new behaviors by observing

others. There has been research involving
observational learning in humans [9], ani-
mals [2, 8], and even robots [6]. We wish
to study the effects of observational learn-
ing by individuals on the society they are
a part of.

This paper describes our model and ex-
periments. Section 2 describes our agent-
based model, and the basic learning algo-
rithm used by all agents. Section 3 sum-
marizes our experiments and results. And
Section 4 gives our conclusions and ideas
for future directions.

2 Environment and Model

In this section, we describe our artificial so-
ciety (Section 2.1) and our learning model
(Section 2.2).

2.1 Obsage: an Artificial Soci-
ety

Obsage is a discrete model of a society that
exists in a lattice environment, which wraps
at both sides and at the top and bottom.
Time is also discrete. There are two types
of environmental inhabitants: agents, and
objects. Agents perform actions on objects
in order to get fitness rewards, which allow
them to live longer. Agents each have an
associated metabolism, which is the rate at
which their fitness decays over time. At 0
fitness, an agent dies. Therefore, to sur-
vive, an agent must on average find fitness
rewards equal to its metabolism each turn.



Figure 4 shows the Obsage model’s viewer

application. Agents are represented by cir-
cles, and objects are represented by lower-
case letters. When an agent performs an
action on an object, it is represented by a
lower- case letter in the top-left of the grid
box the agent occupies. The fitness reward
generated by that action is displayed in the
box’s top-right corner.

Agents with the capacity to observe their
neighbors are distinguished by a dot in the
center; agents who are actively observing
have a ring around the dot. Solid-colored
agents learn through their own actions; dot-
ted agents learn through a combination of
their own actions and their observations of
others.

All agents are granted the ability to
learn through their own experience. The
model is designed to test the hypothesis

that augmenting learning-through-experience

with observation will benefit both the in-
dividual and society.

2.2 Learning Model

In the Obsage model, actions do not in-
teract with each other over time: perform-
ing a particular action on a particular ob-
ject will always result in the same reward.
Therefore, the learning problem reduces to
one of learning which rewards are associ-
ated with which actions and objects. An
agent with a complete mapping of actions
and objects to rewards has a perfect pol-
icy. In such an environment, the main chal-
lenge a learning algorithm must overcome

is the famous explore-vs.-exploit problem[11].

We have settled on the softmax algorithm|[11]
as a way to deal with this problem.

Given a partially filled policy, with some
actions giving known rewards and others
potentially unknown, the softmax algorithm
draws the next action from a Maxwell- Boltz-
mann distribution, using action a’s reward
R(a) as the main factor:

GR(a)/7

we) = o e

The parameter 7 is a positive integer which
works similarly to the temperature in sim-
ulated annealing: larger values of 7 cause
the agent to favor exploration over exploita-
tion. Over time 7 is decreased, thus al-

lowing well-learned agents to exploit the
knowledge they have gained.

3 Experiments

In this section, we describe several sets of
experiments that investigate the effects of
observation on societies of learning agents.
Our initial assumption was that observa-
tional learners would have an advantage
in most environments, but that turned out
not to be the case (Section 3.1). However,
when their environment included “teacher
agents,” as in Section 3.2, observational
learners gained a marked advantage. This
fact led us to try a generational model,
where new agents were added to a popu-
lation that had already had some time to
learn (Section 3.3). In the generational
society, observational learners kept their
advantage over non-observational learners.
There are indications that a developmen-
tal model, where learners observe more at
the beginning of their life cycle and less as
they mature, might give further benefit.

There are three measurements that can
easily be derived from an Obsage society:
the number of living agents; the average
fitness of living agents; and the score: the
average fitness of all agents, including dead
ones. The score appears to be the most
accurate method of measuring a society’s
overall performance, as long as the only
cause of death is lack of fitness. When
comparing individual agents or subsets of
agents to each other, it may be more use-
ful to examine just the average fitness at a
given point.

3.1 Initial Experiments

Initially, we divided the society into an ob-
servational and a non-observational group.
No agents had any knowledge of the en-
vironment. Over eight trials, we varied
the observation propensity O from 25 to
50 percent, and the number of observant
agents from 10 to 40 percent of the popu-
lation.

The data in the following table shows
that there was little, if any, benefit for the
observant subsets in societies modeled in
this experiment.



observation propensity
% 0 25 50
10 | 197 | 236 252
20 | 204 | 202 220
30 | 212 | 180 197
40 | 202 | 224 191

3.2 Perfect Teachers

This scenario is an attempt to provide ob-
servant agents the optimal opportunity for
observational learning. A society consist-
ing of thirty agents and sixty objects was
created, divided equally between five ob-
ject types. Half of the agents had a priori
knowledge of the optimal action for each
object type. We call this subset “teachers”,
because they are good models for observa-
tion. The other half had no preset knowl-
edge. The “teacher” agents were nonob-
servant. Observant agents used the agent-
based observation policy. Note there was
nothing to prevent observant agents from
observing other non-teachers, except that
the agent-based observation policy made
them prefer to observe more fit agents.

There were two cases in this experi-
ment: a control group with O = 0, and a
test group with O = 50. There were thirty
agents in the environment. Fifteen of those
agents were “teachers”. In this test, there
were five object types and five actions.

While there was a small difference be-
tween the scores of observant and nonob-
servant agents, the difference was constant
from turn to turn. This indicates that the
observant agents received a head start, but
the nonobservant agents were soon operat-
ing as well as the observant agents. We be-
lieve this is because the size of the search
space was relatively small, so nonobservant
agents were able to find near optimal ac-
tions relatively quickly.

Because the Perfect Teachers experi-
ment did not find that the observant cases
had a significant advantage, we hypothe-
sized that the reason for this result was

that the observant agents were learning about

the environment quickly. To test this the-
ory, we implemented a new environment
that was the same as the previous, except
that we doubled the number of object types
and actions. That is, the search space is
10 x 10 instead of 5 x 5.

Figure 1: Perfect Teacher II Scores (10 x
10)
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As expected, in the more difficult search
space, groups of observant agents tend to
be more successful. Figure 1 shows the av-
erage score for the societies, as time pro-
gresses. Note that this graph shows the
score for the particular society subsets; not
the score for the society, nor the average
fitness of the society. Therefore, this graph
is not an indicator of the overall society
success, or an indicator of success on an
individual level. In fact, observant agents
often do not outperform their nonobser-
vant counterparts on an individual level,
but they do experience fewer deaths early
on in the trial. Because fewer agents die,
the observant group is generally able to
produce an ever-increasing performance ra-
tio over the nonobservant group, as is evi-
denced by the greater slope for the obser-
vant agents in Figure 1.

3.3 Generational Learning

We had a hypothesis that the benefits of
observation were more apparent in a soci-
ety where, early on, agents had the oppor-



tunity to observe other agents that already
had useful knowledge. The Perfect Teacher
experiments provide strong evidence that
this is the case, but required a contrived
scenario to do so. A more realistic scenario
that should have similar results would in-
volve a “generational” model, where agents
must give birth in order to further their so-
ciety, and young agents must learn by ob-
servation.

This scenario was an attempt to simu-
late the relevant characteristics of a gener-
ational model, without adding all the com-
plexity that model would require. To do
this, we ran a society for 100 turns and
then used the data from various turns as
input for new societies, adding some new
agents with no memory, to the model.

We created a single precursor society
with thirty initial agents and sixty objects,
and ran that environment for 100 turns.
We then created new input files from the
precursor output, at turns one, ten, fifty,
and 100, adding ten new agents to the soci-
eties. We set O = 0 for the agents in these
files. We then created modified versions
of those input files, with O = 50. This
lead to eight cases, comparing observant
to nonobservant “new” agents in society
at various stages of development. We ran
five trials of each case. The cases at Turn
1 form a kind of control group, because,
for the most part, the precursor agents did
not have an opportunity to learn anything
about the environment during the first turn.

In this experiment, the observant agents
performed significantly better as a group
than the nonobservant agents in every case
except the one involving turn 1. In that
case, the performance was higher, but only
slightly so. They did not, however, per-
form noticeably better on an individual level.
The improved group performance was a re-
sult of fewer agents dying during the initial
turns.

It is interesting to note that in the con-
trol group, the nonobservant agents per-
formed significantly better than they did
in any other case. This leads me to won-
der if the knowledge the precursor agents
acquired actually had a negative impact
on the fitnesses of the new nonobservant
agents. This could be the case if agents
competed for nearby resources. Figure 2

Figure 2: Generational Average Fitnesses
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shows that the observant agents are able
to use observation in order to capitalize
on exploitation earlier, and therefor main-
tain higher fitnesses. The slope for the
nonobservant agent increases because the
lesser fit ones die off, and the nonobservant
agents eventually equal the average fitness
of the observant agents. Figure 3 show that
the score for the observant agents increases
at a greater rate than the score for nonob-
servant agents; this is expected

4 Conclusions and Future
Work

The experiments show that observation alone
is not enough for an agent to have an ad-
vantage over its peers when the act of ob-
serving takes time that could more prof-
itably be used exploring the environment
using independent learning. In order to
see clear benefits from choosing observa-
tion over independent exploration, there
must be accomplished individuals (teach-
ers) present early in the developmental cy-
cle, when the amount of exploration yet to



Figure 3: Generational Scores
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do is very large. The effectiveness of obser-
vation is more visible in the survival rates
of observant agents, rather than higher long-
term fitness.

This suggests that a generational arti-
ficial society may show further advantage
for observant agents. When agents are in-
troduced into a preexisting society with ex-
perienced agents to observe, they are pro-
vided with a faster route to exploitation
than the trial and error experienced during
the initial stages of learning by experience.

One scenario in which observational learn-

ers would be expected to have an advan-
tage is an environment which contains in-
teractions that may be deadly for the agents
involved. Those who can only learn through
experience cannot learn from deadly inter-
actions, but observational learners should
be able to. This is not always the case,
as Obsage shows. Obsage agents are no
more likely to observe deadly interactions
than they are any other interactions, and
therefore don’t often gain the knowledge
required to avoid deadly interactions. An
artificial society which models interrupt-
driven learning might more accurately re-

flect real world observational learning. Ob-
servation would be prompted by external
cues, rather than being a decision origi-
nating solely from an agent’s internal state
and logic. It is likely that such a model
would prove observant agents more capa-
ble of survival in this “deadly interaction”
scenario. For example, at a zoo, a curious
person may step too close to a dangerous
animal’s cage. Most of the other visitors
would probably not take notice of such an
action, but if the unwitting person is at-
tacked, those visitors will likely learn the
true danger of stepping too close to a cage.

Based on these conclusions, we believe
it would be profitable to develop a truly
generational artificial society that includes
natural death and reproduction, for the study
of observational learning over the long term.
Also, for more accurate modeling of real-

world observational learning, the model would

support an interrupt mechanism to alert
the agent to observe seemingly more inter-
esting interactions.
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Figure 4: Viewer.py - Graphical Viewer for Obsage Models.
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