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ABSTRACT  
 
Malaria is a vector-borne disease that greatly affects 
social and economic development.  We adopt the 
complex system paradigm in our analysis of the 
problem.  Our aim is to assess the impact of education 
on malaria healthcare.  Multi-agent systems are 
employed to model the spread of malaria in Haiti, 
where we introduce malaria education as a possible 
way of regulating deaths due to the parasite.  We 
launch three experiments, each with environment 
modifications: 3 hospitals; 3 hospitals and 20 schools; 
and 5 hospitals and 20 schools.  The results of running 
10 simulations for each experiment show that there is a 
reduction in malaria deaths not only when including 
schools, but when in combination with increasing the 
number of hospitals. 
 
INTRODUCTION  
  
Our goal is to assess the effect of education on 
healthcare. We first introduce the global malaria 
problem, followed by the paradigm adopted for its 
analysis.  This is followed by an insight into the current 
malaria situation in Haiti, the country we have chosen 
for our study. 
 
The rest of the paper is organised as follows: the State 
of the Art section introduces current efforts in the field; 
the following section discusses the model; then the 
three experiments and their results are presents; the 
Discussion part gives some conclusions and a brief 
analysis; finally, Future Work discusses ideas for 
future work. 
 

Malaria 
 
Malaria is a vector-borne disease that greatly affects 
social and economic development in the world.  In 
1990 it was estimated that approximately 2.2 billion 
people were at risk of contracting the parasite, and a 
further 270 million were already infected.   Endemic 
areas are characterised by ‘ideal’ mosquito (anopheles 
being the parasite vector) habitats, which are largely 
where: water is present; the temperature is at least 
18ºC; and there is little pollution (Baudon 2000). Many 
third world rural areas meet these conditions.  Efforts 
to eradicate this deadly disease have included using 
DDT to minimise the vector population, and 
administering antimalarial drugs to susceptible people, 
as a prevention. However, both methods have proved 
only temporarily effective. The former was first 
adopted in the mid 1950s with a subsequent significant 
global decrease in mosquito population. This was soon 
to become a failure when a resurgence of malaria was 
detected as a result of anopheles developing a 
resistance to the insecticide (Krogstad 1996, WHO 
1996). The latter prophylaxis was the use of 
chloroquine as an antimalarial drug.  Resistance of 
Plasmodium falciparum (the more prevalent and 
deadly of the four existing parasite species) to 
chloroquine emerged due to the massive usage of the 
drug (Payne 1987). As a consequence, a novel way of 
combating this plague would have to be devised. 
 
Complex Systems 
 
Pavard (2002) describes a complex socio technical 
system to be one for which it is difficult, if not 
impossible to restrict its description to a limited 
number of parameters or characterising variables 
without losing its essential global functional properties.  
Indeed from this definition four characteristics of such 
a system appear: non-determinism; limited functional 



decomposability; distributed nature of information and 
representation; and emergence and self-organisation. 
 
Simulation as a Tool for Understanding Complex 
Systems 
 
The properties above show that dealing with a complex 
system entails dealing with the impossibility to 
anticipate precisely its behaviour despite knowing 
completely the function of its constituents.  This, 
combined with non-linear behaviour means that it is 
quite problematic if not impossible to use a 
mathematical or statistical approach for its analysis 
(Bagni et al. 2002, Pavard and Dugdale 2002). It is for 
these reasons that computer simulations, in this study 
multi-agent systems (MAS), are a more viable method 
for exploring complex systems.   
 
Studying complex systems through multi-agent 
systems has yielded useful results such as in: the 
evolutionary population dynamics of settlement 
systems in the search of emerging spatial regularities 
(Aschan-Leygonie 2000); demographic phenomena 
through its roots in individual choice behaviour and 
social interactions (Janssen and Martens 2001); 
simulations of crowd behaviour aiming to understand 
its dynamic and consequent control (Gomez and Rowe 
2003, Hamagami et al. 2003). 
 
Haiti 
 
The level of poverty in Haiti is approximately 65% 
(PAHO 2001), a socio-economic factor affecting 
access to public healthcare.  Not only is an adequate 
health infrastructure not fully developed, but 
‘individual’ poverty also hinders access to healthcare.  
This is aggravated further by not having the financial 
resources to travel to the place of care, or not judging it 
necessary to seek medical care.  
 
Malaria is considered a public health problem in Haiti 
(PAHO 2001), especially in rural areas.  Malaria 
education, or its lack thereof, plays an extremely 
important role in the ‘healing’ process.  It is primordial 
for effective and efficient treatment that malaria be 
diagnosed at an early stage (Baume and Kachur 1999).  
In order for this to apply, the population must be 
completely aware of its symptoms and act 
consequently. Symptoms which can be easily mistaken 
for another disease include: high fever; vomiting; 
convulsions; and anaemia. Not only must the 
population attribute specific symptoms to malaria, but 
they must also seek the correct medical attention.  The 

first problem to tackle is educating the population, 
which could be done through national schooling. 
However, school attendance by children from lower 
income families is limited by the cost of school fees 
and curtailed by child labour. 
 
STATE OF THE ART 
 
The motivations that drive us to develop our model are 
various.  Recent research has demonstrated approaches 
to the global problem, using MAS, from two angles.  
Janssen  and Martens (1997) focus on the adaptiveness 
of mosquitoes to insecticides and malaria parasites to 
antimalarial drugs.  This work aims to find a solution to 
controlling the spread of the disease by understanding 
the mechanism that renders this prophylaxis useless. 
Similarly, the same result is sought by Carnahan et al. 
(1997) but by studying the problem at a different level: 
the dispersal of anopheles. Here there is a focus on 
understanding the behaviour of malaria-transmitting 
mosquitoes, their geographical displacement, with the 
aim to consequently monitor their movements and thus 
reduce the number of malaria cases.  Presently there is 
little information available showing the impact of 
education on healthcare in general, and even less in 
tackling the problem of malaria.  We therefore attempt 
to approach the problem from this standpoint using 
MAS (StarLogo, http://www.media.mit.edu/starlogo/), 
more specifically applied to Haiti.  
 
THE MODEL 
 
Our model aims to encompass the malaria problem in 
Haiti.  We have programmed the environment to 
represent the geographical terrain and the agents to 
represent the human population.  
 
The Environment 
 
The environment we create, for our agents to inhabit, is 
made up of a model map of Haiti, with geographical 
terrain granularity sufficient to represent that which 
affects the dynamics of what we intend to model.  This 
granularity is such that the simulation space is divided 
into micro-environments: sea; hospitals; land; 
mountains; cities; roads; and schools. All of these 
micro-environments have a direct impact on our agents 
and hence the simulations we run, as will be described 
further in the Human Population section.  A snapshot 
of the simulation graphical user interface can be seen in 
Fig. 1.   



 

 
Figure 1 : StarLogo Simulation Interface 
 
The Mosquito Population 
 
Our model represents only the parasite carriers of the 
entire anophele population, unlike in Janssen and 
Martens (1997). We do not model seasonal mosquito 
population variations.  All of our modelled mosquitoes 
pose a malaria threat to the human (agent) population 
concerned. 
 
We have decided not to model mosquitoes as an agent 
whose behaviour is affected by its interaction with both 
the environment and other agents.  Their presence in 
the model is stochastic, embedded in the environment 
we create.  The probability of an agent contracting 
malaria varies according to conditions the seven micro-
environments present, the probability of an agent 
contracting malaria differs.  We can observe for 
example that ‘land’ (rural areas) is the ideal breeding 
ground for mosquitoes.  This is contrary to mountains 
where despite the adequate water level and lack of 
pollution, elevation lowers ambient temperature, 
making it an unsuitable mosquito habitat. We 
consequently say that the highest probability of malaria 
infection is in ‘land’, and degressively in: road; city; 
and mountain.  No contamination occurs in a hospital 
or school.  This stochastic order abides to the 
information given on such habitats (Baudon 2000), see 
Table 1. 
 
Table 1 : Mosquito Contamination Probabilities 

 
Micro-environment Contamination Probabilities 

Land 2% 
Road 1% 
City 0.66% 

Mountain 0.5% 
Micro-environments not included are those with 0% probabilities 
 

The Human Population 
 
The initial human population in our model is evenly 
distributed in the 5 cities in our map, with 200 agents 
in each.  Our agents have been assigned one of the 
following three states: safe, when they are susceptible 
to contracting malaria; contaminated; and immune.  
Each agent can go through the malaria cycle of being 
safe, becoming contaminated and consequently either 
dying of lack of treatment or becoming cured as a 
consequence of a hospital visit, see Fig. 2. These states 
are dependent on the interaction of agents with their 
surrounding environment. 
 

 
 
 
 
 
 
 
 
 
 

Figure 2: Agent State Cycle 
 

We have endowed some of our agents with the ability 
to be mobile, and if so, a fraction with a car. This 
translates into those mobile exiting their city of origin 
with greater ease than those not mobile.  Similarly, car 
owners can move throughout the country at a greater 
speed, especially on roads, than those without a 
vehicle. 
 
Natural inoculation occurs through continuous 
repetitive contamination, where a person cured from 
malaria is immune to the parasite for an average of one 
year (Baudon 2000).  As there must be malaria-person 
contact, and a greater number of anopheles are found in 
rural areas, the initial immune and contaminated 
populations are all mobile. 
  
Baume and Kachur (1999) stress the importance of 
educating the population with the recognition of 
malaria symptoms and the gravity of not acting 
consequently.  We have introduced this facet of the 
problem by creating an ‘education scale’ where agents 
have education points ranging from 1 to 20.  Points 
represent the time agents take to attribute existing 
symptoms to malaria, where a contaminated agent with 
1 education point ‘waits’ longer before heading 
towards a hospital than its counterpart with 20 points, 
who as soon as it is contaminated seeks medical 
attention. The maximum ‘waiting’ period is 29 days, 
because 30 days after contamination, an agent outside a 
hospital dies. Points are cumulative only. Schools are 

cured (invisible state) 

safe 

contaminated immune 



distributed throughout our Haiti map, both in rural and 
urban areas.  The utility of a school lies in that agents 
moving randomly arrive at a school and leave with 
more malaria awareness. They enter the school, if they 
do not have 20 points and are not contaminated. They 
remain for a period of three days, after which they gain 
an education point. 
 
The model emulates the contamination process 
stochastically through its environment.  Only those 
agents whose state is safe can be contaminated when in 
a micro-environment and according to the probabilities. 
 
Contaminated agents are to ‘wait’ an amount of time, 
depending on the education they have, as discussed 
above.  If a contaminated agent has a maximum 
education of 20, the shortest distance between itself 
and the existing hospitals will be calculated. 
Subsequently the agent will start heading towards 
medical attention.  As a contaminated agent, the speed 
at which it proceeds is diminished by 50% (due to 
weakness caused by the parasite.  Those contaminated 
who have reached a hospital in time, will remain there 
for a period of 20 days, the average malaria recovery 
time (Malaria Foundation International 2000), and 
subsequently the agent’s state changes to immune 
(during 1 year). Education’s role is seen in the model 
when the contaminated agent, because of lack of 
malaria awareness, does not recognise symptoms in 
time and hence cannot reach a hospital. In our model 
death strikes when a period of 30 days has elapsed after 
symptoms appear, the average interval (Malaria 
Foundation International 2000). 
 
 The sex of an agent is not explicit.  This factor only 
affects our model when breeding occurs. We have 
embodied it by using a random number generator 
allowing an agent to reproduce 50% of the time, as the 
male to female ratio is approximately 1:1 in Haiti.  The 
above condition in combination with the following 
must be satisfied before an agent can reproduce: 
minimum age of 14 years; maximum age of 49 years; 
not have reproduced more than 6 times; and have at 
least an interval of 1 year after reproduction. (WHO 
2001) 
 
As well as death caused by malaria, we have included 
natural deaths.  The average life span for men and 
women in Haiti is 50.6 and 55.1 years respectively 
(WHO 2001).  In order to accommodate these data, 
bearing in mind that our agent population is sex-less, 
we have set a maximum age of 55 years.  If an agent 
survives malaria it dies when attaining that age. 
 
 
 

EXPERIMENTS AND RESULTS 
 
Our model, described attempts to encompass the 
present malaria situation in Haiti, in addition to 
information we have deemed relevant to the parasite 
problem. We ran simulations with 3 different 
scenarios: environment changes in our model. 
Henceforth, our 3 scenarios will be denominated in the 
following manner: Experiment A (3 hospitals); 
Experiment B (3 hospitals and 20 schools); and 
Experiment C (5 hospitals and 20 schools).  Each 
experiment constitutes 10 simulations, whose duration 
is of 10 years. 
 
Three Hospitals, no Schools (Experiment A) 
 
This experiment is our benchmark.  We have obtained 
results from running simulations of our original model.  
 
Three Hospitals, 20 Schools (Experiment B) 
 
Our aim is to observe the effect of adding schools to 
the model environment.  We therefore ran a further 10 
simulations with 20 schools, distributed randomly in 
the environment.  These represent malaria education 
initiatives that could be adopted, in order to reduce 
deaths. 
 
Our hypothesis, of education having a significant 
positive effect on controlling malaria deaths, yielded 
mediocre results: not improving the present Haiti 
situation. Each curve in Fig. 3 is an average taken from 
the 10 simulations in each experiment, with 
corresponding standard deviations.  The goal is to 
minimise this curve. Graphically we can note minimal 
difference from Experiment A to Experiment B. 
However, taking the area under each curve (AUC) 
pointed to a slight improvement with Experiment B: 
AUC(A)=1.30; AUC(B)=1.19. 
 

 
Figure 3 : Ratio of Malaria Deaths to Total Population 



 
We found that despite a net improvement in average 
education as the simulation progressed (see Table 2), 
the malaria awareness acquired was not sufficient in 
decreasing malaria deaths, see Fig. 3. We attribute this 
to the great distances between some contaminated 
agents (aware of their malaria state) and the closest 
hospital to them.  Regardless of having maximum 
education, the symptom appearance interval elapsed 
before the agent could reach medical assistance. These 
preliminary results drove us to experiment with 
increasing the number of hospitals to five, one for each 
city. 
 
Table 2 : Average Education 
 

Average Education (σ) Initial Final 
Experiment A 9.43 (0.19) 13.84 (0.26) 
Experiment B 9.55 (0.23) 19.23 (0.21) 
Experiment C 9.53 (0.20) 19.27 (0.10) 

 
We present the average education of initial and final simulation 
populations for each experiment.  Standard deviations refer to the 
spread of the 10   experiments (within each experiment group). 
 
Five Hospitals, 20 Schools (Experiment C) 
 
This experiment was composed of modifying further 
our modelled environment, by adding 2 hospitals.  By 
doing so, distances between certain contaminated 
agents and a hospital are reduced, thereby increasing 
the possibility of them obtaining medical attention. 
 
The ratio of malaria deaths to total population in Fig. 3, 
decreases in Experiment C, where AUC(C)=1.13, a 
lower value, as expected, than AUC(A) and AUC(B). 
                
In order to help us have a deeper insight into the impact 
of education, we plot the ratio of contaminated agents 
in hospital with respect to the entire contaminated 

population, see Fig. 4.  It exposes the proportion, for 
the three experiments, of contaminated agents 
receiving medical attention.  Calculating individual 
experiment AUCs result in: AUC(A)=3.15; 
AUC(B)=3.17; AUC(C)=3.65. There is a noticeable 
increase from Experiment A, to B and finally C. The 
implication of this is explained in the Discussion 
section. 
 

 
Figure 4 : Ratio of Contaminated Agents in Hospital to Entire 
Contaminated Population 
 
Observing population dynamics was achieved by 
plotting them individually, see Figs. 5-7.  Here the 
number of safe, contaminated and immune agents is 
recorded so as to examine whether differences exist 
between such states throughout the three experiments.  
When analysing results for Experiments A and B in 
comparison to Experiment C, the immune and safe 
populations display a considerable increase for the 
latter.  This, however, cannot be said for the 
contaminated population where we observe minimal 
variations between experiments, due to the factors 
influencing it not varying across experiments.  

 

                
   Figure 5 : Safe Agent Population                                                                    Figure 6 : Contaminated Agent Population 



 

      
   Figure 7 : Immune Agent Population                                                              Figure 8 : Total Agent Population                                                                                   
 
Individual and total population variations.  The figures represent averages of 10 simulation runs within each experiment, and their corresponding                
standard deviations. 
 
Temporal population variations when observing the 
entire agent population, see Fig. 8, show a clear 
increase in experiment C with respect to experiments A 
and B. 
 
DISCUSSION 
 
Our results demonstrate the impact of education on 
malaria deaths.  We have seen in Table 2 the changes 
in average education throughout the entire agent 
population for all three experiments.  In Experiment A, 
despite the absence of schools, hence no ‘learning’ 
occurring, there was an increase in final education.  
This can be explained through natural selection. Those 
agents with a lower education level had not enough 
time to obtain medical assistance and consequently 
died. However, in the case of Experiments B and C, 
there is a significantly higher final average education, 
not only because of natural selection, but also due to 
the addition of schools. 
 
The effect of education was viewed from many facets 
of our model. One of these is the ratio of malaria 
deaths to the entire population.  The improvement 
displayed by Experiment B, in comparison to 
Experiment A was not as pronounced as expected. 
Taking the area under the curve reflected a crisper 
improvement, similarly to Experiment C. 
 
Moreover, our new hypothesis (the positive impact of  
adding schools and hospitals), is somewhat confirmed 
by observing the dynamic ratio of contaminated agents 
in hospital with respect to the entire contaminated 
population, see Fig. 4.  We expected to witness an 
increase in this ratio as the simulation progressed, 
whereby a greater number of contaminated agents are 

in a hospital obtaining medical attention.  There is a clear 
improvement in Experiment C where its temporal 
variations surpass those of experiments A and B.  This 
visual observation is confirmed when calculating AUCs 
for each experiment. 
 
To corroborate the above results we can observe 
individual population variations in Figs. 5-7.  The 
contaminated population is very similar in all three 
experiments, which is to be expected as the 
contamination algorithm was not modified. However, the 
same cannot be said for the number of safe and immune 
agents (Figs. 7 and 5), as well as the entire population 
(Fig. 8).  There is a significant increase in Experiment C 
in comparison to both A and B. The state cycle (see Fig. 
2) is such that an immune agent must be previously a 
contaminated agent, unless it is a child of an immune 
agent (children of immune agents are also immune up to 
1 year after birth). This implies that those immune agents 
must have visited a hospital, been cured and 
subsequently become immune. Intuitively, we can 
therefore say that the increase in the immune population 
in Experiment C is due to a greater number of 
contaminated agents having sufficient education and 
being close enough to a hospital in order to rid 
themselves of the parasite. 
 
In conclusion, we notice from the several experiment 
results described above that there is an improvement not 
only when introducing schools but also increasing the 
number of hospitals in our model. 
 
FUTURE WORK 
 
Our aim was to encapsulate epidemiological, 
environmental and socio-economic factors in our model.  



However, we would like to attempt to include greater 
realism in our current efforts.  This would be including 
rural population and climatic seasons.  The latter 
emulates the fluctuations in mosquito population and 
hence in probabilities of malaria contamination.  Our 
intention is also to run simulations for a longer period.  
 
With respect to education, a future step could be 
modelling the loss of education points.  This could be 
used to capture the idea that for example after 20 years, 
a person can forget what it has been taught or that the 
treatment will have progressed, therefore information 
acquired previously has become obsolete. 
 
As we have demonstrated, education was not sufficient 
in our model.  We had to include more hospitals.  This 
reflects the vast distances that some agents had to 
travel.  A future step could then be to simulate the 
effect of improving road infrastructure and transport. 
 
Our current model lacks realism in spatial constraints. 
For example with in real life hospitals there is a 
maximum patient capacity for every hospital. This 
could be achieved by applying a cellular automata layer 
as described by Hamagami et al. (2003). 
 
Finally, we can say that our model could be extended 
to produce a generic model adaptable to different 
countries or geographical areas, with changes in certain 
parameters.  Only parameter changes are needed, as the 
mechanisms of the malaria problem, described in the 
Model section, are universal.  This could be the basis 
of an adaptable, flexible model. 
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