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Abstract: A hybrid knowledge-and-model-based advisory system for intensive care 
ventilators has been developed. The system consists of two parts: a knowledge-based top-
level module using neural fuzzy technology and a model-based lower-level module 
consisting of 4 sub-units. The system generates advice on four ventilator settings (the 
inspired fraction of oxygen (FiO2), positive end-expiratory pressure (PEEP), peak 
inspiratory pressure (PINSP) and ventilatory rate) based on the patient’s routine and cardio-
respiratory measurements. The validation results of the top-level module were encouraging. 
Validation of the integrated system using retrospective clinical data is underway. Copyright 
© 2003 University of Sheffield. 
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1. BACKGROUND 

Artificial ventilatory support is an important component 
of intensive care therapy.  Throughout the last three 
decades, various researchers have tried to develop 

different advisory systems to help clinicians adjust 
ventilator settings. This paper presents the design and 
development of such a system using a hybrid 
knowledge-and-model-based system, which takes 
advantage of the superb qualitative decision-making 
ability of humans and the precision of comp

uter control. The background to the project is given in 
the first section. The second section describes the 
overall architecture and design of the system. The third 
section describes the development and validation of the 
top-level knowledge-based module while the fourth 
section describes the lower-level model-based sub-units 
and their validation. The final section deals with the 
way in which the system is implemented and integrated 
into a clinical decision support tool. 

1.1. The need for decision support and 
automation in ICU 

It has long been recognised that there is often a 
significant delay between the report of an abnormal 
blood gas result and the initiation of the appropriate 
treatment in intensive care units (ICU) (Simpson et al., 
2000). With technological advances, the availability of 
an increasing number of monitoring systems and the 

increasing use of patient data management systems 
(PDMS), clinicians are often bombarded with a vast 
amount of information. A decision-support and closed-
loop control system can reduce the delay in treatment 
and help clinicians handle the information.  

1.2. Previous work 

Early ventilator advisory systems used an algorithmic 
approach (Menn et al., 1973). Such an approach is 
inflexible and a very large program is often required to 
cater for the needs of patients with different lung 
pathologies. Later, a lot of work was done on the use of 
Artificial Intelligence. Systems such as VentEx 
(Shahsavar et al., 1985) and NeoGanesh  (Dojat et al., 
1997) used classical logic in the inference engine. 
Recent work concentrated on the use of fuzzy logic 
(Nemoto et al., 1999 and Schuh et al, 2000). Although a 
knowledge-based approach eliminates the need for an 
accurate mathematical model, it is prone to subjectivity 



 

     

in the domain experts’ opinions and communication 
errors.  

On the other hand, the model-based approach is more 
objective. However, it is often very difficult to 
accurately model the respiratory system of ventilated 
patient with different lung pathologies. The VentPlan 
(Rutledge et al, 1993) is such a system. The 
mathematical model used consists of 5 compartments: 
the alveolar compartment, the pulmonary compartment, 
the arterial compartment, the tissue compartment and 
the venous compartment. The equations are based on 
mass transport while a belief network was used to 
calculate the probability distributions of the 
physiological parameters from qualitative and semi-
qualitative inputs. The system would then search the 
space of possible plans and the most optimal plan would 
be used as the recommendation. Although results were 
promising in patients with normal lungs, attempts to 
improve the mathematical model by separating the 
lungs into more compartments resulted in an 
unacceptably long computation time. 

1.3. Hybrid knowledge-and–model-based 
systems 

To date, most of the ventilatory advisory systems use 
only one approach in deriving the advice. For example, 
in the case of fuzzy systems, the fuzzy rule-base is often 
derived using a knowledge-based approach. The final 
advice depends solely on the rule-base. In order to 
develop a system that offers more objectivity than 
conventional knowledge-based systems and eliminates 
the need for an extensive and complicated mathematical 
model, we have adopted a combined approach. 
Although this combined approach has been proposed as 
part of the KUSIVAR prototype (Rudowski et al., 
1989), the VentEx system subsequently developed by 
the same research group was a pure knowledge-based 
system. 

When a clinical decision is made for a change in 
ventilator settings, the decision can be divided into two 
parts. The first part is the qualitative aspect of the 
change, for example, the FiO2 should be increased. The 
second part is the quantitative aspect, which defines the 
amount by which the particular setting should be 
changed. To achieve a target blood gas level, there are 
often a few options available. For example, to increase 
the arterial partial pressure of oxygen (PaO2), one can 
increase the FiO2 or increase the PEEP or both. One can 
also start prone ventilation and prescribe other 
respiratory therapies. Humans are very good at pattern 
recognition and can often quickly come to a reasonable 
conclusion as to which ventilator setting should be 

changed. On the other hand, due to the complexity of 
the problem and to the lack of a comprehensive model, 
it is difficult and time-consuming to use a computer 
algorithm to find the optimal solution in the domain of 
possible solutions. However, compared to computers, 
humans are often less capable of making good 
quantitative decisions. In clinical practice, by how much 
a ventilator setting should be changed is very often 
arbitrarily determined. Although equations and formulae 
based on respiratory physiology are available, clinicians 
often find the calculation time-consuming. This is the 
reason why we have adopted the combined knowledge-
and-model-based approach. 

2. SYSTEM DESIGN AND 
DEVELOPMENT 

2.1. System Specification 

The advisory system will generate advice on 4 ventilator 
settings: FiO2, PEEP, PINSP and ventilatory rate. The 
inputs to the system include the patient’s demographic 
data, routine measurements, blood gases, ventilator 
settings and the respiratory measurements. In the initial 
prototype, the data are keyed in by the user. However, 
in the future, data will be automatically retrieved from 
the PDMS and the routine and respiratory 
measurements will be automatically logged into the 
system. 

The system can be operated in a number of different 
modes. Firstly, in terms of the type of monitoring 
required, it is divided into the invasive mode and non-
invasive mode. Operations in the invasive mode require 
data from invasive cardiovascular measurements, which 
are usually acquired through the pulmonary arterial 
catheter. In the non-invasive mode, the invasive 
cardiovascular measurements and the related parameters 
are estimated non-invasively. Secondly, in terms of the 
level of control, the system can be operated under full 
advisory mode or clinician-directed mode. In the full 
advisory mode, the therapeutic goals (target blood 
gases) and the type of ventilator setting(s) to be changed 
are determined by the system whereas in the physician 
directed mode, the clinician directed mode, the clinician 
can define the target blood gases and/or choose which 
ventilator setting(s) should be changed. 



 

     

2.2. System Architecture 
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Fig. 1. The architecture of the advisory system. 

In order to make the system easy to test and maintain, a 
modular approach has been adopted. The architecture is 
shown in Fig. 1. It is divided into two main parts: the 
top-level knowledge-based module and a lower-level 
model-based module. Each module is divided into a 
FiO2/PEEP sub-unit which controls the oxygenation-
related settings and a PINSP/Ventilatory rate sub-unit 
which controls the settings related to the minute 
ventilation. The top-level module will advise the type of 
the ventilator settings to be changed and the target PaO2 
and PaCO2. The lower-level module will derive the 
amount of change required in each setting. 

2.3. Implementation of the System 

The system is implemented in LabVIEW 6.1 and 
MATLAB 5.3/ SIMULINK 3.0. The graphic user 
interface (GUI) is implemented in LabVIEW, while the 
neuro-fuzzy inference system and the mathematical 
models embedded in the lower-level module use the 
MATLAB fuzzy logic and neural network toolboxes, 
and SIMULINK block diagrams.  

3. TOP-LEVEL MODULE 
DEVELOPMENT 

The top-level module uses fuzzy inference systems to 
determine the type of ventilator settings to be changed. 
The rule-bases are derived using an observational 
approach with the help of a patient simulator. The use of 
a simulator allowed us to observe how different 
clinicians change the ventilator settings under the same 
condition and therefore, improves objectivity of the 
system. 

3.1. Development of the simulator for 
knowledge acquisition 

The patient simulator was implemented in MATLAB 
5.3 (Kwok et al., 2001). The behaviour of the model 
patients were determined by a mathematical model of 
ventilated patients, SOPAVENT (Simulation of Patients 
under Artificial Ventilation) (Goode et al., 1998). The 
model will be described in more detail in Section 4.1. 
The demographic data and the routine measurements, 
cardio-respiratory measurements, ventilator settings and 
blood gases were retrieved from the PDMS of a general 
ICU. The data of 11 patients were retrieved with 260 
sets of blood gases and patient measurements. These 
data were used to construct the simulated events of 11 
simulated patient scenarios.  In each simulated event, 
the model parameters of the SOPAVENT were derived 
from one set of patient/ ventilator measurements. One of 
the case scenarios was used as a test case to help the 
clinicians familiarize themselves with the GUI. 

3.2. Architecture of the fuzzy rule-base 

There are two sub-units in the top-level module and 
therefore, two fuzzy rule-bases were derived. The input 
variables were decided via discussion with the intensive 
care consultants. For the ventilator settings which 
primarily affect the oxygenation of the patient, i.e. FiO2 
and PEEP, the inputs include the past and present PaO2, 
past and present FiO2, and the PEEP. For the PINSP and 
ventilatory rate, the inputs include past and present pH, 
past and present arterial partial pressure of carbon 
dioxide (PaCO2), the PINSP and the ventilatory rate. 

In order to reduce the number of rules, the input 
variables were not directly input to the fuzzy inference 
system but grouped into three variables. For the FiO2 
and PEEP control, the inputs to the fuzzy inference 
system include the PaO2, the patient’s condition and the 
support level. The patient’s condition is derived from 
the change in the hypoxemia index (PaO2/FiO2) and the 
support level is derived from the FiO2 and PEEP. 

For the PINSP and the ventilatory rate, the inputs to the 
fuzzy inference system include the previous PaCO2, the 
metabolic status and the support level. The metabolic 
status includes 5 categories: metabolic acidosis, 
respiratory acidosis, normal, metabolic alkalosis and 
respiratory alkalosis. It is derived from the pH and 
PaCO2. The support level is derived from the PINSP 
and the ventilatory rate. 
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Fig. 2. The architecture of the fuzzy inference system 
used in the top-level module. 

The structure of the fuzzy inference systems is shown in 
Fig. 2. Grid-partitions were used for the fuzzy rule-
antecedents and ‘multiplication’ was chosen as the 
inference method. There are three output members for 
each ventilator setting: reduce, maintain or increase. 
The output member with the maximum membership 
value is chosen as the output.  

3.3. Derivation of the initial rule-base 

4 intensive care consultants were invited to take part in 
the simulations. The patient’s demographic data, routine 
measurements, ventilator settings, blood gases, 
cardiovascular measurements and respiratory 
measurements of each simulated event was presented to 
each consultant via the GUI. The consultant gave an 
advice according to this information. The program then 
calculated the next blood gas measurements based on 
the model parameters of the next simulated event of the 
patient. The cycle continued until the consultant had 
given the advice on the last simulated event of the 
patient. The data from these simulations were then used 
to derive the initial fuzzy rule-bases.  

Not all the intensive care consultants completed all the 
patient scenarios due to a lack of time. A total of 32 
consultant/cases were completed resulting in a total of 
788 simulated events. The data from the simulated 
events were used in the initial rule derivation. The set of 
data from each simulated event provided one training 
data set. However, the inputs to the fuzzy inference 
system include one past value and this resulted in 756 
training data sets. 4 data sets  had to be excluded for the 
training of the FiO2/PEEP rule-base because the PaO2 
was out of range. 2 data sets had to be excluded for the 
training of the PINSP/ventilatory rate rule-base because 
the PaCO2 was out of range. The rule-antecedents of the 
fuzzy rules were pre-determined via discussions with 

the clinical experts. The fuzzy memberships in the rule-
antecedents were calculated for each training data set. 
We then examined the relationship between the relative 
frequency of each consequence (increase, maintain or 
reduce) and the fuzzy membership value of the 
antecedents. If there was a significantly positive 
correlation between the membership value in a rule-
antecedent and the relative frequency of a consequence, 
we concluded that the rule-antecedent should result in 
that consequence. The initial rule-base derived was then 
reviewed and slightly modified by an intensive care 
consultant. 

3.4. Tuning of the rule-bases 

The validation results of the initial rule-base were not 
satisfactory for the settings: PEEP, PINSP and 
ventilatory rate. Therefore, tuning of the rule-base was 
needed. However, how can we adjust the parameters of 
the fuzzy rule-base using experimental data? Close 
examinations of the rule-based system will reveal that it 
is similar to a neural network. Indeed the inference 
mechanism is similar to a perceptron. Therefore, the 
perceptron training rule was used for tuning. The 
clinicians’ simulation results were used as the training 
data. For each data set, the patient’s data became the 
training inputs and the clinician’s advice was used as 
the targets. In the initial rule-bases, the membership in 
the consequence associated with a rule-antecedent was 
either 1 or 0. This was adjusted during the training. The 
output by the fuzzy inference system was compared to 
the target during the training. If the output was output 
member i and the target was output member j, the 
weight of output member i was adjusted using the 
formula: 

lrnn ⋅⋅−=+ uìww A)()( 1   (1) 

The weight of output member j was adjusted using the 
formula: 

lrnn ⋅⋅+=+ uìww A)()( 1   (2) 

where w(n+1) is the new weight vector, w(n) is the old 
weight vector, µµ A is the membership value in the 
antecedents for the particular data set, u is the input 
vector and lr is the learning rate. lr is always positive 
and is set to be between 0 and 1. 

During the training, a performance index was 
introduced to monitor the progress. The performance 
index was calculated based on the number of exact 
match and mismatch between the targets and outputs for 
all the data sets. Conflicts (i.e. the target and the output 
were in opposition directions: one increases and the 
other reduces, etc.) between the target and output were 
penalized. The performance index used is: 
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Table 1. The proportion of exact matching, partial 
matching and conflicting mismatch between the fuzzy 

inference system outputs and the targets from the 
training set before and after training. 

Exact Match Partial Match Conflicts 
Settings 

Pre-
training 

Post-
training 

Pre-
training

Post-
training 

Pre-
training 

Post-
training 

FiO2 70.2% 71.4% 29.8% 28.5% 0.0% 0.1% 

PEEP 64.6% 79.9% 34.4% 20.1% 0.9% 0.0% 

PINSP 54.8% 63.0% 41.9% 35.0% 3.3% 2.1% 

Ventilatory 
rate 82.6% 85.3% 17.2% 14.7% 0.1% 0.0% 

The training stopped when a reduction in the 
performance index was detected. Table 1 shows that 
after the training, the matching between the fuzzy 
inference systems and the clinicians’ advice outputs 
(targets) improved for all the ventilator settings. 

3.5. Setting the targets 

The target PaO2 and PaCO2 were determined by the 
outputs of the fuzzy inference system. By definition, the 
targets are the input blood gas values when no change in 
any ventilator setting is required. Therefore, the system 
searches within a range of PaO2 and PaCO2 where the 
fuzzy inference system output is ‘maintain FiO2 and 
PEEP’ and ‘maintain PINSP and ventilatory rate’ 
respectively. 

4. LOWER-LEVEL MODULE 
DEVELOPMENT 

4.1. Physiological and mathematical model: 
SOPAVENT 

The model adopted in the lower-level module is the 
SOPAVENT. The model equations were based on 
respiratory physiology and have been used by a number 
of researchers. There are two sets of equations: oxygen 
transport equations and carbon dioxide transport 
equations. They describe the passage of oxygen and 
carbon dioxide in the 5 compartments mentioned in 
Section 3.1. They are dynamic equations and solutions 
are difficult to obtain analytically. Moreover, the 
clinicians are often more interested in the steady-state 
blood gas level. Hence, we analyzed the equations at 

steady-state and used the resulting equations to derive 
the required ventilator settings. 

4.2. Use of Newton’s algorithm and non-
invasive estimation of shunt to control 
FiO2 

By evaluating the oxygen transport equations at steady-
state, one can derive the Jacobian, which is the first 
derivative of PaO2 to FiO2. This derivative, however, 
depends on the other patient parameters. The most 
important parameters include the respiratory shunt, the 
cardiac output and the oxygen consumption. All of these 
can only be accurately measured or derived with the 
help of a pulmonary artery catheter. However, from the 
sensitivity analysis, it was found that the relationship 
between the output PaO2 and the FiO2 is highly sensitive 
to the respiratory shunt and is moderately sensitive to 
the cardiac output and oxygen consumption. Moreover, 
in critically ill patients, the respiratory shunt can vary 
from 3 – 50% (a more than 15-fold difference) whereas 
the cardiac output and oxygen consumption vary to a 
much lesser extent (a 3-fold difference typically). 
Therefore, it is crucial to have a good estimation of 
shunt and it may suffice to use the population mean or 
median values for cardiac output and oxygen 
consumption. 

The shunt could be derived in two ways. If the patient 
has a pulmonary artery catheter in situ, one can 
calculate the shunt from the arterial oxygen content and 
the mixed venous oxygen content. However, not all the 
patients have pulmonary artery catheter. Therefore, the 
shunt has to be estimated using non-invasive data. The 
respiratory index (the ratio between alveolar-arterial 
oxygen difference and the PaO2) has been shown to 
correlate well with the shunt (Kwok et al., 2001b). The 
relationship has been shown to be linear over a large 
range of shunt values although the relationship becomes 
non-linear at extreme shunt values. The adaptive neuro-
fuzzy inference system (ANFIS) performs a non-linear 
mapping between the inputs and outputs. Data from the 
ICU were used to provide training and validation data 
for the ANFIS and an ANFIS model of the relationship 
between the respiratory index and the shunt was then 
derived. This provides the method for shunt estimation 
in the non-invasive mode for the advisory system 
(Kwok et al., 2002). 

The relationship between the PaO2 and FiO2 at steady-
state can be represented by: 

),( θ= 22 FiOfPaO   (4) 



 

     

where f is the SOPAVENT model at steady-state and θ 
are the model parameters including shunt, cardiac 
output, oxygen consumption and haemoglobin. The 
model parameters differ for each patient. However, the 
values either are available from the patient’s 
measurements or can be estimated. For the FiO2 sub-
unit of the lower-level module, once the patient’s 
measurements are keyed in via the GUI, the program 
will create a patient-specific SOPAVENT model after 
calculating the model parameters. From this model, the 
FiO2 required to achieve the target PaO2, which has 
been defined by the top-level module, is then estimated 
using the Newton’s method. The iteration formula used 
is: 
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As a safety measure, the FiO2 output from the lower-
level module is limited to the range of 0.3 to 1.0. The 
lower level PEEP control sub-unit is not developed yet 
because a suitable PEEP model is not available. 
Therefore, the sub-unit only advises a fixed amount of 
change in PEEP if the top-level module directs it to do 
so. This amount was determined via consultations with 
clinical experts. When a suitable PEEP model becomes 
available, the necessary changes will be made to the 
sub-unit using model-based control algorithms. 

4.3. Optimal Control of Peak Inspiratory 
Pressure and ventilatory rate 

The target PaCO2, which has been defined by the top-
level module, can be achieved by altering the 
ventilatory rate or the tidal volume. In pressure-
controlled ventilation, the tidal volume is determined by 
the PINSP. 

At the steady-state, the SOPAVENT model can be 
simplified and the change in PaCO2 (∆PaCO2) becomes: 
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where PB is the barometric pressure, 
2COV& is the carbon 

dioxide production rate, KD is the deadspace fraction, 
MV and MV0 are the required minute volume 
ventilation and the initial minute volume ventilation 
respectively. The MV is given by: 
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where RR is the ventilatory rate, ti is the inspiratory 
time, R is the airway resistance and C is the airway 
compliance. 

Although one could calculate the required minute 
volume using equation (7); and if only one of the 
settings (PINSP or ventilatory rate) needs to be altered, 
one could derive the necessary change easily, the 
solution is not that straight-forward if two settings need 
to be changed concurrently. Moreover, both excessive 
PINSP and excessive ventilatory rate can exert adverse 
effects on the patient’s lungs. Unlike FiO2, the safety 
margins of PINSP and ventilatory rate are much 
smaller. Therefore, we introduce a cost function is the 
form of: 
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where λ1 and λ2 are positive constants between 0 and 1. 
When the top-level module advises a change in PINSP 
only, λ1=0 and when it advises a change in ventilatory 
rate only, λ2=0. Then the program will minimize the 
cost function and Fig. 3 shows how the advised PINSP 
varied with different λ1 and λ2. With a suitable selection 
of λ1 and λ2, one can balance the need to get closer to 
the target PaCO2 and to avoid using excessive PINSP or 
ventilatory rate. 

 

Fig. 3. The change in PINSP advised by the lower-level 
module to achieve a target PaCO2 of 5kPa from 7.5 
kPa with different values of λ1 and λ2. 

5. SYSTEM INTEGRATION AND 
THE FUTURE 

The top-level module and the sub-units of the lower 
level module are imp lemented in MATLAB scripts and 
SIMULINK. The LabVIEW provides the graphic user 
interface and the flow control of the program. The 



 

     

MATLAB/SIMULINK programs for all the components 
are accessed from LabVIEW using MATLAB script 
nodes. The top-level module is completed and most of 
the lower level module is integrated into the system. As 
mentioned before, a good PEEP model is required for 
the PEEP control sub-unit of the lower-level module. 
Nevertheless, the validation using retrospective clinical 
data is already underway for the integrated system. In 
the future, the system will be revalidated after 
modification of the PEEP control sub-unit.  
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