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Abstract: The Collective Intelligence Research Tool 
(CIRT) is an experimental software and hardware 
research tool. It provides an inexpensive and efficient 
alternative research implementation that demonstrates 
simulations of the collective behaviour of self-organized 
systems, primarily social insects. The software focuses 
on 2D simulations of the woodchip-collecting behaviour 
of termites and 3D simulations of the building behaviour 
of wasps. The hardware simulation employs a Boe-Bot 
robot, which has the potential of simulating simple 
movements of a social insect, by extending its 
functionality through adding sensors and integrating a 
control chip.  
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1. INTRODUCTION 
 
Social insects are known to be capable of producing 
complicated colony patterns [1]. Our first project 
objective is to simulate self-organized systems using 
social robots. We have implemented a robotic termite 
agent, which is able to simulate the wood-chip collecting 
behaviour of the termite. By defining the behaviour for 
one robotic agent, we could potentially observe the 
collective building activity of a group of robots. From a 
software viewpoint, our goal is to simulate and visualize 
the collective building of complex architectures for 
termites in 2D space and social wasps in 3D space. In 
addition to simulating self-organized systems by 
changing variables such as the population and obstacle 
density, the software provides an artificial life 
environment for observation of the emergent behaviour 
of autonomous agents (in our case, termites and wasps). 
 
Current research on simulation of self-organized systems 
and swarm intelligence have a shared underlying idea 
that the key feature of all nature’s patterns is that they are 
“self-organized” – there is no guiding hand [1-9]. 
Existing research projects include StarLogo, StarLogoT, 
NASA COIN project, Repast, AgentSheets, Ascape and 
SWARM [10-17].  StarLogo is a programmable 
modelling environment for “exploring the workings of 
decentralized systems, such as bird flocks, traffic jams, 
and market economies” [10]. RePast is a software 
framework for creating agent-based simulations, which 
provides a library of Java classes for creating and 
running agent based simulations [11]. SWARM is a 

software package for multi-agent simulation of complex 
systems, originally developed at the Santa Fe Institute 
[20].  

 
We have implemented the simulation of collective 
intelligence systems from both software and hardware 
perspectives as a complete experimental experience.  The 
2D simulation of termites’ behaviour employs 
methodology found in the Starlogo project demonstration 
and biological observations [10]. 3D simulation in our 
project focused on the building behaviour of social 
wasps, using the methodology found in the work of Eric 
Bonabeau et al. [1]. 
 
Our hardware simulation draws idea from research done 
by Krieger M. J. [6]: given robots with the ability to 
perform simple object removal tasks, researchers are able 
to simulate collective behaviour among cooperative 
robots (in our case, termite agents) [6].  
 

 
2. SOFTWARE SPECIFICATIONS  

 
Our simulation software is built around the Repast 
framework. The software adopts the Repast graphic user 
interface (GUI). The Repast GUI is able to initialize, 
start, pause and stop a simulation. It also enables user to 
alter some of the simulation variables, such as the size of 
the display surface (sample space) and number of agents 
[10].  
 
Repast is able to handle 2D termites’ simulation but has 
no built-in 3D visualization functionalities. However, its 
pure Java implementations enable Java 3D API 
integration.  

 
 

2.1 2D Termites Simulation 
 
2D termites simulation is a common practice for self-
organized system research. It is included in our software 
as a sample project. We based our development on the 
simulation of collective building of 2D termites’ colony, 
which involves two major objects: termites and their 
woodchips [10]. The termites gather wood chips into 
piles following a set of simple rules demonstrated in the 
StarLogo project [10]:  
 
1. Each termite walks around randomly in the sample 

space.  



     

2. An empty-handed termite picks up a randomly 
distributed wood chip if it comes across one. 

3. The termite continues to walk around randomly.  
4. When the termite comes across another wood chip, 

it finds a nearby empty space and puts its wood chip 
down and becomes empty-handed again [10]. 

 
CIRT simulates and visualizes in a 2D space the termites 
gathering wood chips into piles based on the initial 
behaviour definition. It also observes and predicts 
possible outcome by redefining the number of termite 
and environmental variables, such as the woodchip 
density. As the simulation progresses, the randomly 
distributed woodchips would end up in a single large 
pile, as shown in similar simulations [10].   
 
 

2.2 3D Lattice Swarms Simulation 
 
The architectural patterns grown by “artificial agents 
moving and acting in a virtual space” (in our case, 
artificial wasps) are based on biological data provided by 
observations of nests built by social wasps [1]. We based 
our development on the simulation of the collective 
building of 3D wasps’ colony, which involves two major 
objects: wasps and their bricks. According to Eric 
Bonabeau et al.’s research, using stigmergic algorithms, 
these agents move and act in a 3D lattice and are able to 
“deposit bricks according to their local neighbourhood 
configurations (26 neighbouring cells for 3D lattice 
swarms) using a look-up table” [1].  
 
In the stigmertic mode of construction, each swarm 
insect automatically responds (dropping bricks) when it 
meets any local configuration. As explained by 
Bonabeau et al., the regulation of the building activity is 
mainly achieved by the nest structure, instead of 
depending on the workers themselves [1].  
 
The wasps put bricks into a 3D structure with the 
following behaviours [1]:  
 
1. Each wasp is born at a random location in the 3D 

space. 
2. The wasp observes its local configuration with 26 

neighbouring cells. 
3. If the local configuration applies to one of the pre-

defined patterns, the wasp drops a corresponding 
brick at that location and then moves to another 
random location. 

4. If the local configuration doesn’t apply to any of the 
patterns, the wasp does nothing and moves to 
another random location.  

5. The result of the construction eventually produces 
certain architectures that can be found in nature. 

 
CIRT simulates and visualizes in 3D space the growth of 
the colony. Social wasps act in 3D space and drops 
bricks based on pre-defined behaviour rules. The 
software observes the outcome by redefining the number 
of wasps.  
 

According to Bonabeau’s research, the neighbourhood of 
the wasp is composed of the 26 cells surrounding the 
central cell it occupies. [1] This neighbourhood consists 
of 3 3X3 layers along the y-axis (see figure 1) [1]. When 
the wasp occupies the central position of the layer y 
(marked in black), it follows certain rule to produce our 
3D architecture [1]. For example, when there is no brick 
in the central cell, a wasp puts down a brick of type 1 in 
the case of configuration 1 in figure 1 (9 cells above are 
all already filled with type 2 bricks) and type 2 in the 
case of figure 2 – 4 [1]. There are 9 configurations in 
total. Detailed rules can be found in [1]. Furthermore, 
taking symmetries into account, each rule expands 
further. For example, configuration in figure 2 expands 
to more configurations as shown in figure 3 and 4. 
 

 
Figure 1 

 
Figure 2 

 

Figure 3 

 

 
Figure 4 

 
Figure 1-4: Local neighbourhood in 3D lattice swarm [1] 
 
 

3. SOFTWARE IMPLEMENTATION  
 
Our simulation uses the Repast framework, an agent 
based modelling toolkit for java. It has three major 
classes: agent, space and model. Employing the Repast 
software architecture, an agent class describes how an 
agent interacts with the environment and moves around 
the space [1]. A model class coordinates the setup and 
running of the model. A space class defines the 



     

environment, such as the distribution of woodchips for 
the termites’ 2D simulation and the coordinates of wasps 
and bricks in swarm 3D simulations [10]. 
 
Our software implementation observes and predicts 
possible outcomes by defining a number of termite and 
environmental variables, such as the density of obstacles 
(wood chips). Figure 5 is a screen shot for the software 
simulation in action. The red rectangle represents termite 
carrying no woodchip; orange rectangle represents 
termite carrying one woodchip; yellow rectangle 
represents woodchip. During the simulation, the user 
observes the movement of red and orange “termites”, 
picking-up or dropping woodchips in the simulation 
space.  
 

 
Figure 5: 2D termite simulation 
 
In order to visualize the 3D colony, we use Java 3D API. 
Java 3D defines the concept of a virtual universe as a 
three-dimensional space with an associated set of objects 
[7]. Since Repast doesn’t come with 3D visualization 
support, we separately programmed a set of Java classes 
to be integrated with Repast to realize and illustrate the 
3D colony architecture. Our 3D integration works with 
the Repast original GUI in a way that the display surface 
corresponds to commands sent from various buttons, 
such as setup, step, pause and stop. With proper time-
delay between each clock tick, the users can observe the 
growth of the artificial colony architecture.   
 
Furthermore, we incorporate mouse rotation 
functionality into the 3D visualization. At each clock 
tick, users are able to rotate the visual colony by left-
mouse click so that the colony is clearly-viewed from 
different angles (figure 6, 7).   
 

 
Figure 6 

 
Figure 7 

 

We present a simple example of architectures grown by 
artificial agents moving randomly in the 3D space and 
performing simple “asynchronous actions with purely 
local information” [1], as shown in figure 8.  
 

 
Figure 8 
 

 
4. HARDWARE SPECIFICATIONS AND 

IMPLEMENTATION  
 
 

4.1 Hardware Specifications 
 

In order to achieve the same results from Krieger’s 
research [6], we needed to construct a small-scale and 
low-cost robot that can perform simple object removal 
tasks. These tasks including moving on smooth surfaces, 
detecting new objects (woodchips in our case), picking 
up an encountered new object and dropping the 
woodchip it carries when encountering another object. 
The robot should come with sensors that are sensitive 
enough to detect objects within 20-30 cm range. Because 
the final simulation requires a relatively large number of 
robot agents, the robot should be easy and fast to 
assemble. Since it moves around randomly, it should be 
using batteries as its primary power supply (a power cord 
will provide an extra obstacle). For more economical 
reasons, the robot toolkit should be reusable, 
reprogrammable and consume as little power as possible. 
It should be easy to connect to other devices. We chose 
the Boe-Bot Tool Kit from Parallax Inc. and the Board of 
Education featured BASIC Stamp embedded 
microcontroller [18].  

 
 

4.2 Boe-bot Description 
 
The Boe-Bot is built on a high quality brushed aluminum 
chassis that provides a sturdy platform for the 
servomotors and printed circuit board (figure 9) [18]. 
Mounting holes and slots may be used to add custom 
robotic equipment [18]. “The rear wheel is a drilled 
polyethylene ball held in place with a cotter pin… 
Wheels are machined to fit precisely on the servo spine 
and held in place with a small screw. ” [18] In our case, 
to simulate the termite’s woodpile building process, each 
Boe-Bot needs a gripper. 
 
The main controller of Boe-Bot is a BS2-IC (BASIC 
Stamp 2), which is a customized chip from Microchip 
PIC 16C57C. The BASIC Stamp 2 has 16 I/O pins, 2 
dedicated serial port pins (1 input, 1 output), and room 



     

for 500 to 600 lines of code. Detailed technical 
description for BS2-IC as well as its schematic can be 
found in Boe-Bot User Manual.   
 
 

4.3 Termite Description 
 

In the following section, we define the term “termite” as 
a Boe-Bot with a pair of whiskers and gripper (figure 9). 
The hardware design methodology divides the 
implementation into two major components: whiskers 
module and gripper Module. 
 

 
Figure 9: Termite (Boe-Bot with gripper) 
 

 
Figure 10: Whiskers schematic 
 
 

4.3.1Whiskers Module 
 

The Whiskers are used as object detectors since the 
BASIC Stamp can be programmed to detect when a 
whisker is pressed. Once the termite touches a new 
object by it whiskers, it will release the object it is 
holding (if there is one). Here, pin 4 and pin 6 connected 
to each switch circuit monitor the voltage at the 10 kΩ 
pull-up resistor. When a given whisker is not pressed, the 
voltage at the pin connected to that whisker is 5 V (logic 
1). When a whisker is pressed, the I/O line is shorted to 
ground, and the pin sees 0 V (logic 0). See figure 10 for 
details.  
 
A program will keep checking whether the logic from 
pin 4 and pin 6 is changed. If there is a change, a 
corresponding subroutine will be called to react to the 
change, by either releasing the object it carries or 
avoiding the object it touches. 
 
 

4.3.2 Gripper Module 
 

 

  
Figure 11: gripper 
 
The gripper (figure 11) has 3 pairs of IR sensors used for 
object detection. They are used to control the movement 
of the termite as well as the gripper. The IR unit 
incorporates a standard IR LED with a 40 kHz IR 
receiver.  The IR specification as well as it schematic is 
given below (figures 12 and 13): 
 
Size: Width = 15.8 mm, Length = 18.2 mm 
Power Requirements: + 5vdc, 2.6 mA 
Vdd = +5vdc 
Signal = I/O pin 0 
  

             
 
Figure 12: IR specification 
 

 
Figure 13: IR schematic 



     

 
Note that the IR LED (emitter) and IR Detector are both 
connected to the same I/O pin. 
 
 

4.3.3 Robotic Termite Working Scenario 
 
The termite works as follows: first, we let the robot spin 
left (360 degrees), and keep detecting the signals sent by 
both the left sensor and right sensor of the gripper (figure 
14). Second, if the left senor signal is on, meaning that 
the robot detects an object from the left, we let the robot 
turn left until the right sensor turns on. This indicates that 
the robot has just passed the object (figure 15). Thus, we 
will let the robot turn right for a little (an angle of around 
3 degrees) to centre the object into the gripper (figure 
16). Now the robot can keep moving straight until the 
close sensor is on (this means the object is inside the 
robot), and grips the object (figure 17). Afterwards, the 
robot starts searching for a new object. When it hits the 
new object by its whisker, it releases the object it is 
carrying. After releasing the object, the robot moves 
backward, turns an angle of 45 degrees, and the same 
procedure is repeated. 
 
 

Figure 14 
 

Figure 15 

Figure 16 

 

 
Figure 17 

 
The robot can detect a new object by using its left and 
right sensors. We use a touch sensor to enable the 
detection of the second object (in order to release the one 
it carries). However, there is one drawback: if the new 
object the robot encounters is too big, it could activate 
the touch sensor and the robot would release the object 
right after gripping it. 
 
 

5. RESULTS AND CONCLUSIONS  
 

Simulation results are shown below as screen shots for 
the software implementation. Figure 18, 19 and 20 show 
2D termite simulation.  
 

 
Figure 18: initial stage 

 
Figure 19: in progress 

 
Figure 20: final stage 

 
Figure 21 shows a lattice swarm simulation done within a 
20X20X20 3D space with 315 tick counts (note there is 
an X-Y axis displayed in this simulation).  
 

 
Figure 21 



     

 
Figure 22 - 25 shows a lattice swarm simulation done 
within a 20X20X20 3D space with 38142 tick counts.  
 
Figure 26 shows a simulation done within a 40X40X40 
3D space with 91306 tick counts. Due to the huge size of 
the simulation space, the resulting structure remains 
relatively small-scale even after a large number of tick 
counts.   
 

 
Figure 22 
 

 
Figure 23 
 

 
Figure 24 
 

 
Figure 25 
 

 
Figure 26 
 

 
Figure 27: our simulation result 
 
Comparing our simulation results (figure 27) with that of 
the Wasp Nest Building Simulator, it can be seen that 
both simulations have resulted in nature-like patterns [1, 
19]. Bonabeau believes that “extensive simulations on a 
powerful computer have to be performed in order to 
explore the behavioural space in a satisfactory manner, 
even in this simplest case” [1]. Our software proves that 
small scale simulation runs smoothly and relatively fast, 
even on a PC. We offer 3D rotations during simulation; 
enable users to observe the visualization from various 
angles. While Wasp Nest Building Simulator is 
implemented using C/C++ and is to be distributed under 
GNU License soon, our software is solely implemented 



     

in Java, which is platform independent. Furthermore, our 
implementation integrates neatly with the Repast toolkit 
framework and may provide future researchers 
convenience and user-friendly interface. Video clips 
showing the actual software and hardware simulations 
are available upon request by contacting the authors. 
 
As a conclusion, for the software simulation, as indicated 
by Bonabeau et al., we have restricted our attention to 
“very simple individual algorithms, where information is 
processed locally, in space as well as in time” [1]. We 
hope the simulation results, which closely resemble these 
found in [1], can be of some value to the understanding 
of biological collective systems [1]. Though our software 
- so far - is modelled after the research done by 
Bonabeau et al, it provides an inexpensive tool, and a 
fast and platform independent implementation, for 
researchers seeking new ways to implement these 
systems.  
 
 

6. FUTURE DEVELOPMENT 
 
Where can we go from here? From a software 
perspective, as Repast is an open-source software 
framework for creating agent-based simulations using 
the Java programming language and it is a more 
sophisticated development tool, further developments 
might include developing a whole 3D visualization 
library that can be integrated into Repast, for realizing 
powerful simulations.  

 
From hardware perspective, we might be able to get 
more robots to form a group of termite agents for better 
simulation results. Meanwhile, we may also install an 
extra pair of sensors for each robot to detect new objects. 
Moreover, it is also possible to bring in interaction 
between simulation software and hardware, such as 
programming robotic agents behaviors through a 
software terminal. The experimental robots may also 
lead to further research in the area of cataglyphis fortis 
[20, 21] 
 
In addition, biologists are concerned with the individual 
behavioral algorithms that allow a society to build its 
nest [1]. Researchers have looked into genetic algorithms 
to implement nest construction algorithms [16]. 
Therefore, it is possible to implement an algorithm 
generation component or more precisely, a “rule 
generator” for our software and integrate it into Repast, 
to enhance its simulation possibilities.  
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