

AN EXPERIMENTAL COLLECTIVE INTELLIGENCE RESEARCH TOOL

Bei Wang1, Dung Hoang, Idris Daiz, Chiedu Okpala and Tarek M. Sobh

Department of Computer Science, University of Bridgeport
Bridgeport, CT 06601U.S.A

1 Contact author: beiwang@bridgeport.edu

Abstract: The Collective Intelligence Research Tool
(CIRT) is an experimental software and hardware
research tool. It provides an inexpensive and efficient
alternative research implementation that demonstrates
simulations of the collective behaviour of self-organized
systems, primarily social insects. The software focuses
on 2D simulations of the woodchip-collecting behaviour
of termites and 3D simulations of the building behaviour
of wasps. The hardware simulation employs a Boe-Bot
robot, which has the potential of simulating simple
movements of a social insect, by extending its
functionality through adding sensors and integrating a
control chip.

Keywords: Artificial Life, Intelligent Agents and Multi
Agent Systems.

1. INTRODUCTION

Social insects are known to be capable of producing
complicated colony patterns [1]. Our first project
objective is to simulate self-organized systems using
social robots. We have implemented a robotic termite
agent, which is able to simulate the wood-chip collecting
behaviour of the termite. By defining the behaviour for
one robotic agent, we could potentially observe the
collective building activity of a group of robots. From a
software viewpoint, our goal is to simulate and visualize
the collective building of complex architectures for
termites in 2D space and social wasps in 3D space. In
addition to simulating self-organized systems by
changing variables such as the population and obstacle
density, the software provides an artificial life
environment for observation of the emergent behaviour
of autonomous agents (in our case, termites and wasps).

Current research on simulation of self-organized systems
and swarm intelligence have a shared underlying idea
that the key feature of all nature’s patterns is that they are
“self-organized” – there is no guiding hand [1-9].
Existing research projects include StarLogo, StarLogoT,
NASA COIN project, Repast, AgentSheets, Ascape and
SWARM [10-17]. StarLogo is a programmable
modelling environment for “exploring the workings of
decentralized systems, such as bird flocks, traffic jams,
and market economies” [10]. RePast is a software
framework for creating agent-based simulations, which
provides a library of Java classes for creating and
running agent based simulations [11]. SWARM is a

software package for multi-agent simulation of complex
systems, originally developed at the Santa Fe Institute
[20].

We have implemented the simulation of collective
intelligence systems from both software and hardware
perspectives as a complete experimental experience. The
2D simulation of termites’ behaviour employs
methodology found in the Starlogo project demonstration
and biological observations [10]. 3D simulation in our
project focused on the building behaviour of social
wasps, using the methodology found in the work of Eric
Bonabeau et al. [1].

Our hardware simulation draws idea from research done
by Krieger M. J. [6]: given robots with the ability to
perform simple object removal tasks, researchers are able
to simulate collective behaviour among cooperative
robots (in our case, termite agents) [6].

2. SOFTWARE SPECIFICATIONS

Our simulation software is built around the Repast
framework. The software adopts the Repast graphic user
interface (GUI). The Repast GUI is able to initialize,
start, pause and stop a simulation. It also enables user to
alter some of the simulation variables, such as the size of
the display surface (sample space) and number of agents
[10].

Repast is able to handle 2D termites’ simulation but has
no built-in 3D visualization functionalities. However, its
pure Java implementations enable Java 3D API
integration.

2.1 2D Termites Simulation

2D termites simulation is a common practice for self-
organized system research. It is included in our software
as a sample project. We based our development on the
simulation of collective building of 2D termites’ colony,
which involves two major objects: termites and their
woodchips [10]. The termites gather wood chips into
piles following a set of simple rules demonstrated in the
StarLogo project [10]:

1. Each termite walks around randomly in the sample

space.

2. An empty-handed termite picks up a randomly
distributed wood chip if it comes across one.

3. The termite continues to walk around randomly.
4. When the termite comes across another wood chip,

it finds a nearby empty space and puts its wood chip
down and becomes empty-handed again [10].

CIRT simulates and visualizes in a 2D space the termites
gathering wood chips into piles based on the initial
behaviour definition. It also observes and predicts
possible outcome by redefining the number of termite
and environmental variables, such as the woodchip
density. As the simulation progresses, the randomly
distributed woodchips would end up in a single large
pile, as shown in similar simulations [10].

2.2 3D Lattice Swarms Simulation

The architectural patterns grown by “artificial agents
moving and acting in a virtual space” (in our case,
artificial wasps) are based on biological data provided by
observations of nests built by social wasps [1]. We based
our development on the simulation of the collective
building of 3D wasps’ colony, which involves two major
objects: wasps and their bricks. According to Eric
Bonabeau et al.’s research, using stigmergic algorithms,
these agents move and act in a 3D lattice and are able to
“deposit bricks according to their local neighbourhood
configurations (26 neighbouring cells for 3D lattice
swarms) using a look-up table” [1].

In the stigmertic mode of construction, each swarm
insect automatically responds (dropping bricks) when it
meets any local configuration. As explained by
Bonabeau et al., the regulation of the building activity is
mainly achieved by the nest structure, instead of
depending on the workers themselves [1].

The wasps put bricks into a 3D structure with the
following behaviours [1]:

1. Each wasp is born at a random location in the 3D

space.
2. The wasp observes its local configuration with 26

neighbouring cells.
3. If the local configuration applies to one of the pre-

defined patterns, the wasp drops a corresponding
brick at that location and then moves to another
random location.

4. If the local configuration doesn’t apply to any of the
patterns, the wasp does nothing and moves to
another random location.

5. The result of the construction eventually produces
certain architectures that can be found in nature.

CIRT simulates and visualizes in 3D space the growth of
the colony. Social wasps act in 3D space and drops
bricks based on pre-defined behaviour rules. The
software observes the outcome by redefining the number
of wasps.

According to Bonabeau’s research, the neighbourhood of
the wasp is composed of the 26 cells surrounding the
central cell it occupies. [1] This neighbourhood consists
of 3 3X3 layers along the y-axis (see figure 1) [1]. When
the wasp occupies the central position of the layer y
(marked in black), it follows certain rule to produce our
3D architecture [1]. For example, when there is no brick
in the central cell, a wasp puts down a brick of type 1 in
the case of configuration 1 in figure 1 (9 cells above are
all already filled with type 2 bricks) and type 2 in the
case of figure 2 – 4 [1]. There are 9 configurations in
total. Detailed rules can be found in [1]. Furthermore,
taking symmetries into account, each rule expands
further. For example, configuration in figure 2 expands
to more configurations as shown in figure 3 and 4.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 1-4: Local neighbourhood in 3D lattice swarm [1]

3. SOFTWARE IMPLEMENTATION

Our simulation uses the Repast framework, an agent
based modelling toolkit for java. It has three major
classes: agent, space and model. Employing the Repast
software architecture, an agent class describes how an
agent interacts with the environment and moves around
the space [1]. A model class coordinates the setup and
running of the model. A space class defines the

environment, such as the distribution of woodchips for
the termites’ 2D simulation and the coordinates of wasps
and bricks in swarm 3D simulations [10].

Our software implementation observes and predicts
possible outcomes by defining a number of termite and
environmental variables, such as the density of obstacles
(wood chips). Figure 5 is a screen shot for the software
simulation in action. The red rectangle represents termite
carrying no woodchip; orange rectangle represents
termite carrying one woodchip; yellow rectangle
represents woodchip. During the simulation, the user
observes the movement of red and orange “termites”,
picking-up or dropping woodchips in the simulation
space.

Figure 5: 2D termite simulation

In order to visualize the 3D colony, we use Java 3D API.
Java 3D defines the concept of a virtual universe as a
three-dimensional space with an associated set of objects
[7]. Since Repast doesn’t come with 3D visualization
support, we separately programmed a set of Java classes
to be integrated with Repast to realize and illustrate the
3D colony architecture. Our 3D integration works with
the Repast original GUI in a way that the display surface
corresponds to commands sent from various buttons,
such as setup, step, pause and stop. With proper time-
delay between each clock tick, the users can observe the
growth of the artificial colony architecture.

Furthermore, we incorporate mouse rotation
functionality into the 3D visualization. At each clock
tick, users are able to rotate the visual colony by left-
mouse click so that the colony is clearly-viewed from
different angles (figure 6, 7).

Figure 6

Figure 7

We present a simple example of architectures grown by
artificial agents moving randomly in the 3D space and
performing simple “asynchronous actions with purely
local information” [1], as shown in figure 8.

Figure 8

4. HARDWARE SPECIFICATIONS AND

IMPLEMENTATION

4.1 Hardware Specifications

In order to achieve the same results from Krieger’s
research [6], we needed to construct a small-scale and
low-cost robot that can perform simple object removal
tasks. These tasks including moving on smooth surfaces,
detecting new objects (woodchips in our case), picking
up an encountered new object and dropping the
woodchip it carries when encountering another object.
The robot should come with sensors that are sensitive
enough to detect objects within 20-30 cm range. Because
the final simulation requires a relatively large number of
robot agents, the robot should be easy and fast to
assemble. Since it moves around randomly, it should be
using batteries as its primary power supply (a power cord
will provide an extra obstacle). For more economical
reasons, the robot toolkit should be reusable,
reprogrammable and consume as little power as possible.
It should be easy to connect to other devices. We chose
the Boe-Bot Tool Kit from Parallax Inc. and the Board of
Education featured BASIC Stamp embedded
microcontroller [18].

4.2 Boe-bot Description

The Boe-Bot is built on a high quality brushed aluminum
chassis that provides a sturdy platform for the
servomotors and printed circuit board (figure 9) [18].
Mounting holes and slots may be used to add custom
robotic equipment [18]. “The rear wheel is a drilled
polyethylene ball held in place with a cotter pin…
Wheels are machined to fit precisely on the servo spine
and held in place with a small screw. ” [18] In our case,
to simulate the termite’s woodpile building process, each
Boe-Bot needs a gripper.

The main controller of Boe-Bot is a BS2-IC (BASIC
Stamp 2), which is a customized chip from Microchip
PIC 16C57C. The BASIC Stamp 2 has 16 I/O pins, 2
dedicated serial port pins (1 input, 1 output), and room

for 500 to 600 lines of code. Detailed technical
description for BS2-IC as well as its schematic can be
found in Boe-Bot User Manual.

4.3 Termite Description

In the following section, we define the term “termite” as
a Boe-Bot with a pair of whiskers and gripper (figure 9).
The hardware design methodology divides the
implementation into two major components: whiskers
module and gripper Module.

Figure 9: Termite (Boe-Bot with gripper)

Figure 10: Whiskers schematic

4.3.1Whiskers Module

The Whiskers are used as object detectors since the
BASIC Stamp can be programmed to detect when a
whisker is pressed. Once the termite touches a new
object by it whiskers, it will release the object it is
holding (if there is one). Here, pin 4 and pin 6 connected
to each switch circuit monitor the voltage at the 10 kΩ
pull-up resistor. When a given whisker is not pressed, the
voltage at the pin connected to that whisker is 5 V (logic
1). When a whisker is pressed, the I/O line is shorted to
ground, and the pin sees 0 V (logic 0). See figure 10 for
details.

A program will keep checking whether the logic from
pin 4 and pin 6 is changed. If there is a change, a
corresponding subroutine will be called to react to the
change, by either releasing the object it carries or
avoiding the object it touches.

4.3.2 Gripper Module

Figure 11: gripper

The gripper (figure 11) has 3 pairs of IR sensors used for
object detection. They are used to control the movement
of the termite as well as the gripper. The IR unit
incorporates a standard IR LED with a 40 kHz IR
receiver. The IR specification as well as it schematic is
given below (figures 12 and 13):

Size: Width = 15.8 mm, Length = 18.2 mm
Power Requirements: + 5vdc, 2.6 mA
Vdd = +5vdc
Signal = I/O pin 0

Figure 12: IR specification

Figure 13: IR schematic

Note that the IR LED (emitter) and IR Detector are both
connected to the same I/O pin.

4.3.3 Robotic Termite Working Scenario

The termite works as follows: first, we let the robot spin
left (360 degrees), and keep detecting the signals sent by
both the left sensor and right sensor of the gripper (figure
14). Second, if the left senor signal is on, meaning that
the robot detects an object from the left, we let the robot
turn left until the right sensor turns on. This indicates that
the robot has just passed the object (figure 15). Thus, we
will let the robot turn right for a little (an angle of around
3 degrees) to centre the object into the gripper (figure
16). Now the robot can keep moving straight until the
close sensor is on (this means the object is inside the
robot), and grips the object (figure 17). Afterwards, the
robot starts searching for a new object. When it hits the
new object by its whisker, it releases the object it is
carrying. After releasing the object, the robot moves
backward, turns an angle of 45 degrees, and the same
procedure is repeated.

Figure 14

Figure 15

Figure 16

Figure 17

The robot can detect a new object by using its left and
right sensors. We use a touch sensor to enable the
detection of the second object (in order to release the one
it carries). However, there is one drawback: if the new
object the robot encounters is too big, it could activate
the touch sensor and the robot would release the object
right after gripping it.

5. RESULTS AND CONCLUSIONS

Simulation results are shown below as screen shots for
the software implementation. Figure 18, 19 and 20 show
2D termite simulation.

Figure 18: initial stage

Figure 19: in progress

Figure 20: final stage

Figure 21 shows a lattice swarm simulation done within a
20X20X20 3D space with 315 tick counts (note there is
an X-Y axis displayed in this simulation).

Figure 21

Figure 22 - 25 shows a lattice swarm simulation done
within a 20X20X20 3D space with 38142 tick counts.

Figure 26 shows a simulation done within a 40X40X40
3D space with 91306 tick counts. Due to the huge size of
the simulation space, the resulting structure remains
relatively small-scale even after a large number of tick
counts.

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27: our simulation result

Comparing our simulation results (figure 27) with that of
the Wasp Nest Building Simulator, it can be seen that
both simulations have resulted in nature-like patterns [1,
19]. Bonabeau believes that “extensive simulations on a
powerful computer have to be performed in order to
explore the behavioural space in a satisfactory manner,
even in this simplest case” [1]. Our software proves that
small scale simulation runs smoothly and relatively fast,
even on a PC. We offer 3D rotations during simulation;
enable users to observe the visualization from various
angles. While Wasp Nest Building Simulator is
implemented using C/C++ and is to be distributed under
GNU License soon, our software is solely implemented

in Java, which is platform independent. Furthermore, our
implementation integrates neatly with the Repast toolkit
framework and may provide future researchers
convenience and user-friendly interface. Video clips
showing the actual software and hardware simulations
are available upon request by contacting the authors.

As a conclusion, for the software simulation, as indicated
by Bonabeau et al., we have restricted our attention to
“very simple individual algorithms, where information is
processed locally, in space as well as in time” [1]. We
hope the simulation results, which closely resemble these
found in [1], can be of some value to the understanding
of biological collective systems [1]. Though our software
- so far - is modelled after the research done by
Bonabeau et al, it provides an inexpensive tool, and a
fast and platform independent implementation, for
researchers seeking new ways to implement these
systems.

6. FUTURE DEVELOPMENT

Where can we go from here? From a software
perspective, as Repast is an open-source software
framework for creating agent-based simulations using
the Java programming language and it is a more
sophisticated development tool, further developments
might include developing a whole 3D visualization
library that can be integrated into Repast, for realizing
powerful simulations.

From hardware perspective, we might be able to get
more robots to form a group of termite agents for better
simulation results. Meanwhile, we may also install an
extra pair of sensors for each robot to detect new objects.
Moreover, it is also possible to bring in interaction
between simulation software and hardware, such as
programming robotic agents behaviors through a
software terminal. The experimental robots may also
lead to further research in the area of cataglyphis fortis
[20, 21]

In addition, biologists are concerned with the individual
behavioral algorithms that allow a society to build its
nest [1]. Researchers have looked into genetic algorithms
to implement nest construction algorithms [16].
Therefore, it is possible to implement an algorithm
generation component or more precisely, a “rule
generator” for our software and integrate it into Repast,
to enhance its simulation possibilities.

REFERENCES

[1] Bonabeau, E. Théraulaz, G., Arpin, E. and Sardet, E. The
building behavior of lattice swarms. In: Artificial Life IV,
Brooks, R. and Maes, P. eds., pp. 307-312, MIT Press (1994).
[2] Ramos V. On the Implicit and on the Artificial:
Morphogenesis and Emergent Aesthetics in Autonomous
Collective Systems. In: ARCHITOPIA Book / Catalogue, Art,
Architecture and Science, J.L. Maubant and L. Moura (Eds.),
pp. 25-57, Ministério da Ciência e Tecnologia, Feb. 2002.

[3] Langham, A. E. and Grant P. W. Evolving the Building
Activity of a Termite Colony for Finite Element Mesh
Generation. Department of Computer Science, University of
Wales Swansea Research Report CSR1 4-99 (1999).
[4] A Cooperative Multi-Robot Control Architecture. Dynamic
Concepts, Inc. Technical Report (2002).
[5] Fong, T., Nourbakhsh, I., and Dautenhahn, K., A Survey of
Socially Interactive Robots. In: Robotics and Autonomous
Systems, vol. 42(3-4), March 2003.
[6] Krieger, M. J., Billeter, J.B., Keller, L. 2000. Ant-like task
allocation and recruitment in co-operative robots. In: Nature,
406, 992-995. 2000.
[7] Bonebeau E., Dirigo M.and Theraulaz G. Inspiration for
Optimization from Social Insect Behavior. In: Nature 406, 39-
42, 2000.
[8] Bonebeau E., Theraulazx G. and Cogne F., The Design of
Complex Architectures by Simple Agents. In: Sante Fe Institute
Working Paper 98-01-005.
[9] Resnick, M. Turtles, Termites and Traffic Jams:
Explorations in Massively Parallel Microworlds. Cambridge,
Ma: MIT Press (1994).
[10] StarLogo. (http://education.mit.edu/starlogo/)
[11] Collier, N. Repast: An extensible framework for agent
simulation (2002). (http://repast.sourceforge.net/)
[12] NASA COIN Project.
(http://is.arc.nasa.gov/AR/projects/ColInt.html)
[13] SWARM. (http://www.swarm.org/)
[14] StarLogoT.
(http://ccl.sesp.northwestern.edu/cm/starlogoT/)
[15] NetLogo. (http://ccl.sesp.northwestern.edu/netlogo/)
[16] AgentSheets. (http://agentsheets.com/)
[17] Ascape.
(http://www.brook.edu/es/dynamics/models/ascape/)
[18] Boe-Bot Specifications.
(http://www.parallax.com/html_pages/robotics/boebot/)
[19] Wasp Nest Building Simulator.
(http://www-iasc.enst-
bretagne.fr/PROJECTS/SWARM/nest.html)
[20]Roumeliotis S.I., Pirjanian P. and Mataric M.J. Ant-
Inspired Navigation in Unknown Environments. In Proc. 2000
AAAI International Conference on Autonomous Agents,
Barcelona, Spain, June 3-7, pp. 25-26.
[21]Kuipers B. and Byun Y.T. A robot exploration and
mapping strategy based on semantic hierarchy of spatial
representations. In: Robotic and Autonomous Systems, 8(1-
2):47-63, Nov. 1991.

