
In Fourth International ICSC Symposium on Engineering of Intelligent Systems (EIS 2004)

Modeling natural motivations into hybrid artificial agents

F.Andriamasinoro

IREMIA, University of La Reunion
15, Avenue René Cassin

97715 Saint-Denis
La Réunion-FRANCE

E-Mail: fenintsoa.andriamasinoro@univ-reunion.fr

Abstract
Beforehand, the concept of natural motivations
(i.e.motivations related to the satisfaction of natural
needs) has been generally integrated into reactive
agents, and particularly to animats. In this paper, we
present and discuss a generic model which introduces
such notions into hybrid agents. The basis of our model
is the Abraham Maslow’s pyramid of needs.

Keywords : artificial agent, natural motivations,
hybridism, behavior

1 Introduction
In hybrid context, the interplay between reactivity and
deliberation is one of the issues of paramount
importance for intelligent1

 agent design. (Malec, 2000).
But even if this interplay is important, it mainly deals
with the manner the goal should be achieved. Only few
things are told about the notion of motivations (the
reason), which are nevertheless the basic source of this
goal. When we here say “motivations”, it is about the
particular case of “natural motivations” i.e. motivations
which are related to the satisfaction of natural needs
(hunger, sexual impulse, etc.) coming from instinct or
homeostasis, and mainly found in artificial agents2.

In fact, some works already started to consider natural
motivations in hybrid context. We can mention obstacle
or fire avoidance behavior which are actually related to
the natural preserving instinct (Au and al. 98,
Mavromichalis and Vouros, 2000), or the running away
from enemy (Tambe, 1996). But these works are taken
case by case, according to the study. There is no real
generic specifications for natural motivations in hybrid

1 The term “intelligence” in this paper is defined, for an entity,
as the ability to use all information it has to achieve its goal
(Newell, 1982).
2 This work is focused only on Artificial Life domain. Then,
all notions we develop here follow this hypothesis.

models unlike in animat ones (Guillot and Meyer,
1998), in which natural motivations completely
determine the behavior of agents (Gershenson et al.
2000). However, as both humans and animals are firstly
natural creatures and their behavior essentially starts
from motivations (Andriamasinoro and Courdier, 2002),
all artificial agents (either reactive or cognitive ones)
should also permanently integrate them. The
psychologist Daco (1965) who wanted to stress the
importance of instinct in living being stipulated that a
person (i.e. containing cognitive concepts) who lives
with uniquely its reason is only a semi-person.

The aim of this paper is then to report on progress
towards our effort to introduce this theory of basic
motivations in hybrid agent paradigm, and at a generic
level. Key issue towards this aim is the fact that we have
to cope with the motivation selection problem while
taking into account that the model should work for both
reactive and cognitive agents. Precisely, this issue is
about finding a set of generic criteria which determine
the most important motivations an agent has to
dynamically take into account its behavior. As a result,
this generic approach will reduce the task of the user
when using the system. Note that in this work, we cope
with only individual agents. The social interaction is not
treated here yet.

To make the paper objective clearer, we organize it as
follows: Section 2 presents the model we propose in this
work and Section 3 describes our experimentation.
Section 4 next discusses the work before we conclude
the paper in Section 5.

2 Description of the agent model
Our agent model is named MASLOW. It is based on three
components: a pyramid of needs / motivations3 (noted
Π), a network of actions (noted Ω) and a component

3 Here, needs and motivations may be confusing. Actually,
since the basic motivation of an agent is the satisfaction of its
basic needs, these two terms can be alternatively used.

called NIM (for Need Importance Manager) which
“pilots” Π and Ω and particularly manages the generic
agent behavior. The difference between these
components is that users can act on Π and Ω while it
cannot do so on the NIM. As we will see, the latter only
concerns the agent proactivity.

The following sections successively explain these
components. Note that Ω , as well as the interaction of
components to each others are first reported in this
paper.

2.1 The pyramid Π
This component is inspired from the pyramid of needs
designed by the American psychologist Abraham
Maslow (Maslow, 1954) which stipulates that all
actions led by the living being’s behavior are motivated
by at least one of the following five hierarchical needs
mentioned from the bottom (the most important) to the
top (the less important) of the pyramid: the
physiological needs, the need for security, the need for
love, the need for esteem and the need for self-
realization.

Based on this pyramid, our approach in this work is the
following: we consider first that each level of Π is
abstract. Then, for each level, we adopt two types of
needs:
• the Low-Need (LN) which groups all natural needs.

They are common and permanent and exist in all
agents, independently of the application. It is
handled either by instinct or homeostasis. In other
words, the concept of LN corresponds to generic
basic motivations.

• the High-Need (HN) which includes all individual
and temporary needs which depend on the
application. A HN may be for instance assimilated
to the notion of desire found in many BDI models.
What is important is that the satisfaction of a HN is
always motivated by at least one LN.

Both types are conceptually grouped in a common
abstract type named PN (for Pyramidal Need). Thus,
Π={PN}={LN}∪{HN}. We only remind here the
formalization of a PN, previously detailed in
Andriamasinoro and Courdier (2002):

PN ={lib, level, rank, state_lib, list_actions}
in which:
• lib is the unique identifier of PN
• level/rank correspond to the “physical” position

of PN in Π: level is that of Abraham Maslow
while rank differs the PN situated at a same level.
Actually, a HN motivated by a LN means that this
HN has the same level and rank than the LN.
In the formalization of a HN, the two parameters
are directly replaced by the associated LN as

follow:
HN={lib, LN, state_lib, list_actions}.

• state_lib formalizes the list of states in which PN
may be. It may take one of the following values:
insufficient, limit_low, sufficient,
limit_high, excessive.

• list_actions={action[insufficient], …,
action[excessive]} contains the set of actions
corresponding to each state (except sufficient
which has no action). The current state of PN is
named currentstate. Note however that all states
are not always represented in a PN. It depends on
the semantic of the PN at application level.

A state can be presented as a set of intervals (SI) or
points (SP). A specific case of the latter is the
representation known as boolean (SB) where the
associated PN can be only in two states : insufficient
(= false) and sufficient (= true). In a general way,
state_lib can be described as:
state_lib={representation_lib, description} in
which, for each presentation, description is written as
follow:
• SI: <interval (state1), …, interval (staten)>
• SP: <val (state1), …, val (statek)>
• SB: <proposition> which is a proposition

returning true or false.

The representation_lib parameter may take the
following value: “interval”,” point” or “Boolean”.

2.2 The network Ω of actions

Preamble: the concept of actions
We have two kinds of actions:
• a primitive (PR): it corresponds to the fine-grained

action. It is uninterruptible during its execution.
• a composed action (AC): it is a combination either

of PR or of other sub-AC.

The set of actions is noted Γ. In sum, Γ={PR}∪{AC}.

Each action act ∈ Γ is formalized as follow:
act={pn_satisf, precond, list_conflicts} in
which :
• pn_satisf is the need to be satisfied via act, i.e.

pn.action[state]=act ⇔ pn=act.pn_satisf,
• precond is a PN that must be satisfied before act

can be executed. If precond is not set, it means that
the action is always executable. The difference
between precond and pn_satisf is that the former
is not manipulated by the NIM during the
motivation selection process (Section 2.3) while the
latter does.

• list_conflicts contains the list of actions that the
agent cannot simultaneously execute with act.

During the initialization of an action, last parameters
which are non-initialized may be omitted.

The network Ω

Ω is a network formalized as Ω=(∆, C) in which
• ∆ are the nodes, constructed of actions (∆ ⊆ Γ),
• C are the arcs, composed by a set of 4 connectors:

then, imp, xor and and. Precisely,
C={then}∪{imp}∪{xor}∪{and}

Let a1, a2, a3 ∈ ∆, and let the predicate
isConnector(a1, a2) which is true when a1 is
effectively connected to a2 via connector, we have:
• then(a1, a2) means that a2 will be executed after

a1. This connector is set when:
 a2.precond == a1.pn_satisf,

• imp(a1, a2) is possible only if a1 ∈ {AC}.After
this connection, a2 is hence one of subactions of a1.
For information, the proposition
 imp(a1, a2) ∧ imp(a1, a3)
does not automatically involve isThen(a2, a3). In
fact, a1 ignores the relation between its subactions.

• xor(a1, a2) means that a1 and a2 cannot be
simultaneously executed. This connector is set
when a1 ∈ a2.list_conflicts. If a2 is a AC and
a1 is in conflict with a2, then a1 is automatically in
conflict with all subactions of a2 even if no explicit
connector is set. This is the law of conflict .
Formally, if isXor(a1, a2) ∧ isImp(a2, a3)
⇒ isXor(a1, a3).

• and(a1, a2) is the connector by default if no
connector is set between actions and the law of
conflict does not hold. This connector means that
agent can simultaneously execute a1 and a2.

Relation between Ω and Π

This relation is set by the fact that ∆ is composed by the
set of PN.action[state] issued from all PN in Π.
Inversely, if ∆={ai} then Π={pn_satisf{ai}}.

Besides, the existence of AC involves us to introduce
the notion of decomposition level (noted dl) in Ω . This
parameter situates the place of each action (and then
their associate pn_satisf) in the network.
Independently of the application, the entry-point of Ω is
a AC generically named net_entry and having a dl as 0.

If dl(a1)=k and isImp(a1, a2) then dl(a2)=k+1.

2.3 The NIM

Generalities
As we have said, the initialization of the system by the
user is made via Π and Ω . Once this user level task is
performed, the agent drives these two components in a

generic way via the NIM. For that, the NIM cyclically
performs an algorithm called algorithm of proactivity
whose main role is to select the most important needs
(i.e. those which have to be treated first) in Π. This
selection of motivations is followed by that of primitives
that the agent should next simultaneously perform.

The algorithm of NIM is based on two functions:
• isImportantBetween(PN, PN’) which determines

the most important need between two PN. In this
paper, the notion of importance is noted by ‘>’.
Note that this function acts only on Π, i.e. it works
independently of the studied Ω .

• algoNIM(AC, dl), firstly introduced in this paper,
which manipulates all needs and actions in the
system.

The first function
It selects the most important need by applying the
successive following generic criteria:
• type: the rule is that LN > HN
• level: if the two PN have the same type, the NIM

detects their level according to the specification of
Abraham Maslow: a lower need is more important.

• rank: the NIM detects the rank if the above criteria
cannot determine the most important need.

• then, the NIM sees the states, based on the rule:
insufficient/excessive>limit_low/limit_high>suffici
ent.

The above general steps are actually more dynamic. For
example, even if LN>HN and LN is in sufficient state
while HN is in insufficient one, then HN>LN.

The second function
It is more complicated than the first one. Let:
• ListPN the list from which needs are to be selected,
• finalPrim the list which will take the final

primitives.

then, algoNIM(AC, dl) acts as follows (note first that
the initial value of AC is net_entry and dl is 0):

1. for each act ∈ ∆ / isImp(AC, act) do
listPN=listPN + {pn_satisf(act)}

2. removing from listPN all PN/
currentstate==sufficient.

3. sorting listPN from the most important to the less
important PN. The function isImportantBetween is
used when comparing two elements.

4. generating listAct. It is composed by the set of
PN.action[currentstate] of each PN in listPN,

5. removing act ∈ listAct / act.precond is not
sufficient (i.e. not verified). This step makes the
selection between actions connected by then

6. for each act ∈ listAct, successively do:
- if act ∈ {PR} ⇒finalPrim=finalPrim+{act}
- if act ∈ {AC}
⇒ finalPrim=finalPrim+{algoNIM(act, dl+1)}.
Thus, each time this step is performed, finalPrim is
progressively filled by primitives.

The above six steps are finished when at any dl where
algoNim is called during the selection, the sixth step
does contain no more act ∈ listAct / act ∈ {AC}.

At the end, we have a given value of the list finalPrim.
We then apply the xor criteria among primitives as
follow: ∀ pri, prj ∈ finalPrim, ∀ i, j their respective
position in finalPrim (with i < j), if isXor(pri, prj),
then remove prj from finalPrim. We remove prj
instead of pri because prj comes from a less important
need resulting from the sorting in step 3.

The remaining primitives in finalPrim will be those
simultaneously executed by the agent. These primitives
are implicitly connected by the and connector.

3 Experimentation
To evaluate our model, we use for the first time the
ADK platform developed by Calderoni (2002). Initially,
ADK was mainly designed to simulate reactive agents.
ADK had no cognitive structure at all.

The architecture of an ADK agent is based on three
components: sensors, effectors and the control
architecture.

Our concern is about the improving of this controller
architecture. Particularly, we deal with the way the
behavior rules are managed there. Our case study is
RDK, a specialization of ADK to the robot foraging
problem The scenario simulated in RDK is the
following: in a given physical 2D environment, there is
a situated robot, a set of blue and red pucks, one blue
base, one red base and some obstacles. The robot first
has to explore (action explore) the environment to find
pucks, then it comes up to the detected puck region and
acquires the closest puck (action acquireClosestPuck).
Then, it delivers this acquired puck to the base having
the same color color as it (action
deliver[Color]Puck). In its moving, the robot has to
avoid obstacles. Due to the size of the robot’s gripper, it
can deliver only one puck at a time. Furthermore, in
case of reactive robots, each base respectively utters a
signal, to help these robots to find where to deliver the
pucks.

The objective of the experiment is twofold:

• to evaluate how our approach lets the robot to better
reach by itself its goal (i.e. delivering the pucks to
their respective base) with a less user intervention;

• to show the possible application of our generic
model based on LN, in hybrid context.

3.1 The three experimented scenarios

Scenario (a): preprogrammed rules
This corresponds to the initial version of RDK where
the behavior rules were handcoded at application level.
They are only made by an automatic successive
repetition of <explore, acquire[blue/red]puck,
deliver[blue/red]puck> until all pucks are delivered
to their respective base.

Scenario (b): generic rules with a reactive
robot
In this scenario, we introduce into the controller our
generic architecture based on natural motivations. The
robot behavior will hence be managed by the algorithm
of the NIM. However, a user first has to introduce all
information needed by the applicative scenario. During
that initialization phase, users are free to introduce
motivations according to its own semantic interpretation
of a given instance of motivations. Indeed, such an
interpretation may possibly differ from one user to
another (e.g. from a sociologist to a psychologist).

Unlike the preprogrammed scenario, we add the fact
that the robot may be hunger or tired, in order to show
that those needs can be introduced without a coding
process.

Scenario (c): generic rules with a cognitive
robot

In (b), we deal with a reactive robot, that is, a robot
which acts only according to what it perceives from its
sensori-motor (Ferber, 1997). In order to valid the
model in cognitive domain (and then in hybrid one), we
add Scenario (c) in which the robot has a partial
representation of the environment, particularly the last
location where a puck has been found, and the
respective location of the two bases. Thus, we here
remove the signals.

3.2 User initialization
As in Scenario (a), the initialization corresponds to a
direct preprogramming of the behavior, we immediately
present in this section the user initialization according to
the generic MASLOW model.

Initialization of all pn_satisf

no_hunger=(“eat”, 1, 1, state_hunger, {eat, eat}}
with

 state_hunger=(interval, <[0…2[(insufficient),
[2…5] (limite_b),]5…8] (sufficient)>}

fatigue_away=(“fatigue”, 1, 1, state_fatigue,
 {pause, sleep}} with
 state_fatigue=(interval, <[0…3] (sufficient),
]3…4,5] (limite_h), [4,5…7] (excessive)>}

obstacle_away=(“obstacle_away”, 2, 1,
 state_obstacle, {avoid}} with
 state_obstacle=(boolean, <is_obstacle_away>}

loved=(“being_loved”, 3, 1, state_love,
 {search_agent}} with
 state_love =(boolean, <is_loved>}

all_puck_delivered=(“all_pucks_delivered”,
 no_hunger, state_apd, {deliver_all_pucks}} with
 state_apd=(interval, <[0 → 3] (insufficient), [3 → 5]
 (sufficient)>}.

We assume here that the HN all_puck_delivered is
motivated by the need no_hunger, that is, the conveying
is the work of the robot in its general life and the
resulting wage will be used to buy foods. If the pucks to
be conveyed is for example used to reinforce the
security of the bases, we would first have created a LN
like “to_be_secure” having a level=2 and rank=2, and
would have associated the above HN to this LN.

All above needs and actions are situated at dl = 1.

env_explored=(“env_explored”, no_hunger,
 state_eve, {explore}} with
 state_eve =(boolean, <puck_visible or
 puck_in_gripper>}

red_acquired=(“red_acquired”, state_red_acq,
 {acquireRedPuck}} with
 state_red_acq =(boolean, <red_puck_in_gripper or
 not red_puck_visible>}

red_delivered=(“red_delivered”, no_hunger,
 state_red_dlv, {deliverRedPuck}} with
 state_red_dlv =(boolean, <at_red_base and not
 red_puck_in_gripper>}

blue_acquired=(“blue_acquired”, state_blue_acq,
 {acquireBluePuck}} with
 state_blue_acq =(boolean, <blue_puck_in_gripper
 or not blue_puck_visible>}

blue_delivered=(“blue_delivered”, no_hunger,
 state_blue_dlv, {deliverBluePuck}} with
 state_blue_dlv =(boolean, <at_blue_base and not
 blue_puck_in_gripper>}

Initializing all preconditions
prec_explore = (“prec_explore”, no_hunger,
 state_precond_explore) with

 state_precond_explore = (boolean, <not
 puck_visible and not puck_in_gripper>)

prec_red_acquired=env_explored

prec_red_deliver=red_acquired

prec_blue_acquired=env_explored

prec_blue_deliver=blue_acquired

explore.precond=prec_explore

acquireRedPuck.precond= prec_red_acquired

deliverRedPuck.precond= prec_red_deliver

acquireBluePuck.precond= prec_blue_acquired

deliverBluePuck.precond= prec_blue_deliver

Setting the action connections
The then connectors have been here implicitly created
by the steps before. For instance, given that
• prec_blue_deliver=blue_acquired
• acquireBluePuck.pn_satisf= blue_acquired
• deliverBluePuck precond= prec_blue_deliver,

⇒ then(acquireBluePuck, deliverBluePuck) is
implicitly created. The same principle is valid for all
other needs and actions in this application.

The imp and the xor connectors are set as follow:

imp(deliverAllPucks, explore)
imp(deliverAllPucks, acquireBluePuck)
imp(deliverAllPucks, acquireRedPuck)
imp(deliverAllPucks, deliverBluePuck)
imp(deliverAllPucks, deliverRedPuck)

xor(acquireRedPuck, deliverBluePuck)
xor(deliverRedPuck, acquireBluePuck)
xor(sleep, deliverAllPucks)
xor(sleep, eat)
xor(sleep, avoidObstacle)
xor(pause, deliverAllPucks)

With the imp connector, actions such as explore,
acquireBluePuck and their associate pn_satisf are
automatically situated at dl=2.

3.3 Experiment results

Figure 1 shows the robot behavior related to each
scenario. The numbers found in their trail are actions.
This figure shows that the robot behavior in Scenario
(b) is as coherent as that presented in Scenario (a), the
human preprogrammed scenario while in both
scenarios, the objective to delivering all pucks is
progressively performed. The advantage of MASLOW is
however that our intervention as a user, in behavior
preprogramming is largely reduced. The robot is more
capable by itself to reach its goal. And even after adding
needs, this coherence in behavior is maintained.

Besides, as we can see, our model can also be used in
hybrid scenarios. We agree that the robot behavior is

Figure 1: The robot behavior in the three experimented scenarios

different in (b) and (c). Indeed, unlike the reactive
scenarios in which the robot always proceed to a new
exploration, the agent in Scenario (c) comes back to the
last location where it has previously found a puck.
However, this behavior results from its (partial)
knowledge of the environment and this difference can
be explained at behavioral level, not at motivational
one where our current work is situated.

4 Discussion
4.1 Natural motivations in agent models

As we have told in Introduction, the consideration for
natural motivations in a generic way does not really
exist in artificial agent design, except in animat
models. Even the concept of desire in BDI ones, also
called “motivational attitudes” by (Brazier and al.
1999) is actually an abstract representation of natural
motivations at a higher level. However, the interest to
extend this concept to hybrid agents is that since
natural motivations permanently exist into artificial
agents, they constantly influence the agent behavior
whatever its type (reactive, cognitive, hybrid), its

current goal, as well as its abilities to fulfill this goal
(reasoning, planning, etc.).

Currently, a hybrid agent fulfills its plan while
avoiding obstacles, running away from enemy, etc.
(remind Introduction), but there is no general
consideration for the fact that this cognitive plan may
be interrupted because the agent is hunger or wants to
sleep. The idea in this work is then to reduce this
limitation by giving the user the possibility to introduce
as many natural motivations as possible. And since it is
impossible to list all of them, the idea is to set a generic
specification of them. Afterwards, the application can
instantiate them.

4.2 About the modeling of MASLOW

The network Ω

Ω can be compared to the ANA architecture initially
developed by Maes (1991) in which the link between
actions are emphasized via the successor links (similar
to the then connector, and the conflict links (similar to
the xor connector). The main difference is that in
ANA, the degree of motivations for each action is

determined by only its activation level whilst in
MASLOW, the selection of motivations are also guided
by other generic criteria like level , type, etc. Remind
that the level criterion is issued from a real-world
study: the pyramid of Maslow.

A less user intervention
As we have said, the users’ intervention in the agent
behavior rules programming is reduced as we here
prevent them to still hardcode. This reduction of the
user intervention is useful because not only everybody
is not specialized in computer programming.
Additionally, it shows that our agent is now more able
to reach its goal by itself.

Note however that the network in our model contains a
methodological problem at user level. It is about the
connection of actions. Indeed, the determination of the
actions in conflict (related to the xor connection) is not
always obvious at a first glance, especially when the
application complexity (i.e. the involved manipulated
data number) is increasing. Currently, only the
simulation can help to progressively detect such
connections. We are currently analyzing this issue.

5 Conclusion
In this paper, we attempt to build a generic model
based on natural motivations (i.e. motivations related to
the satisfaction of natural needs) intended to hybrid
agents, as it is currently found in animat models. To
deal with this problem, we base our model to the
Abraham Maslow’s pyramid of needs (managing the
motivations) and especially try to find the generic
criteria for the motivation selection process of the
agent.

As for the evolution of our agent model MASLOW
itself, we plan to integrate the learning capacity in the
model so that the motivation selection process, is
further dynamic. In addition, the social part of the
model, and especially the interaction, will be
emphasized.

References
Andriamasinoro Fenintsoa, Courdier Rémy (2002). The
Basic Instinct of Autonomous Cognitive Agents. In
Proceedings of 1st International Congress on
Autonomous Intelligent System (ICAIS'2002),
February 12th-15th, Geelong, Australia, in CD-Rom,
and Abstract in World Scientific and Engineering
Academy and Society Press, (ISBN 3-906454-30-4),
p. 61.

Au Sherlock, Liang Jiasen, Parameswaran N (1998).
Progressive plan execution in a dynamic world in
Dynamic and Uncertain Environments Workshop. In
Artificial Intelligent Planning, Eds. Ralph Bergmann,

Alexdrader Kott, Pittsburgh USA, AAAI, pp 136-143.

Brazier Frances, Dunin-Keplicz Barbara, Treur Jan,
Verbrugge Rineke (1999). Beliefs, Intentions and
DESIRE. Modeling internal Dynamic behavior of BDI
agents. In JJ Meyer, PY Schobbens (eds.) Formal
Models of Agents: ESPRIT project Modelage final
workshop, Lecture Notes in AI, volume 1760,
Springer, pp 36-56.

Calderoni S. (2002). Ethologie Artificielle et Contrôle
Auto-Adaptatif dans les Systèmes d’Agents Réactifs: de
la Modélisation à la Simulation. Thèse à l'Université de
La Réunion, 155 pages.

Gershenson Carlos, González Pedro Pablo, Negrete
Jose Martinez (2000). Action Selection Properties in a
Software Simulated Agent ., in Cairó et. al. (Eds.)
MICAI 2000: Advances in Artificial Intelligence.
Lecture Notes in Artificial Intelligence 1793, Springer-
Verlag, pp. 634-648.

Guillot Agnès, Meyer Jean Arcady (1998). Synthetic
Animals in Synthetic Worlds. In Kunii et Luciani (Eds.)
Cyber Worlds. Tokyo: Springer Verlag, pp.111-123.

Maes Pattie (1991). A Bottom-Up Mechanism for
Action Selection in an Artificial Creature. From
Animals to Animats: Proceedings of the Adaptive
Behavior Conference '91, edited by S. Wilson and J.
Arcady-Meyer, MIT Press, February, pp. 238-246.

Malec Jacek (2000). On Augmenting Reactivity with
Deliberation in a Controlled Manner. Workshop on
Balancing Reactivity and Social Deliberation in Multi-
Agent Systems at the 14th European Conference on
Artificial Intelligence (ECAI), Berlin, Germany,
Lecture Notes in AI, volume 2103, Springer, pp. 76-91.

Maslow Abraham (1954). Toward a Psychology of
Being, 3rd Edition. Edited by Lowry Richard, J.Wiley
& Sons, Inc, November 1998, 320 Pages.

Mavromichalis Vangelis Kourakos, Vo uros George
(2000). ICAGENT: Balancing between Reactivity and
Deliberation . In Workshop on Balancing Reactivity
and Social Deliberation in Multi-Agent Systems at the
14th European Conference on Artificial Intelligence
(ECAI), Berlin, Germany, Lecture Notes in AI, volume
2103, Springer, pp. 53-75.

Newell Allen (1982). The knowledge level . In Artificial
Intelligence. Volume 18, n°1, pp. 87-127.

Tambe Milind (1996). Executing Team Plans in
Dynamic Multi-agent environments. In AAAI Fall
Symposium on Plan Execution: Learning Complex
Behaviors In Adaptive Intelligent Systems, November
9th-11th, Boston USA.

