
1

Time Series Forecasting based on Parallel
Neural Network

J.M. Górriz† Carlos G. Puntonet∗

Moisés Salmerón ∗ Julio Ortega ∗ Mohammed Aldasht∗

Abstract— In this paper we show a Parallel Neural
Network (Cross-over Prediction Model) for time se-
ries forecasting implemented in PVM (”Parallel Vir-
tual Machine”) and MPI (”Message Passing Inter-
face”), in order to reduce computational time. Par-
allelization is achieved twofold: (a) updating autore-
gressive parameters using a genetic algorithm (GA)
and (b) evaluating the overall prediction function via
a parallel neural network. We implement the GA in
two popular architectures of parallel processors (i.e
hypercube and 2D-mesh) and discuss their time effi-
ciency.

Keywords— Artificial Neural Networks (ANNS),
Auto-Regressive Models (AR), Parallel Virtual Ma-
chine (PVM), Array and Hypercube Networks, Mask
Functions, Quicksort, Genetic Algorithms.

I. Introduction

VARIOUS techniques have been applied in order
to forecast time series using data from the stock.

There also exist numerous forecasting applications
like those ones analyzed in [1]: signal statistical pre-
processing and communications, industrial control
processing, econometrics, meteorology, physics, biol-
ogy, medicine, oceanography, seismology, astronomy
y psychology. In this areas a great computational
speed, including numerical modelling and simulation,
is needed. One way of increasing it, considered for
many years, is by using multiple processors oper-
ating on a single program (parallel programming),
i.e Gill in 1958, Holland in 1959, etc. In section
III we show CPM, a robust autoregressive statisti-
cal learning model for limited data set (i.e includ-
ing elements of statistical learning theory), as pre-
sented in [2]. The main disadvantage of other mod-
els for exogenous data inclusion, like PCA (Principal

Components Analysis) or ICA (Independent Compo-

nent Analysis), was that estimators for higher or-
der statistics were useless under these conditions and
could contaminate the raw data ([14] and [4]). CPM
avoided it extending and applying the Regulariza-
tion Theory [5] to a set of time series assuming lin-
ear influences of the extra series in the forecast, but
with high computing speed demand. In the next
sections, V and IV, we will give a solution to this
problem using parallel programming on a Message-
Passing Multicomputer platform using SIMD (single

instruction stream - multiple data stream) comput-
ers and a SPMD (single program multiple data) pro-
gramming structure [6]. In section IV, we choose

†Dep. Electronics, University of Cdiz, E.P.S. Algeciras, E-
11202 Algeciras (Spain). Email: juanmanuel.gorriz@uca.es.
∗Dep. Architecture and Computer Tech., Univer-
sity of Granada,E-18071 Granada (Spain). Email:
carlos@atc.ugr.es.

master-slave arrangement whereby the single master
program is first executed and all others (slaves) are
spawned from this master to get the ANNs output.
In order to implement the GA in CPM we will use
and compare 2D-Mesh and Hypercube interconnec-
tion networks (V). They are examples of very pop-
ular completely connected networks because of the
ease of layout and expandability.

II. Basis PVM and MPI

In this work we use PVM and MPI, popular soft-
ware packages for workstation cluster parallel pro-
gramming, to get time computing simulations. PVM
is a software system that enables a collection of
heterogeneous computers to be used as a coherent
and flexible concurrent computational resource. The
Message-Passing Interface or MPI is a library of func-
tions and macros intended for use in programs that
exploit the existence of multiple processors by mes-
sage passing. The message passing model has the
following characteristics:

• It is intended as a standard implementation of
the ”message passing” model of parallel comput-
ing.

• Each process has purely local variables, and
there is no mechanism for any process to directly
access the memory of another.

• Sharing of data between processes takes place
by message passing, that is, by explicitly ending
and receiving data between processes.

• A primary reason for the usefulness of this model
is that it is extremely general. Essentially, any
type of parallel computation can be cast in the
message passing form.

• In addition, this model can be implemented on a
wide variety of platforms, from shared-memory
multiprocessors to networks of workstations and
even single-processor machines.

• Generally allows more control over data location
and flow within a parallel application than in,
for example, the shared memory model. Thus
programs can often achieve higher performance
using explicit message passing. Indeed, perfor-
mance is a primary reason why message passing
is unlikely to ever disappear from the parallel
programming world.

The primary goals addressed by message passing
model languages are:

• Provide source code portability. These programs
should compile and run as-is on any platform.

2 GÓRRIZ ET AL.:TIME SERIES FORECASTING BASED ON PARALLEL NEURAL NETWORK

• Allow efficient implementations across a range
of architectures.

• They also should offer a great deal of function-
ality including a number of different types of
communication.

• Support for heterogeneous parallel architectures.
• Standardization, Availability for all architectures

distributed memory, shared memory, and clus-
ters and Portability.

III. AR models using Artificial Neural

Networks.

The prediction model is shown in figure 2. We
consider a data set consisting in some correlated se-
ries and try to build a forecasting function P, for one
of the set of signals {series1, . . . , seriesS}, which al-
lows exogenous information coming from the other
series. If we consider just one series [4] the individ-
ual forecasting function can be expressed in term of
RBFs as [7]:

F(x) =

N
∑

i=1

fi(x) =

N
∑

i=1

hi · exp

{

||x − ci||
2

r2i

}

(1)

where x is a p-dimensional vector input at time t, N

is the number of neurons (RBFs) , fi is the output
for each neuron i − th , ci is the centers of i − th

neuron which controls the situation of local space of
this cell and ri is the radius of the i−th neuron. The
global output is a linear combination of the individ-
ual output for each neuron with the weight of hi.
Thus we are using a method for moving beyond the
linearity where the core idea is to augment/replace
the vector input x with additional variables, which
are transformations of x, and then use linear models
in this new space of derived input features. RBFs
are one of the most popular kernel methods for re-
gression over the domain Rn and consist on fitting
a different but simple model at each query point ci

using those observations close to this target point in
order to get a smoothed function. This localization
is achieved via a weighting function or kernel fi.

Fig. 1. Set of time Series used in Simulations.

The parameters of this endogenous model are up-
dated using a suitable algorithm [14]. In this point
we have to introduce the concept of actual risk, R[F]:

R[F] = Remp + Rreg (2)

where Remp is the empirical risk, that is, a function
of the current samples, and Rreg is the regularization
term that penalizes large variations in the prediction
function [15]. The minimization of this functional
provides the parameter update.

We apply/extent this regularization concept to ex-
tra time series, i.e figure 1, including one row of neu-
rons, equation 1, for each series and weight this val-
ues via a factor bij (AR model). Finally the overall
smoothed prediction function for the stock j will be
defined as:

Pj(x) =

S
∑

i=1

bijFi(x, j) (3)

where Fi is the partial smoothed function of each se-
ries, S is the number of input series and bij are the
weights for j-stock forecasting. Hence we assume lin-

ear time dependent influence among the set of series
in the forecast. Obviously one of these weight factors
must be quite relevant in this linear fit (bjj ∼ 1 , or
auto weight factor).

We can use matrix notation to include the set of
forecasts in an S-dimensional vector P (B in 2):

P(x) = diag(B · F(x)) (4)

where F = (F1, . . . ,FS) is a S × S matrix with
Fi ∈ RS and B is an S × S weight matrix. The op-
erator diag extract the main diagonal. In CPM con-
trolling input space dimension and neural resources
are fundamental tasks due to curse of dimensionality

and overfitting problems.

Fig. 2. Schematic representation of the Auto-regressive
CPM model with adaptive radius, centers and input space
ANNs. This improvement consists on neural parameters
adaptation when input space increases, i.e. RBF centers
and radius are statistically updated when dynamic series
change takes place.

We can include equation 4 in the Generalized Ad-
ditive models for regression proposed in supervised
learning [8]:

3

E{Y|X1, . . . ,Xn} = α+ f1(X1)+ . . .+ fn(Xn) (5)

where Xis usually represent predictors and Y rep-
resents the system output; fjs are unspecific smooth
(”nonparametric”) functions. Thus we can fit this
model minimizing the mean square error function or
other methods presented in [8].

On the other hand, CPM uses a genetic algo-
rithm for bi parameters fitting (using Least Mean
Squares Error in a set of samples) although other
techniques can be used such as Singular Value De-
composition. A canonical GA is constitute by oper-
ations of parameter encoding, population initializa-
tion, crossover, mutation, mate selection, population
replacement etc. Our encoding parametric system
consist on the codification into genes and chromo-
somes or individuals as string of binary digits using
one’s complement representation somehow there are
other encoding methods also possible i.e [9], [10],[11]
or [12] where the value of each parameter is a gene
and an individual is encoded by a string of real num-
bers instead binary ones. In the Initial Population
Generation step we assume that the parameters lie in
a bounded region [0, 1] (in the edge on this region we
can reconstruct the model without exogenous data)
and N individuals are generated randomly. After the
initial population N is generated the fitness of each
chromosome Ii is determined using the function:

ℵ(Ii) =
1

e(Ii)
(6)

(To amend the convergence problem in the optimal
solution we add some positive constant to the de-
nominator).

Another important question in canonical GA is
defining Selection Operator. New generations for
mating will be selected depending their fitness func-
tion values roulette wheel selection. Once we select
the newly individuals, we apply crossover (Pc) to
generate two offspring which will be applied, in the
next step, the mutation Operator (Pm) to preserve
from premature convergence. We improve speed con-
vergence of the algorithm including some mecha-
nisms like elitist strategy in which the best individ-
ual in the current generation always survived into
the next.

The GA used in the forecasting function 3 has a
error absolute value start criterion. Once it starts,
it uses the values (or individual) it found optimal
(elite) the last time, and apply local search around
this elite individual. Thus we do an efficient search
around an the elite individual (set of bis) every time
GA section is triggered. Results using the complete
model are acceptable depending on data set, target
series, etc..(see figure 3).

Computational time in GA depends on the encod-
ing length, number of individuals and genes. Because
of the probabilistic nature of the GA-based method,
the proposed method almost converges to a global
optimal solution on average. In our simulation we
didn’t find any nonconvergent case.

Fig. 3. Error Evolution of selected Series from figure 1.

IV. Master-Slave Configuration for ANN

system.

Fig. 4. Schematic representation of Parallel Neural Network.

In order to implement the model presented in sec-
tion III (see fig 4)we choose M-S configuration to
get the overall prediction. Each slave uses param-
eters (input space, neural and weight parameters)
corresponding to each series, so the number of sig-
nals fixes the number of processors spawned by PVM.
The master launches all the tasks (number of input
signals) and received the partial prediction from the

slaves (Pj =
∑N(j)

i=1 fi, where N(j) is the number of
neurons of layer j) in each prediction tentative.Once
every layer is done the master compute the overall
prediction (P =

∑S

j=1 bj ·P(j), where S is the num-
ber of signals) The parallel neural network (PNN)
implemented gives good results as shown in [2]. In
this section we care about computational speed i.e in
the figure 7 we plot computational time versus num-
ber of processors and problem dimension in sequen-
tial model and parallel model. Obviously results im-
prove sequential computing and computational time
(assuming each slave works the same time) does not
depend on number of slaves spawned and is propor-
tional to the dimension of vectors used.

4 GÓRRIZ ET AL.:TIME SERIES FORECASTING BASED ON PARALLEL NEURAL NETWORK

V. Hypercube and 2D-Mesh Configuration

for GA implementation.

Fig. 5. Hypercube and 2D-Mesh Configuration

2D-Mesh can be created having each node con-
nected to all its four nearest neighbors as shown in
figure 5. The diameter of a m×m mesh, where m is
the number of nodes, is 2 · m − 1 since to reach one
corner from the opposite one requires a path across
m−1 nodes and down m−1 nodes. If the free end of
a mesh connects the opposite side we have a torus,
in our case it is useless. Each processor or node has
the communication functions displayed in table I.

TABLE I

Communication Routines in 2D Mesh

Communication Routines

int upnode (int mytid) {
int node=mytid -WIDTH;

if (node<0)

nodo=(HEIGHT-1)*WIDTH+mytid;

return node;}
int downnode (int mytid) {
return (mytid+WIDTH) Mod NPROC;}
int rightnode (int mytid) {

if (me Mod WIDTH==WIDTH-1)

return me-(ANCHURA-1);

else

return me+1;}
int leftnode (int mytid) {

if (me Mod WIDTH==0)

return me+(WIDTH-1);

else

return me-1;}

In a Hypercube each node is connected to other in
each dimension of the network. In the figure 5 we
present 3D hypercube.A notable advantage of the
hypercube is that the diameter is given by log2m

which grows slower than the mesh with increas-
ing m. The communication function in the hyper-
cube is implemented by the exclusive-OR function
between node position and 2i, where i is each di-
mension. We avoided the unnecessary communica-
tions between nodes using a mask function. The hy-
percube networks became popular for constructing
message-passing multicomputers after the pioneering
research system called Cosmic Cube was constructed
at Caltech in 1985 (Seitz).

Both Networks will are feeded with N possible so-
lutions coming from the main GA routine. These

solutions are distributed in the nodes, sharing the
computational effort and communicating themselves
using standard PVM and MPI routines. The proces-
sors compute GA standard operations and sort solu-
tions according to their fitness function values using
Quicksort 1 method [13] and send the elite compo-
nents to the neighbor. Quicksort is one of the fastest
and simplest sorting algorithms originally published
in [16]. It works recursively by a divide and conquer
strategy and has a time complexity of ∅(n · log(n))
on average and ∅(n2) in the (unlikely) worst case.
Other sorting has better time complexity in worst
case but not on average, i.e heapsort and mergesort.
In the table II we compare efficiency of different sort-
ing methods depending on number of comparisons C

(first row) and movements M necessary, where n is
the number of elements in sorting. We compute the
maximum, minimum and mean of the functions C

and M in the n! combinations.
Finally, after all communications between nodes,

we get in node 0 elite solutions sorted with respect
to its fitness function. In this process nodes reduce
time complexity on average to:

∅(
n

m
n · log(

n

m
) + δ(n,m)) (7)

where δ << ∅(log n) is computational time in
pivot selection, vectors broadcast, data split, data
communication an data merge of m couples of sorted
vectors; and ∅(log n) is the optimal parallel time
complexity (Leighton, 1984). Our method, using hy-
percube networked processors is similar to Hyper-

quicksort (Wagar, 1987)[6], follows the stages:

1. Each processor sorts its list sequentially.
2. The processors in the ”lower” subelement (in

2D-mesh or hypercube) send the sorted vectors
to neighbors in the ”upper” subelement (in 2D-
mesh or hypercube) in each step dimension.

3. Each processor merges the list received with its
list to obtain a sorted list, calling not used nodes
in recursive sorting process.

With this algorithm we reduce the number of com-
munications in hypercube to 2log m − 1. In Hyper-

quicksort the number of communications between
nodes is log(m) · 2log(m) (like a common hypercube).
Anyway time complexity is similar (but lower!2) to
Hyperquicksort because we call not used nodes in
”lower” subelements from nodes in ”upper” subele-
ments when sorting merged lists.

VI. Results and Conclusions.

The master-slave configuration implements neu-
ral system for prediction. Obviously this arrange-
ment improves the computational speed of sequen-
tial CPM, due to parallel neural work, for each se-
ries, is now performed concurrently. This fact is
proved in figure 7 where MPI libraries were used

1this improves the efficiency of the GA, mainly in mate se-
lection to offspring generation and elitist strategies.

2Our algorithm avoids communications related with pivot-
ing element propagation.

5

TABLE II

Different Sorting Methods. 1st Comparisons 2sd

Movements

Method Min. Mean Max.

Direct n − 1 n2+n−2
4

n2
−n
2 − 1

Inser. 2(n − 1) n2
−9n−10

4
n2+3n−4

2

Direct n2
−n
2

n2
−n
2

n2
−n
2

Selec. 3(n − 1) n(ln n + 0.57) n2

4 + 3(n − 1)

Quick n2
−n
2

n2
−n
2

n2
−n
2

Sort 0 (n2 − n) · 0.75 (n2 − n) · 1.5

to get results. In this simulation (8 nodes Clus-
ter Pentium II 332MHz 512Kb Cache) we fixed a
high number of neurons (1000) in layers and in-
put space dimension(500) (worst case). The mas-
ter spawns nproc tasks to slaves and they com-

pute set of partial predictions
∑N(i)

i=1 bi · Fi where
N(i) ∈ {mod(numseries

nproc
),mod(numseries

nproc
) + 1} and

replay them to the master that compute the overall
prediction value.

The sequential response of our prediction system
is defined by the curve peaks corresponding to one
processor configuration, approximately. In figure 6

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 104

0

5

10

15
x 105 Ga using Hyperquicksort & 2D Mesh

dimension

C
om

pu
ta

tio
na

l T
im

e
(u

s)

2D Mesh 2 processors
2D Mesh 4 processors
2D Mesh 9 processors
HyperC 2 processors
HyperC 8 processors
HyperC 4 processors

Fig. 6. Time Processing in GA using Parallel Hypercube &
2DMesh configuration.

we show time results obtained from the GA imple-
mentation, using PVM software, on the cluster using
Hypercube and 2D-mesh Networked processors. The
presence of 8 nodes contributes to divide-conquer
strategy of Quicksort, reducing computational time.

If we arrange the proposed method in section V
on a pentium 166MHz using PVM we get the re-
sults in figure 8. The number of processors are the
number of time series in this simulation (9). The
presence of just one processor gives trivial results
(PVM spawns n virtual processors in Hypercube
or 2D-Mesh configuration on just one real proces-
sor!) as we expect. Theres an increasing computa-
tional time with increasing problem dimension(larger
amount of data) and with increasing number of pro-

Fig. 7. Time Processing in Parallel master-slave configuration
for ANN system.

cessors (larger communications between nodes).

Fig. 8. Time Processing in sequential GA configuration.

References

[1] D.S.G. Pollock, A handbook of time series analysis, signal
processing and dynamics, Academic Press,1999.

[2] J.M. Górriz, Carlos G. Puntonet , J.J de la Rosa, Moisés
Salmerón, New Model For Time-Series Forecasting us-
ing RBFS and Exogenous Data, ISDA 2003, Tulsa, USA,
August 2003.

[3] J.M. Górriz-Sáez, Predicción con Redes Neuronales y
Técnicas de Separación de Senales, University of Cádiz
,Departamento de Ing. de Sistemas y Aut. Tec. Electrónica
y Electrónica, 2003.

[4] M. Salmerón-Campos, Predicción de Series Temporales
con Redes Neuronales de Funciones Radiales y Técnicas
de Descomposición Matricial, University of Granada, De-
partamento de Arquitectura y Tecnoloǵıa de Computa-
dores, 2001.

[5] T.A. Tikhonov , V.Y. Arsenin, Solutions of Ill-Posed
Problems, Winston, Washington D.C., USA, 1977.

[6] B. Wilkinson, Michael Allen, Parallel Programming, Pren-
tice Hall, New Jersey, USA, 1999.

[7] J. Moody, C. J. Darken, Fast Learning in Networks of
Locally-tuned processing units, Neural Computation, vol-
ume 1,pages 284-294, 1989.

[8] T. Hastie, R. Tibshirani, J. Friedman, The elements of
Statistical Learning, Springer, Berlin, 2000.

6 GÓRRIZ ET AL.:TIME SERIES FORECASTING BASED ON PARALLEL NEURAL NETWORK

[9] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin 1992.

[10] S. Matwin, T. Szapiro, K. Haigh, Genetic Algorithms
Approach to a Negotiation Support System, IEEE Trans.
Syst., Man. Cybern, volume 21, pages 102-114, 1991.

[11] S. Chen, Y. Wu, Genetic Algorithm optimization for
blind channel identification with higher order cumulant
fitting, IEEE Trans. Evol. Comput.,volume 1, pages 259-
264, 1997.

[12] L. Chao, W. Sethares, Non linear parameter estimation
via the genetic algorithm, IEEE Transactions on Signal
Processing, volume 42, pages 927-935, 1994.

[13] N. Wirth, Algorithms + Data Structures = Programs,
Prentice Hall, New Jersey, USA, 1999.

[14] J.M. Grriz, Algoritmos Hbridos para la Modelizacin de
Series Temporales usando Tcnicas AR-ICA, In Press, Ph
Thesis, 2003.

[15] V. Vapnik, The nature of Statistical Learning Theory,
Springer, 1999.

[16] C.A.R. Hoare, Quicksort, Computer Journal, Vol. 5, 1,
10-15, 1962.

