
Mobile Intelligent Agents in Erlang

Stefan Mandl, Raymond Bimazubute, and Herbert Stoyan

Department of Computer Science 8 (Artificial Intelligence)
University of Erlangen-N̈urnberg,

am Weichselgarten 9, D-91058 Erlangen, Germany
{mandl,rbimaz,hstoyan }@cs.fau.de

Abstract

We present a vision for distributed application program-
ming in peer-to-peer networks based on a modified ver-
sion of the Procedural Reasoning System that we call
ePRS. The original PRS is expanded to provide mobil-
ity between nodes, which may be spread over a network
of computers. The node concept is strongly linked to
the concept of computation environments. We show that
the goal-based nature of ePRS agents makes them use-
able even in environments that were unknown at the time
they were defined. The Erlang language, which is used
as implementation language provides the basic network-
ing technology. An example from the domain of database
consistency is proposed.

1 Introduction

By definition, in peer-to-peer networks every machine po-
tentially plays two roles, that of a client and that of a
server. Therefore there is no single location that hosts an
application’s information and in addition, there is no sin-
gle location that hosts the program logic. This means that
distributed applications in peer-to-peer networks have to
deal with incompatible servers and clients, either because
the network’s software update strategy is insufficient or
because of principal reasons of the architecture. For ex-
ample, certain operations may not be possible on certain
platforms. Commonly, solutions to these problems rely
on protocols and versioning to ensure that only compat-
ible peers communicate and that the messages have the
same semantics to both of them.

In contrast, intelligent mobile software agents offer the
possibility to operate in the described inconsistent envi-
ronments by 1) abstracting from the particular implemen-
tation of operations and 2) continue operation on a differ-
ent hosts without stopping the computation.

Distributed application programming comes to its
strengths when the functionality of the application can

be split into mostly independent sub parts. The higher the
dependence between the sub parts, the more communica-
tion overhead will be involved. A classic example for a
distributed system is that of a movie renderer that assigns
picture rendering tasks to various machines in a compute-
cluster thereby gaining a speed-up that is proportional to
the number of machines employed. In such a system, the
“worker-nodes” run equal programs and serve as a means
to distribute the load.

Another typical scenario for distributed application pro-
gramming is the case when some resources that are
needed are not available on any system the application
is supposed to run on. In section 6, we present an ex-
ample which deals with a very valuable resource: Users,
that are sitting at different locations, each working on the
same application. This kind of application is commonly
referred to as “groupware” or collaborative application.
Such systems appear to be implementable in a very natu-
ral way by choosing an agent-based implementation.

A very important part of real-world distributed applica-
tions is security and error-handling. These aspects have
been excluded from the following but shall receive more
attention in the future.

The next section gives a short review on intelligent
agents. Section 3 explains the idea behind a distributed
application. Section 4 introduces the idea of computation
environments and abstract actions. Section 5 presents the
implementation of ePRS. Section 6 reviews the design of
a proposed distributed application. Section 7 gives a con-
clusion and hints for future research.

2 Intelligent Agents

There are many different definitions of “agent” in the
literature [4]. In this paper, we assume agents as au-
tonomous entities perceiving and acting in some kind of
environment. Intelligent agents are agents that act in an
intelligent way. To avoid a philosophical discussion on
the term “intelligent”, we state the simplifying working

definition, that any agent that does some amount of rea-
soning to select the most appropriate action in the current
situation shall be called intelligent.

To this end, Shoham attributed mental capabilities like
commitments and beliefs to an agent’s data structures
[12]. This makes it easier to evaluate the appropriateness
of an agent’s actions, as the judgment on the appropriate-
ness involves categories that are well known to humans.
For example, it is easier to state whether or not an agent
chose a clever action when it is known what goals and
intentions the agent has.

In BDI (belief, desire, intentions) systems [8], the mental
capabilities are divided into

Beliefs: The agent’s view on the state of the world
Desires: The agent’s goals
Intentions: The agent’s current plans to bring about a

desired goal

Using these categories, an intelligent agent could be de-
fined as an agent that selects its intentions in such a
way that the agent’s goals are reached. In contrast, non-
intelligent agents select their actions in a predefined man-
ner.

A very important characteristic of intelligent agents is
adaptability, which means that the agent reacts appropri-
ately to changes in the environment. This could for ex-
ample cause a goal to be dropped as it is not reachable
anymore. Obviously, in a peer-to-peer network, this prop-
erty is of great importance when a peer is temporarily of-
fline, causing certain actions to become unavailable. In
that case, the agent is able to postpone the intentions that
rely on these actions and productively continue working
on goals that are not affected by this circumstance. When
the network is reachable again, the agent could re-awake
the postponed intentions.

3 Distributed Applications

An application is a program that gives a computer in-
structions that provide the user with tools to accomplish a
task. A program written so that the processing can be di-
vided across multiple computers over a network is called
a distributedapplication. Taking the two definitions to-
gether, and assuming that a set of intelligent agents may
be called a program, distributed applications could be im-
plemented by a number of agents running on a number of
computers in a network. This means that both, the pro-
gram and the data (embodied in the agents beliefs) are
spread over the network. The actual way this distribution

is handled is dependent on the application. Typical ex-
amples are settings, where certain resources that are cru-
cial to the completion of a task are not available on the
same computer system. For example, to produce a piece
of cloth, there is need for a weaving machine and a after
that a dyeing machine, which may be located at different
factories; to book a flight ticket at the ticket counter, the
clerk needs an easy-to-use user interface through which
he is accessing a large flight database concurrently with
hundreds of colleagues at different locations.

The examples show the nature of distributed applications.
The implementation of such systems is mostly client-
server based with a strict seperation between clients and
servers, which makes it necessary to maintain large bod-
ies of code and keep them consistent. Also, the server of-
ten marks a single point of failure, degrading the reliabil-
ity of the system. Additionally, a single server is a per-
formance bottleneck for two reasons: Two many requests
and network traffic.

The employment of intelligent mobile agents, offers the
flexibility needed for such large scale applications.

4 Environments: Abstracted Actions

We define an ePRS agent’s computation environment as
the set of possible actions it could take, the set of possible
plans it could follow, and the number of other agents that
it is aware of. The major contribution of ePRS is the idea
to make the actions and plans part of the environment in-
stead of being internal features of the agent. For the agent
programmer, this leads to a different style of agent pro-
gramming, as the actual procedure to reach a certain goal
is not accessible to her. Only the initial beliefs and goals
have to be specified. A major part of the implementation
of such a system is the implementation of the computa-
tion environments.

For the future, we plan to implement more of the original
PRS’s meta-level reasoning, allowing agent-local plans to
update the goals and influence goal-handling in a agent
local way, thus giving the agents more different qualities.

In order to implement computation environments, we
adopt the node concept of Erlang (more on Erlang in sec-
tion 5. A node is a entity that is capable of running ePRS
agents and computation environments. Nodes may reside
on different computers in a network; there can be multi-
ple nodes per machine. Every node provides exactly one
computation environment, thus the only way an agent can
change its computation environment is to move to a dif-
ferent node where another environment is available.

Environment 1

notify

Environment 2

notify

Environment 3

notify

Fig. 1.Different environments offering different implementations

If any node in the system provides the same environment,
the agents can act in a load-balanced way, thereby gain-
ing efficiency, but this provides no conceptual advantage
over a centralized solution. If on the other hand the differ-
ent nodes provide different environments, it is possible to
maintain different aspects of the application on different
nodes.

This means that the same goal will possibly be mapped to
different actions, depending on the environment the agent
is running in (see figure 1).

The fact that also the plans are provided externally by
the computation environment has an interesting conse-
quence. When an agent intends a plan, this plan is put
into the agent’s intention structure. When the agent mi-
grates to a new environment, it takes the intended plans
from the old environment with it. This makes it possible
to import plans from other environments. As plans do not
consider action specifications that would depend on the
environment, but only specifications of new sub goals, the
imported plan might very well be followed in the new en-
vironment. If one of the goals can not be satisfied in the
new environment, the intention is postponed and may be
re-awaked when the agent is moving to a different envi-
ronment.

If the goal that is not satisfy-able is the only active goal
remaining, the agent may decide to migrate to a different
host, where the goal can be handled.

5 ePRS Implementation

The Procedural Reasoning System (PRS) is the classical
BDI language. It was defined by Georgeff and Lansky

in 1987 [6] and is in part based on experiences from the
previous Procedural Expert System (PES) [5] and [7]. It
serves as a reasoning system situated in a dynamic world
and operating under real-time constraints and resource
limitations. A PRS agent has four data structures: beliefs,
goals, plans, and the intention structure. The intention
structure contains plans that the system has decided to ex-
ecute. This decision is made based on the agents beliefs
and goals. The PRS system interpreter activates plans and
executes them. Plans are calledKnowledge areasin the
original PRS orActs in CL-PRS [11]. We use the terms
“plan” and “act” interchangeably.

Erlang is a mostly functional programming language
which was designed at the Ericsson and Ellemtel Com-
puter Science Laboratories in Sweden [1]. There exists a
commercial implementation for which professional sup-
port is available. In addition, there is an open source
implementation that is available free of charge for non-
commercial purposes [3]. Erlang has support for several
high-level features like distributed programming, multi-
threading, advanced communication, and error-handling.
We call such a language an “Agent Implementation Lan-
guage”, as these features make it very attractive for agent
programming, but it is lacking the agent concept at the
language level, e.g. there is no primitive calledagent .

No practical programming language—even a functional
one—is free of side-effects. To avoid side-effects helps in
the implementation of mobility. In Erlang, there are only
three kinds of side-effects:

– Each thread (Erlang process) has an environment dic-
tionary that can be altered by the commandsput and
get . For ePRS, we don’t use these commands.

– Message-passing between Erlang processes has the
obvious side-effect of sending a message. As we
want to model distributed communicating intelligent
agents, we can not do without.

– External functions can be linked to the Erlang sys-
tem. Commonly these functions will have side-
effects. We may use this feature in the future for ac-
cessing external resources.

In section 5.1, we explain the implementation of the ePRS
interpreter. Section 5.2 describes how agent migration is
realized.

5.1 Basic Operation

Every ePRS agent follows a certain procedure that is mo-
tivated by the execution cycle of PRS[6]. This procedure
is the same for every ePRS agent. It handles the updat-
ing of the agents beliefs, goals and intentions. We like
to call it an abstract machine for executing goal-oriented
programs with procedural knowledge. In PRS, the pro-
cedural knowledge is made up of a number of plans an
agent could take to reach a certain goal. Plans have a
two part representation. The first part consists of a cue
which indicates, whether or not a plan is to be consid-
ered for a certain goal, an environment part, which is
mainly used to initialize variables from the agent’s be-
liefs, and a resource section which describes which re-
sources have to be acquired in order to execute a plan.
The second part of a plan is the so-called plot, which is a
directed graph, which contains step-by-step the sub goals
that have to be reached in order to reach the goal the plan
was designed for. It is possible to specify parallel plan
steps in an “and/or” fashion. There are goals of different
kinds:achieve, achieve-by, conclude, Our current im-
plementation of ePRS only supports achieve-goals. Plan
selection (intention) and execution sets up new sub goals
but does not directly invoke actions. This is the task of an
extra step in the interpreter. For every primitive action—
which is obtained by calling the functionactions()
on the current node—, the system tests whether or not
it is applicable in the current situation and providing the
solution to a intended goal. If this is the case, the ac-
tion is chosen for execution, before any compound plans
are even considered. If such an action can not be found,
the list of available plans—available through the func-
tion plans() —is searched for a candidate plan to reach
a current goals. If such a plan is found, it is put in the
intention-structure.

In ePRS, we represent primitive actions as Erlang func-
tions like the one in figure 2. These functions return a
tuple of functions. The first component function of the

tuple tests whether or not the action is applicable to the
current situation, imitating the the first part of PRS plans.
The second component function of the tuple actually im-
plements the action. The argument to the primitive action
function is a goal specification which possibly contains
variables that are preserved in the environment of the test
and action functions that are returned.

Plans are represented in a similar way. There is a goal
cue, which is the parameter of a function, which returns a
tuple of test and plot functions which represent the plan.
CL-PRS employs a complex graph library to represent
the plot of a plan. We use the fact that actual execution
follows a tree. In ePRS, we represent this tree by a list
of functions that dynamically determine the index of the
next function to be called from the list.

As described in the previous section, act nodes do not
cause real action to happen, but change the set of goals
and beliefs of the agent.

In ePRS, plans and actions are not part of the agent but
provided from the environment. This is different from
other BDI implementations like JACK [2], where the re-
actions to plan steps are part of the Agent. This means,
that plans and actions have to be specified once for an en-
vironment and no agent specific action methods have to
be supplied.

5.2 Mobility

Erlang is a programming language that has distribution
built-in. The basic concept of distributed Erlang is the
node. Nodes have names that can be chosen to be unique
in the local network or world-wide. Every process is run-
ning on a certain node. It is also possible to launch a new
process on a different node. There are additional language
features that allow the monitoring of local or remote pro-
cesses. For an Erlang node to become a ePRS node, it
must be running a certain server process, which has to be
registered aseprs server on that node. By now, the
only kind of message this process can handle is the re-
quest to start a new agent. This is done by starting a new
Erlang process which executes the agent’s main loop. It is
clear now that an agent is transfered by starting a new pro-
cess on a different machine. Thus to be mobile, the com-
plete state of the agent must be explicitly embodied in the
arguments to the agent’s main loop. So we have to refrain
from using the process dictionary to store the agents be-
liefs or goals. The kind of mobility implemented by our
system is commonly calledweak migration. In contrast to
systems like Agent TCL [10], [9], that providestrong mi-
gration, the system always starts in a certain state on the
new location. As ePRS is a goal oriented system, there is

migrate host({achieve,[at,Host] }) ->
{fun(Beliefs) ->

true
end,
fun(Beliefs) ->

migrate(Host),
[at,Host]

end};
migrate host() ->

{fun() -> false end, fun() -> false end }.

Fig. 2.Erlang code for the primitive actionmigrate host .

no predefined flow of execution, thus the difference be-
tween weak migration and strong migration is not so ob-
vious. It reduces to the fact that migration routines can
not be used in Erlang functions that actually implement
the actions.

6 Example: Database consistency

We plan to test ePRS on a proposed application to find
inconsistencies in a database containing files of historical
persons from the european royal societies from the last
several centuries. Current relational database systems of-
fers some support for keeping databases consistent:

– Restricted forms for data input
– Data types for entries
– A simple language to specify constraints on the data
– Triggers which allow for user defined test procedures

when data is accessed in the database

It is obvious, that these features are not sufficient to find
all errors in such databases as ours, as it contains a lot of
real world data from different ages. In addition, it might
well be that some of the data has been corrupted with bad
faith in the course of history; a fact of great importance
and interest to a historian. Obviously, automatic correc-
tion of entries in such a database may not be feasible at
all. One has to possess a large amount of knowledge and
experience to identify and — even harder — to correct
wrong entries. In addition, there may be experts on cer-
tain kinds of errors (like name spelling) that are novices
on other kinds of errors. We envision a system where
experts can provide their own knowledge by specifying
agent environments, with action implementations that re-
flect the very properties of their domain, still the expert
does not have to actually program the agent as the ab-
stract goals are expected to be similar for every domain.

Additionally, we expect that the implementation of the
application will be a long-term issue where different
strategies for finding inconsistencies will be tried. There-
fore, we like to be able to implement a new strategy for
detecting a certain kind of error while keeping the system
up and running. By providing agent environments in a
network, we won’t have to halt the execution of the other
parts of the system and still can test our changes by tem-
porarily bringing up a new node containing the new im-
plementation.

One could even imagine some new kind of interactive ap-
plication development: The system runs in a preliminary
version, reaching at a goal that is not satisfy-able. Instead
of dropping the goal, the system announces the fact and
the programmer may be able to update the environment
code in order to serve this goal. It is the goal-oriented na-
ture of ePRS, that suggests such a kind of development
process.

7 Conclusion and Future Research

We presented a vision for distributed application pro-
gramming. An application is made up of a number of
agents traveling in a peer-to-peer system, choosing ap-
propriate actions at appropriate location. We identified
the existence of actions and plans that are external to the
agent as a way to bring this ideal closer. Still, a lot of work
needs to be done. There is the need for a high-level sys-
tem specification language which allows the concise defi-
nition of nodes and the environments that are available on
them. Additionally, we need a new agent programming
language that is able to cope with the concept of external
actions.

References

1. J.Armstrong, R.Virding, C.Wikström,M.Williams:Concur-
rent programming in Erlang. Prentice Hall, Englewood
Cliffs, New Jersey, Second Edition

2. Paolo Busetta, Ralph Ronnquist, Andrew Hodgson, and
Andrew Lucas.Jack intelligent agents - components for in-
telligent agents in java. AgentLink News Letter, January
1999. White paper

3. http://www.ericsson.se/erlang ,
http://www.erlang.org

4. Stan Franklin and Art Graesser:Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents. Proceed-
ings of the Third International Workshop on Agent Theo-
ries, Architectures and Languages, Springer-Verlag, 1996

5. M.P.Georgeff, A.L.Lansky:A System for Reasoning in Dy-
namic Domains: Fault Diagnosis on the Space Shuttle.
Technical Note 375, SRI International, Menlo Park, Cali-
fornia, 1986

6. M.P.Georgeff, A.L.Lansky, M.J.Schoppers:Reasoning and
Planning in Dynamic Domains: An Experimentation with
a Mobile Robot. Technical Note 380, Artificial Intelligence
Center, SRI International, Menlo Park, California, 1987

7. M.P.Georgeff, A.L.Lansky:Procedural Knowledge. Tech-
nical Note 411, SRI International, Menlo Park, California,
1987

8. M.Georgeff, B.Pell, M.Pollack, M.Tambe, and
M.Wooldridge: The Belief-Desire-Intention Model of
Agency. Proceedings of the 5th International Workshop on
Intelligent Agents V : Agent Theories, Architectures, and
Languages (ATAL-98), Springer Publishers, 1999

9. Robert Gray:Agent Tcl: A flexible and secure mobile-agent
system. In The Fourth Annual Tcl/Tk Workshop Proceed-
ings. The USENIX Association, 1996

10. Kotay, K. and Kotz, D.:Transportable Agents. In Yannis
Labrou and Tim Finin, editors, Proceedings of the CIKM
Workshop on Intelligent Information Agents, Third Inter-
national Conference on Information and Knowledge Man-
agement (CIKM 94), Gaithersburg, Maryland, December
1994

11. Procedural Reasoning System User’s Guide. Artificial In-
telligence Center, SRI International, Menlo Park, Califor-
nia, 2001

12. Y.Shoham:Agent-oriented programming. AI Magazine,
Vol.60, No.1, 1993, p.51-92

