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ABSTRACT

The goal of independent component analysis (ICA)
lies in transforming a mixed random vector in order
to render it as independent as possible. This paper
shows how to use adaptive learning and clustering al-
gorithms to approximate mixture space densities thus
learning the mixing model. Here, a linear square-model
is assumed, and as learning algorithm either a self-
organizing map (SOM) or a neural gas (NG) is used.
These result in a considerable improvement in sepa-
ration quality in comparison to other mixture-space
analysis (’geometric’) algorithms, although the com-
putational cost is rather high. By establishing this
connection between neural networks and ICA, applica-
tions like for example transferring convergence proofs
for SOMs to geometric ICA algorithms now seem pos-
sible.

INTRODUCTION

In independent component analysis (ICA) one tries to
find statistically independent data within a given ran-
dom vector. An application of ICA lies in blind source
separation (BSS), where it is furthermore assumed that
the given vector has been mixed using a fixed set of in-
dependent sources. The advantage of applying ICA
algorithms to BSS problems in contrast to correlation-
based algorithms is the fact that ICA tries to make

the output signals as independent as possible by also
including higher-order statistics.

Since the first introduction of the ICA method by
Herault and Jutten [6] various algorithms have been
proposed to solve the blind source separation problem
[4] [2] [3].

Most of them are based on information theory, but
there also exist geometric ICA algorithms which are
based on mixture space analysis. They were first pro-
posed in [12]; the theoretical background for geometric
ICA has been studied in detail [15], and a convergence
condition has been formulated, which then resulted in a
new, faster geometric algorithm called FastGeo. Here,
we will propose two new ’geometric’ algorithms, which
analyze the mixture space using a self-organizing map
respectively a neural gas.

ICA AND BSS

For m,n ∈ N let Mat(m× n) be the R−vectorspace of
real m× n matrices, and Gl(n) := {W ∈ Mat(n× n) |
det(W ) 6= 0} be the general linear group of Rn. Let
[1 : n] := [1, n] ∩ N = {1, . . . , n} for n ∈ N. Cov(X) :=
E(XXT ) denotes the covariance matrix of a random
vector X.

Given an independent random vector S : Ω −→ Rn,
which will be called source vector with zero mean and
symmetric distribution, where Ω is a fixed probability



space, and A ∈ Gl(n) is a quadratic invertible matrix,
we call the random variable X := A · S the mixed
vector. The goal of linear ICA is to recover the sources
and the mixing matrix A from the given mixture X.

In the following we denote two matrices B,C ∈
Mat(m × n) to be equivalent, B ∼ C, if C can be
written as C = BPL with an invertible diagonal ma-
trix (scaling matrix) L ∈ Gl(n) and an invertible ma-
trix with unit vectors in each row (permutation ma-
trix) P ∈ Gl(n). Uniqueness of linear ICA states that
if at most one of the source variables Si is Gaussian
then for any solution to the symmetric (m = n)
BSS problem, i.e. any D ∈ Gl(n) such that D ◦ X
is independent, D−1 is equivalent to A [4]. Vice versa,
any matrix D ∈ Gl(n) such that D−1 is equivalent to
A solves the BSS problem, since we calculate for the
transformed mutual information

I(D ◦X) = I(LPA−1 ◦X) = I(A−1 ◦X) = I(S) = 0,

taking into account that the information is invariant
under scaling and permutation of coordinates.

Without loss of generality let E(X) = 0; this can
be accomplished using a translation of the data vec-
tors. Then also E(S) = 0, so both the mixtures and
the sources are centered. Furthermore, by applying
a whitening transformation to the mixtures (full rank
principal component analysis), we can already decor-
relate the data. Then

I = Cov(X) = E(ASS>A>) = ACov(S)A> = AA>

if we assume that also the sources are whitened. This
means that solving the orthogonal BSS problem will
also solve the general BSS problem, so we can restrict
ourselves to the case A ∈ O(n).

ICA USING A SELF-ORGANIZING MAP

The selforganizing map algorithm (SOM) is a
clustering algorithm often used for the visualization
of high-dimensional data. SOMs have been developed
by Kohonen in 1981 [9] and have since then become
a widely used and studied visualization and clustering
technique.

In this section we want to hybridize the two con-
cepts of ICA and SOMs. There have already been some
other approaches to this like Local ICA [8], where the
mixture data is first clustered using a SOM, and the
ICA is applied to each cluster, or nonlinear BSS using a
SOM as approximation to the demixing mapping [11].
Our approach is somewhat similar to Pajunen et al.’s
idea [11] in the linear case but it does not require the
sources to be subgaussian.

The idea of what we call SOMICA is very simple,
based on the ideas of geometric ICA. Figure 1 shows

Fig. 1. SOMICA algorithm, sub(left)- and
super(right)-gaussian case, Separation of a mixture of
two uniform respectively Laplacian signals. The 2-
dimensional SOM is used to approximate the whitened
mixtures. The extremal units (those at the corners
of the grid) are then images of the unit vectors or
their sum, depending on super- or subgaussianity of
the sources, so here m11 = λA(e1 + e2) (left image)
and m11 = λA(e1 − e2) (right image) for some λ 6= 0.
Crosstalking error of the separation in the subgaussian
case was 0.108 and in the supergaussian case 0.0846.

the basic idea of SOMICA: Given observations X first
whiten them such that Cov(X) = I. Then use a SOM
to approximate X. The corner unit locations then con-
tain similar to geometric ICA the information of the
mixing matrix A.

So assume S is an independent non-gaussian 2-
dimensional symmetric non-deterministic random vec-
tor, and let X = AS with A ∈ O(n) already whitened.
Let r ∈ N and define a 2-dimensional SOM on the input
grid

R = [1 : r]× [1 : r].

Note that we index the processing units by 2-tuples
(i, j) ∈ R. Use the SOM-learning-algorithm to ap-
proximate the whitened mixtures X. Let mij be the
processing unit location of unit (i, j) after the learning
process has converged. Define

B = (m11 −mrr|m1r −mr,1)

and

B̂ = (m11 +m1r−mr1−mrr|m11−m1r +mr1−mrr).

We claim that if S is supergaussian, then B is equiva-
lent to A and that if S is subgaussian, then B̂ is equiv-
alent to A.

Note that we only have to show that m11 +m1r −
mr1−mrr and m11−m1r+mr1−mrr are proportional
to Ae1 and Ae2 or Ae2 and Ae1 respectively, because
then the B and A have the same columns except for
scaling and permutation, so they are equivalent. We
will not give a full explanation of this claim here. A



proof should follow the lines of the geometric case [14]
and may use the convergence results of SOMs [5].

The intuitive idea of why this conjecture should be
true is that for example in the uniform case (more gen-
eral subgaussian case) the corners m11,m1r,mr1,mrr

of the SOM correspond to ’corners’ of the mixture dis-
tribution, which are identified as A(±e1 ± e2). So the
matrix (m11 +m1r|m11 −m1r) will have to be equiv-
alent to A. Using symmetry we in fact use matrix B̂,
which takes a mean over both opposite corners in order
to stabilize the algorithm a bit. In the supergaussian
case, left picture of figure 1, however, the corners of the
SOM should correspond directly to A(ei), so (m11|m1r)
will be equivalent to A. Again we use B as above for
stability reasons.

Figure 2 shows that SOMICA does not work with-
out whitening. The reason is that the SOM algorithm
converges to output neuron positions which correspond
to the mean of the input distribution within their re-
ceptive fields, whereas in geometric ICA we know that
the fixed points fulfill the GCC i.e. they correspond to
the medians of the input data distributions within their
receptive fields. However after whitening, we have or-
thogonal structures, so median and mean are the same.

Note that if it is not known in the beginning whether
the sources are super- or subgaussian then one can de-
termine the correct solution by comparing the covari-
ance C of both recoveries B−1X and B̂−1X and taking
the better solution in terms of minimal ‖C − I‖. A
similar idea has been applied in the LatticeICA algo-
rithm [13], where the geometric structure of the mix-
ture space is approximated using a histogram.

ICA USING A NEURAL GAS

Now, we want to use a similar algorithm as in section
3, but instead of using a SOM we will use a neural gas.

The term neural gas (NG), first introduced by
Martinetz et al [10] describes an adaptive neural sys-
tem with a growing architecture; they were introduced
to improve vector quantization techniques by converg-
ing better to lower approximation errors than other
methods. Similar to a SOM, a NG consists of a set
of neurons located in an input space (centroid of the
neuron) together with corresponding output vectors in
order to realize a correspondence between the input
space and the output space. In this paper, we use the
neural gas algorithm implemented by the ’SOM Tool-
box’ from the Helsinki group1; in contrast to SOMs
it does not track a neighborhood relationship. How-

1http://www.cis.hut.fi/projects/somtoolbox/
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Fig. 2. SOMICA algorithm without whitening: The
separation does not work properly without whiten-
ing as shown in the figure with two uniform sources
(crosstalking error 0.352930). The top left figure shows
the SOM itself, the top right one the randomly initial-
ized SOM before learning. The next two figures show
the learnt map with and without samples. Clearly the
corner points of the SOM have not reached the corners
of the transformed square. The next three figures show
the source, mixture and recovered sample density.

ever, we will see that this is not necessary in order to
separate the data.

The algorithm which we denote by NGICA now
works very similar to the SOMICA algorithm. The
idea is shown in figure 3 for the sub- and supergaussian
case: Given whitened observations X, we use a neural
gas to approximate X. Units with maximal modulus
then contain the mixture matrix information as seen
above.

In practice for the two-dimensional case we use a
neural gas with only 4 units. Let the unit positions in
R2 be p1, p2, p3 and p4; we assume that the indices 1
to 4 have been chosen in such a way that pi and pi+2

are opposite each other in the sense that the modulus
of their sum is minimal under all indices permutations.
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Fig. 3. NGICA algorithm, sub(left)- and super(right)-
gaussian case: Separation of a mixture of two uniform
respectively gamma-distributed signals; here a scatter
plot of the mixtures is displayed. A 2-dimensional NG
with 25 respectively 40 units is used to approximate
the whitened mixtures. Again, extremal units are the
images of the unit vectors or their sum, depending on
super- or subgaussianity of the sources, so here p1 =
λA(e1 + e2) in the left image or p1 = λA(e1 − e2) in
the right image for some λ 6= 0.

After this index ordering, we proceed exactly as in sec-
tion 3, where the vectors m11,m1,r,mrr and mr,1 are
to be replaced by p1, p2, p3 and p4.

Again, we claim that

B = (p1 − p3|p2 − p4)

respectively

B̂ = (p1 + p2 − p3 − p4|p1 − p2 − p3 + p4)

are equivalent to A, depending on whether S is super-
or subgaussian.

A proof of this claim is strongly connected to a
proof of the SOMICA algorithm, because it is quite
easy to see that in standard settings the corner points
of a SOM are opposite each other in the sense stated
above, so the SOMICA algorithm can be translated
into the NGICA algorithm and vice versa. For proper
proofs however, apart from convergence details more
care has to be taken when analyzing the different up-
date rules of a SOM and a NG.

An advantage of NGICA clearly lies in the fact that
it is easy to generalize to higher dimensions - after all
only the number of points (2n) and their ordering has
to be adapted. Typical SOM algorithms however are
restricted to 2 or 3 dimensions.
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Fig. 4. Example 1: Mixture of two speech signals. The
first column shows the two independent source signals,
two speech signals (’peace and love’, ’hello, how are
you’; both spoken by the same person). The mixing
matrix A was chosen to be . The middle column shows
the mixture of those two signals, and the right column
shows the recovered sources.

EXAMPLES

In this section, we first give two example applications
of the two adaptive algorithms from above. Then we
compare SOMICA and NGICA with other ICA algo-
rithms Calculations have been performed on a P4-2000
PC with Windows and Matlab using the SOM Toolbox.

For comparison, we calculate the performance in-
dex E1 or crosstalking error as proposed by Amari [1]

E1 =

n
∑

i=1





n
∑

j=1

|pij |
maxk |pik|

− 1



+

n
∑

j=1

(

n
∑

i=1

|pij |
maxk |pkj |

− 1

)

where P = (pij) = B−1A with B the calculated esti-
mate of A.

In our first explicit example, we consider a mixture
of two real-world speech signals (supergaussian) using
the mixture matrix

A =

(

1 2
−2 4

)

.

In figure 4, the source, mixture and recovered signals
are plotted, and figure 5 presents a scatterplot of the
mixture density. Already from the scatterplot, the
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Fig. 5. Example 1: Mixture of two speech signals,
scatterplot. Plotted is the mixture scatterplot of the
two signals from figure 4.

mixing matrix columns can be guessed by trying to
fit in a ’cross’. This is precisely what geometric algo-
rithms do [15]. In this example, we apply SOMICA
to recover the sources; we get a reconstructed mixing
matrix B as follows:

B =

(

0.37 0.81
−1.0 1.6

)

.

The crosstalking error between A and B is 0.16 which
is quite good.

The second example applies NGICA to three high-
kurtotic gamma-distributed random signals. They were
mixed using the easy to picture mixing matrix

A =





1 0 0
0 1 1
0 1 −1



 .

Figure 6 shows a mixture scatter plot together with
the trained neural gas, which in this three-dimensional
case consists of 6 different neurons. Using NGICA to
approximate the three dimensional mixture, we get a
recovered mixing matrix

B =





−0.62 0.0080 0.011
0.036 −0.66 −0.65
−0.0056 −0.68 0.65



 ,

which results in a crosstalking error of 0.21, which is
good for three dimensional data sets.

We now compare the two adaptive ICA algorithms
with other algorithms, namely the FastICA algorithm
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Fig. 6. Example 2: Mixture of three gamma signals,
scatterplot. Plotted is the mixture scatterplot of the
three mixed signals. For ease of presentation a ball of
radius 2 has been cut out and the learnt neurons have
been added, marked by the 6 larger circles.

[7] by Hyvärinen and Oja, the two geometric algo-
rithms FastGeo [15] and an early implementation of
LatticeICA [13], and an easy PCA-based algorithm,
which we denote by SimpleICA: given two-dimensional

signals X, then

(

E
√
D

(

1 1
1 −1

))−1

X is indepen-

dent if E and D are calculated using the Matlab eigen-
value decomposition algorithm; this only works for prob-
lems with the same source component distributions
and normalized mixing matrices. We give performance
comparison with SimpleICA in order to show how much
algorithm time is used up by prewhitening.

At first, we consider a mixture of two Laplacian
signals. These results as well as those of the following
three examples are shown in table 1: for each algo-
rithm we measure the mean elapsed cpu-time per run
and the mean crosstalking error E1 with its standard
deviation. FastICA, SimpleICA (PCA) and the two
geometric algorithms are fast, SOMICA is very slow in
comparison, but we have not yet done any optimization
and SOM algorithms usually tend to be rather slow. In
terms of accuracy however, SOMICA performs better
than FastICA. NGICA is twice as fast as SOMICA, but
somewhat less accurate. Note that this can be changed
by varying the number of learning epochs of the neural
gas algorithm.

In our second and third example, we compare these
algorithms for uniform and delta-like data distribu-
tions. Again both SOMICA and NGICA are very ac-
curate but slow; FastICA and LatticeICA seem to have
problems with the delta case, which is not surprising



Table 1. Comparison of time per run and crosstalk-
ing error of ICA algorithms for a random mixture of
various signals. Means and standard deviations were
taken over 100 runs with 1000 samples and uniformly
distributed mixing matrix elements.

Src type Algorithm time/run [ms] index E1

Laplacian FastICA 6 0.27±0.22
FastGeo 18 0.51 ±0.73

LatticeICA 57 1.0±0.71
SimpleICA 2 0.23±0.43
SOMICA 852 0.15±0.11
NGICA 501 0.22±0.14

uniform FastICA 5 0.099±0.059
FastGeo 17 0.52 ±0.65

LatticeICA 64 0.27±0.39
SimpleICA 1 0.17±0.44
SOMICA 850 0.095±0.055
NGICA 510 0.16±0.12

delta-like FastICA 1487 0.39±1.2
(deterministic) FastGeo 29 0.49 ±0.29

LatticeICA 73 2.0±1.2
SimpleICA 13 0.36±0.82
SOMICA 868 0.012±0.001
NGICA 511 0.014±0.012

sound FastICA 41 0.49±0.45
(speech) FastGeo 49 0.30 ±0.65

LatticeICA 88 0.74±0.65
SimpleICA 35 0.60±0.74
SOMICA 883 0.20±0.12
NGICA 536 0.40±0.29

considering the fact that the delta distribution is not
independent; they are, nonetheless, separable by geo-
metric algorithms and show that geometric algorithms
can only be used in ICA problems where a BSS mixing
model is indeed given.

The fourth example deals with real-world data: two
audio signals (two speech signals). The results are sim-
ilar to the above toy examples. FastICA outperforms
SOMICA and NGICA in terms of speed, the accuracy
of FastICA, SOMICA and FastGeo however are compa-
rable, followed by NGICA. The SimpleICA algorithm
is less accurate, mainly due to the different source dis-
tributions.

CONCLUSION

We presented a new approach for linear ICA similar to
geometric ICA using a SOM and a neural gas for the
mixture space approximation. Both SOMICA and NG-
ICA are very stable, and give accuracy results compa-
rable or slightly better than those of the FastICA algo-
rithm. The adaptive algorithms are very accurate but
in its current non-improved state very slow, so they are
mostly interesting from a theoretical point of view, es-
pecially if one tries to generalize convergence and other
theoretical results from neural networks to ICA algo-
rithms; for example, we hope to prove convergence of
the geometric algorithm in a manner similar to the
SOM convergence proof in one dimension.

Simulations with non-symmetrical and non-unimodal
distributions will have to be performed. This is the
subject of ongoing research in our group. In the future,
the algorithms could be extended to the non-linear case
similar to [11]. Currently, we are working on a gener-
alization to the postnonlinear case, which works quite
well at least for subgaussian sources.
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