In Fourth Internationa 1CSC Symposium on Engineering of Intelligent Systems (EIS 2004)

Modeling natural motivationsinto hybrid artificial agents

F.Andriamasinoro

IREMIA, University of La Reunion
15, Avenue René Cassin
97715 Saint-Denis
La RéunionrFRANCE
E-Mail: fenintsoa.andriamasinoro@univ-reunion.fr

Abstract

Beforehand, the concept of natural motivations
(i.e.motivations related to the satisfaction of natural
needs) has been generally integrated into reactive
agents, and particularly to animats. In this paper, we
present and discuss a generic model which introduces
such notions into hybrid agents. The basis of our model
isthe Abraham Maslow’ s pyramid of needs.

Keywords: artificial agent, natural motivations,
hybridism, behavior

1 Introduction

In hybrid context, the interplay between reactivity and
deliberation is one of the issues of paramount
importance for intelligent® agent design. (Malec, 2000).
But even if this interplay is important, it mainly deals
with the manner the goal should be achieved. Only few
things are told about the notion of motivations (the
reason), which are nevertheless the basic source of this
goal. When we here say “motivations’, it is about the
particular case of “natural motivations” i.e. motivations
which are related to the saisfaction of natural needs
(hunger, sexual impulse, etc.) coming from instinct or
homeostasis, and mainly found in artificial agents”.

In fact, some works already started to consider natural
motivations in hybrid context. We can mention obstacle
or fire avoidance behavior which are actually related to
the natural preserving instinct (Au and al. 98,
Mavromichalis and Vouros, 2000), or the running away
from enemy (Tambe, 1996). But these works are taken
case by case, according to the study. There is no real
generic specifications for natural motivations in hybrid

I Theterm “intelligence” in this paper is defined, for an entity,
as the ability to use all information it has to achieve its god
(Newell, 1982).

2 This work is focused only on Artificial Life domain. Then,
al notions we develop here follow this hypothesis.

models unlike in animat ones (Guillot and Meyer,
1998), in which natural motivations completely
determine the behavior of agents (Gershenson et al.
2000). However, as both humans and animals are firstly
natural creatures and their behavior essentially starts
from motivations (Andriamasinoro and Courdier, 2002),
al artificial agents (either reactive or cognitive ones)
should also permanently integrate them. The
psychologist Daco (1965) who wanted to dress the
importance of instinct in living being stipulated that a
person (i.e. containing cognitive concepts) who lives
with uniquely itsreason is only a semi-person.

The aim of this paper is then to report on progress
towards our effort to introduce this theory of basic
motivations in hybrid agent paradigm, and at a generic
level. Key issue towards this aim isthe fact that we have
to cope with the motivation selection problem while
taking into account that the model should work for both
reactive and cognitive agents. Precisely, this issue is
about finding a set of generic criteria which determine
the most important motivations an agent has to
dynamically take into account its behavior. As a result,
this generic approach will reduce the task of the user
when using the system. Note that in this work, we cope
with only individual agents. The social interaction is not
treated here yet.

To make the paper objective clearer, we organize it as
follows: Section 2 presents the model we proposein this
work and Section 3 describes our experimentation.
Section 4 next discusses the work before we conclude
the paper in Section 5.

2 Description of theagent model

Our agent model isnamed MASLOW. It is based on three
components: a pyramid of needs / motivations® (noted
P), a network of actions (noted W) and a component

8 Here, needs and motivations may be confusing. Actually,
since the basic motivation of an agent is the satisfaction of its
basic needs, these two terms can be alternatively used.

called NIM (for Need Importance Manager) which
“pilots” P and Wand particularly manages the generic
agent behavior. The difference between these
components is that users can act on P and W while it
cannot do so on the NIM. As we will see, the latter only
concerns the agent proactivity.

The following sections successively explain these
components. Note that W, as well as the interaction of
components to each others are first reported in this

paper.
2.1 ThepyramidP

This component is inspired from the pyramid of needs
designed by the American psychologist Abraham
Maslow (Maslow, 1954) which stipulates that all
actions led by the living being’s behavior are motivated
by at least one of the following five hierarchical needs
mentioned from the bottom (the most important) to the
top (the less important) of the pyramid: the
physiological needs, the need for security, the need for
love, the need for esteem and the need for self-
realization.

Based on this pyramid, our approach in this work is the
following: we consider first that each level of P is
abstract. Then, for each level, we adopt two types of
needs:
- the Low-Need (LN) which groups all natural needs.
They are common and permanent and exist in al
agents, independently of the application. It is
handled either by instinct or homeostasis. In other
words, the concept of LN corresponds to generic
basic motivations.

the High-Need (HN) which includes all individual
and temporary needs which depend on the
application. A HN may be for instance assimilated
to the notion of desire found in many BDI models.
What is important is that the satisfaction of aHN is
always motivated by at least one LN.

Both types are conceptually grouped in a common
abstract type named PN (for Pyramidal Need). Thus,
P={PN}={LN}E{HN}. We only remind here the
formalization of a PN, previously detailed in
Andriamasinoro and Courdier (2002):

PN ={lib, level, rank, state lib, list_actions}

inwhich:

- libistheuniqueidentifier of PN
I evel /rank correspond to the “physical” position
of PN in P: Ievel is that of Abraham Maslow
whiler ank differsthe PN situated at a same level.
Actually, aHN motivated by a LN means that this
HN hasthe samel evel andr ank thantheLN.
In the formalization of a HN, the two parameters
are directly replaced by the associated LN as

follow:

HN={1ib, LN, state_lib, list_actions}.
state_| i b formalizes the list of statesin which PN
may be. It may take one of the following values:
insufficient, limt_|ow, sufficient,
I'i mt_high,excessive.

I'i st_acti ons={action[insufficient],
action[excessive]} contains the set of actions
corresponding to each state (except sufficient
which has no action). The current state of PN is
named current st at e. Note however that all states
are not always represented in a PN. It depends on
the semantic of the PN at application level.

A state can be presented as a set of intervals (Sl) or
points (SP). A specific case of the latter is the
representation known as boolean (SB) where the
associated PN can be only in two states: i nsuf fi ci ent
(=false) andsufficient (=true).Inagenera way,
state_| i b can be described as:
state_lib={representation_|ib, description} in
which, for each presentation, descri pti on iswritten as
follow:

Sl : <interval (statey), ..., interva (st at e)>

SP: <vd (st at ey), ..., va (st at ex)>

SB: <proposition> which is a proposition

returning t r ue or f al se.

The representation_lib parameter may take the
following value: “i nt erval ”,” poi nt ” or “Bool ean”.

2.2 Thenetwork W of actions
Preamble: the concept of actions

We have two kinds of actions:
a primitive (PR): it corresponds to the fine-grained
action. It is uninterruptibleduring its execution.
a composed action (AC): it is a combination either
of PR or of other sub-AC.

The set of actionsis noted G. In sum, G={ PR}E{AC}.

Each actionact 1 Gisformalized asfollow:

act ={pn_sati sf, pr econd, list_conflicts} in

which :

- pn_satisf isthe need to be satisfied via act , i.e.
pn. action[state] =act U pn=act.pn_sati sf,
precond is a PN that must be satisfied before act
can be executed. If precond is not set, it means that
the action is aways executable. The difference
between precond and pn_sati sf is that the former
is not manipulated by the NIM during the
motivation selection process (Section 2.3) while the
|atter does.
list_conflicts containsthe list of actions that the
agent cannot simultaneously execute withact .

During the initialization of an action, last parameters
which are non-initialized may be omitted.

The network W

Wisanetwork formalized as W=(D, C) in which
D are the nodes, constructed of actions(Di G),
C are the arcs, composed by a set of 4 connectors:
t hen, inmp, xor and and. Precisaly,
C={then}E{imp}E { xor}E{and}

Let al, a2, a3 | D, and let the predicate
i sConnector(al, a2) which is true when al is
effectively connected to a2 viaconnect or , we have:
then(al, a2) means that a2 will be executed after
al. Thisconnectoris set when:
a2.precond == al.pn_sati sf,
inp(al, a2) ispossibleonly if a1 T {AC}.After
this connection, a2 is hence one of subactions of a1.
For information, the proposition
inp(al, a2) Ui np(al, a3)
does not automatically involve i sThen(a2, a3).lIn
fact, a1 ignoresthe relation between its subactions.
xor(al, a2) means that al and a2 cannot be
simultaneously executed. This connector is set
when a1 T a2.1ist_conflicts. Ifa2 isa AC and
al isin conflict with a2, then a1 is automatically in
conflict with all subactions of a2 even if no explicit
connector is set. This is the law of conflict.
Formally, if i sXor (a1, a2) Uislnp(a2, a3)
b isXor(al, a3).
and(al, a2) is the connector by default if no
connector is set between actions and the law of
conflict does not hold. This connector means that
agent can simultaneously executeal andaz2.

Relation between W and P

Thisrelation is set by the fact that D is composed by the
set of PN action[state] issued from al PN in P.
Inversely, if D={ai } thenP={pn_satisf{ai}}.

Besides, the existence of AC involves us to introduce
the notion of decomposition level (noted dl) in W. This
parameter situates the place of each action (and then
their ~ associate pn_satisf) in the network.
Independently of the application, the entry-point of Wis
aAC generically named net_entry and having adl &s 0.

If di(a1)=k andi sl np(al, a2) thendl(a2)=k+1.
23 TheNIM
Generalities

As we have said, the initialization of the system by the
user is made via P and W. Once this user level task is
performed, the agent drives these two components in a

generic way viathe NIM. For that, the NIM cyclically
performs an algorithm called algorithm of proactivity
whose main role is to select the most important needs
(i.e. those which have to be treated first) in P. This
selection of motivationsis followed by that of primitives
that the agent should next simultaneously perform.

The algorithm of NIM is based on two functions:
i sl nport ant Bet ween(PN, PN) which determines
the most important need between two PN. In this
paper, the notion of importance is noted by *>’.
Note that this function acts only on P, i.e. it works
independently of the studied W.
al goNl M AC, dl), firstly introduced in this paper,
which manipulates al needs and actions in the
system.

Thefirst function

It selects the most important need by applying the

successive following generic criteria:

- type: theruleisthat LN > HN
I evel : if the two PN have the same type, the NIM
detects their level according to the specification of
Abraham Maslow: alower need is more important.
rank: the NIM detects the rank if the above criteria
cannot determine the most important need.
then, the NIM sees the states, based on the rule;
insufficient/excessive>limit_low/limit_high>suffici
ent.

The above general steps are actually more dynamic. For
example, even if LN>HN and LN isinsuffi ci ent State
while HN isininsuffici ent one, then HN>LN.

The second function

It is more complicated than the first one. Let:
Li st PN the list from which needs are to be selected,
final Prim the list which will take the final
primitives.

then, al goNl M AC, dI) acts as follows (note first that

theinitial value of ACisnet _entry anddl isQ):

1. foreachact 1 D/i sl np(AC,act) do
listPN=listPN + {pn_satisf(act)}

2. removing from listPN al PN/
currentstate==sufficient.

3. sorting |i st PN from the most important to the less
important PN. The function i sI npor t ant Bet ween is
used when comparing two elements.

4. generating |istAct. It is composed by the set of
PN. action[currentstate] of each PN inlistPN,

5. removing act T listAct / act. precond iS not
sufficient (i.e. not verified). This step makes the
selection between actions connected by t hen

6. foreachact | IistAct, successively do:
-ifact T {PR} P final Pri m=final Pri m+{act }
-ifact T {AC}

P final Pri mefinal Pri m{al goNl Mact, dl+1)}.
Thus, each time this step is performed, fi nal Pri mis
progressively filled by primitives.

The above six steps are finished when at any dl where
al goNi m is called during the selection, the sixth step

does containno moreact | 1istAct /act 1 {AC}.

At the end, we have a given value of the listfi nal Pri m
We then apply the xor criteria among primitives as
follow: " pri, prj T finalPrim" i, j their respective
position in final Pri m(withi <j),if isXor(pri, prj),
then remove pr; from final Prim We remove pr
instead of pr; because pr; comes from a less important
need resulting from the sorting in step 3.

The remaining primitives in final Pri m will be those
simultaneously executed by the agent. These primitives
are implicitly connected by the and connector.

3 Experimentation

To evaluate our model, we use for the first time the
ADK platform developed by Calderoni (2002). Initially,
ADK was mainly designed to simulate reactive agents.
ADK had no cognitive structure at all.

The architecture of an ADK agent is based on three
components: sensors, effectors and the control
architecture.

Our concern is about the improving of this controller
architecture. Particularly, we deal with the way the
behavior rules are managed there. Our case study is
RDK, a specialization of ADK to the robot foraging
problem The scenario simulated in RDK is the
following: in a given physical 2D environment, there is
a situated robot, a set of blue and red pucks, one blue
base, one red base and some obstacles. The robot first
has to explore (action expl or e) the environment to find
pucks, then it comes up to the detected puck region and
acquires the closest puck (action acqui r ed osest Puck).
Then, it delivers this acquired puck to the base having
the same color col or as it (action
del i ver[Col or] Puck). In its moving, the robot has to
avoid obstacles. Due to the size of the robot’s gripper, it
can deliver only one puck at a time. Furthermore, in
case of reactive robots, each base respectively utters a
signal, to help these robots to find where to deliver the
pucks.

The objective of the experiment istwofold:

to evaluate how our approach lets the robot to better
reach by itself its goal (i.e. delivering the pucks to
their respective base) with aless user intervention;
to show the possible application of our generic
model based on LN, in hybrid context.

3.1 Thethree experimented scenarios
Scenario (a): preprogrammed rules

This corresponds to the initial version of RDK where
the behavior rules were handcoded at application level.
They are only made by an automatic successive
repetition of <explore, acquire[bl ue/red]puck,
del i ver [bl ue/ red] puck> until all pucks are delivered
to their respective base.

Scenario (b): generic rules with areactive
robot

In this scenario, we introduce into the controller our
generic architecture based on natural motivations. The
robot behavior will hence be managed by the algorithm
of the NIM. However, a user first has to introduce all
information needed by the applicative scenario. During
that initialization phase, users are free to introduce
motivations according to its own semantic interpretation
of a given instance of motivations. Indeed, such an
interpretation may possibly differ from one user to
another (e.g. from a sociol ogist to a psychologist).

Unlike the preprogrammed scenario, we add the fact
that the robot may be hunger or tired, in order to show
that those needs can be introduced without a coding
process.

Scenario (c): generic rules with a cognitive
robot

In (b), we deal with a reactive robot, that is, arobot
which acts only according to what it perceives from its
sensori-motor (Ferber, 1997). In order to valid the
model in cognitive domain (and then in hybrid one), we
add Scenario (c¢) in which the robot has a partid
representation of the environment, particularly the last
location where a puck has been found, and the
respective location of the two bases. Thus, we here
remove the signals.

3.2 User initialization

As in Scenario (a), the initialization corresponds to a
direct preprogramming of the behavior, we immediately
present in this section the user initialization according to
the generic MASLOW model.

Initialization of all pn_satisf

no_hunger =(“eat”, 1, 1, state_hunger, {eat, eat}}
with

state_hunger =(interval, <[0...2[
[2...5] (limite_b),]5...8] (sufficient)>}

(insufficient),

fatigue_away=(“fatigue’, 1, 1,
{pause, sl eep}} with
state_fatigue=(interval, <[0...3] (sufficient),
13...4,5] (limite_h), [4,5...7] (excessive)>}

state_fatigue,

obst acl e_away =(“ obstacle_away”, 2, 1,
state_obstacl e, {avoi d}} with
st at e_obst acl e=(boolean, <is_obstacle away>}

| oved=("being_loved”, 3, 1
{search_agent }} with
state_| ove =(boolean, <is_loved>}

state_l ove,

al | _puck_del i ver ed=("all_pucks delivered”,
no_hunger, state_apd,{deliver_all _pucks}} with
state_apd=(interval, <{0® 3] (insufficient), [3® 5]
(sufficient)>}.

We assume here that the HN al | _puck_del i vered is
motivated by the need no_hunger , that is, the conveying
is the work of the robot in its genera life and the
resulting wage will be used to buy foods. If the pucks to
be conveyed is for example used to reinforce the
security of the bases, we would first have created a LN
like “to_be secure” having a level=2 and rank=2, and
would have associated the above HN to thisLN.

All above needs and actions are situated at dl = 1.

env_expl or ed=("env_explored”,
state_eve, {expl ore}} with
state_eve =(boolean,
puck_in_gripper>}

no_hunger,

<puck_visible or

red_acqui red=("red_acquired”,
{acqui reRedPuck}} with
state_red_acq =(boolean, <red puck in_gripper or
not red puck_visible>}

state _red_acq,

red_del i vered=("red_delivered”,
state_red_dl v, {del i ver RedPuck}} with
state_red_dlv =(boolean, <at_red base and not
red_puck_in_gripper>}

no_hunger,

bl ue_acqui red=(“blue_acquired”,
{acqui reBl uePuck}} with
state_bl ue_acq =(boolean, <blue puck in_gripper
or not blue_puck_visible>}

state_bl ue_acq,

bl ue_del i ver ed=("blue_delivered”, no_hunger,
state_bl ue_dl v, {del i verBl uePuck}} with
state_blue_dlv =(boolean, <at_blue base and not
blue_puck_in_gripper>}

Initializing all preconditions

prec_explore = (“prec_explore’,
stat e_precond_expl ore) with

no_hunger,

state_precond_expl ore = (boolean, <not
puck_visible and not puck_in_gripper>)

prec_red_acqui red=env_expl or ed
prec_red_del i ver=red_acquired
prec_bl ue_acqui r ed=env_expl ored

prec_bl ue_del i ver =bl ue_acqui red

expl or e. precond=prec_expl ore

acqui r eRedPuck. precond= prec_red_acquired
del i ver RedPuck. precond= prec_red_del i ver
acqui r eBl uePuck. precond= prec_bl ue_acqui red

del i ver Bl uePuck. precond= prec_bl ue_del i ver
Setting the action connections

The then connectors have been here implicitly created
by the steps before. For instance, given that

prec_bl ue_del i ver =bl ue_acqui red

acqui reBl uePuck. pn_sati sf = bl ue_acqui red

del i ver Bl uePuck precond= prec_bl ue_del i ver,

b then(acqui reBl uePuck, deliverBl uePuck) is
implicitly created. The same principle is valid for al
other needs and actions in this application.

Thei np and thexor connectors are set asfollow:

imp(deliverAll Pucks, explore)

i mp(del i ver Al Pucks, acquireBl uePuck)
i mp(deliver Al Pucks, acquireRedPuck)
i mp(del i ver Al l Pucks, deliverBl uePuck)
i np(deliverAll Pucks, deliverRedPuck)

xor (acqui r eRedPuck, deliver Bl uePuck)
xor (del i ver RedPuck, acqui r eBl uePuck)
xor (sl eep, deliverAll Pucks)

xor (sl eep, eat)

xor (sl eep, avoi dQbst acl e)

xor (pause, deliverAl | Pucks)

With the inp connector, actions such as explore,
acqui reBl uePuck and their associate pn_satisf are
automatically situated at di =2.

3.3 Experiment results

Figure 1 shows the robot behavior related to each
scenario. The numbers found in their trail are actions.
This figure shows that the robot behavior in Scenario
(b) is as coherent as that presented in Scenario (a), the
human preprogrammed scenario while in both
scenarios, the objective to delivering all pucks is
progressively performed. The advantage of MASLOW is
however that our intervention as a user, in behavior
preprogramming is largely reduced. The robot is more
capable by itself to reach its goal. And even after adding
needs, this coherencein behavior is maintained.

Besides, as we can see, our model can also be used in
hybrid scenarios. We agree that the robot behavior is

[E3Rdk v1.0 (c) Stéphane Calderoni =13l x|

.~ redbase blue base
T

"= 1 delivered puck
the robot starting point

red pucks O
% -
LY

_» :'\:
7ot blue pucks
a mix of blue and,»*,', :// O
red pucks (the biue \\./‘, &
ones are darker than
the red ones)
(a) Scenario with a directly preprog i ism (of a ive agent)

at application level

- acquire_red_puck
-deliver red_puck

-eat & explore
-avoid & deliver red_puck

2
3
4
5- explore & eat
6
K
8-avoid & deliver_ blue_puck
9

- deliver blue_puck

10-eat & avoid & explore

11- explore : exploration with a given destination: the last location where a puck has been found

(cognitif case only)

de v1.0 {c) Stéphane Calderoni i [m]]
- . L~

(b) Scenario with a generic i ism (of a ive agent)
(Application level: i iation only)
”””” | [=1
| ,.a" "";. -
f . \ .
| | < | /
i Ih - | /
3
: \ ®‘.’ [11]y
~ §
: NE @
\ /
\ P
: O Al ©
| o /
| |/
‘ Q o
| e ..
I y Y .
I \ A o
! ANN
I Y
| o !
I
: O
I
(c) Scenario with a generic i ism (of a cognitive agent)
(Application level: ii iation only)

Figurel: Therobot behavior in thethreeexperimented scenarios

different in (b) and (c). Indeed, unlike the reactive
scenarios in which the robot always proceed to a new
exploration, the agent in Scenario (c) comes back to the
last location where it has previously found a puck.
However, this behavior results from its (partia)
knowledge of the environment and this difference can
be explained at behavioral level, not at motivational
one where our current work is situated.

4 Discussion
4.1 Natural motivationsin agent models

As we have told in Introduction, the consideration for
natural motivations in a generic way does not really
exist in artificial agent design, except in animat
models. Even the concept of desire in BDI ones, also
called “motivational attitudes” by (Brazier and al.
1999) is actually an abstract representation of natural
motivations at a higher level. However, the interest to
extend this concept to hybrid agents is that since
natural motivations permanently exist into artificial
agents, they constantly influence the agent behavior
whatever its type (reactive, cognitive, hybrid), its

current goal, as well as its abilities to fulfill this goal
(reasoning, planning, etc.).

Currently, a hybrid agent fulfills its plan while
avoiding obstacles, running away from enemy, etc.
(remind Introduction), but there is no general
consideration for the fact that this cognitive plan may
be interrupted because the agent is hunger or wants to
sleep. The idea in this work is then to reduce this
limitation by giving the user the possibility to introduce
as many natural motivations aspossible. And sinceitis
impossibleto list all of them, theideaisto set ageneric
specification of them. Afterwards, the application can
instantiate them.

4.2 About the modeling of MASLOwW
The network W

W can be compared to the ANA architecture initially
developed by Maes (1991) in which the link between
actions are emphasized via the successor links (similar
to the t hen connector, and the conflict links (similar to
the xor connector). The main difference is that in
ANA, the degree of motivations for each action is

determined by only its activation level whilst in
MAsLow, the selection of motivations are also guided
by other generic criterialike | evel , t ype, etc. Remind
that the level criterion is issued from a real-world
study: the pyramid of Maslow.

A less user intervention

As we have said, the users' intervention in the agent
behavior rules programming is reduced as we here
prevent them to still hardcode. This reduction of the
user intervention is useful because not only everybody
iS not specialized in computer programming.
Additionally, it shows that our agent is now more able
toreach its goal by itself.

Note however that the network in our model contains a
methodological problem at user level. It is about the
connection of actions. Indeed, the determination of the
actionsin conflict (related to the xor connection) is not
aways obvious at a first glance, especialy when the
application complexity (i.e. the involved manipulated
data number) is increasing. Currently, only the
simulation can help to progressively detect such
connections. We are currently analyzing thisissue.

5 Conclusion

In this paper, we attempt to build a generic model
based on natural motivations (i.e. motivations related to
the satisfaction of natural needs) intended to hybrid
agents, as it is currently found in animat models. To
deal with this problem, we base our model to the
Abraham Maslow’s pyramid of needs (managing the
motivations) and especially try to find the generic
criteria for the motivation selection process of the
agent.

As for the evolution of our agent model MASLOW
itself, we plan to integrate the learning capacity in the
model so that the motivation selection process, is
further dynamic. In addition, the social part of the
model, and especialy the interaction, will be
emphasi zed.

Refer ences

Andriamasinoro Fenintsoa, Courdier Rémy (2002). The
Basic Instinct of Autonomous Cognitive Agents. In
Proceedings of 1% Internationa Congress on
Autonomous Intelligent System (ICA1S2002),
February 12"-15", Geelong, Australia, in CD-Rom,
and Abstract in World Scientific and Engineering
Academy and Society Press, (ISBN 3-906454-30-4),
p. 61

Au Sherlock, Liang Jiasen, Parameswaran N (1998).
Progressive plan execution in a dynamic world in
Dynamic and Uncertain Environments Workshop. In
Artificial Intelligent Planning, Eds. Ralph Bergmann,

Alexdrader Kott, Pittsburgh USA, AAALI, pp 136-143.

Brazier Frances, Dunin-Keplicz Barbara, Treur Jan,
Verbrugge Rineke (1999). Beliefs, Intentions and
DESRE. Modeling internal Dynamic behavior of BDI
agents. In JJ Meyer, PY Schobbens (eds.) Formal
Models of Agents: ESPRIT project Modelage final
workshop, Lecture Notes in Al, volume 1760,
Springer, pp 36-56.

Calderoni S. (2002). Ethologie Artificielle et Contréle
Auto-Adaptatif dans les Systémes d’ Agents Réactifs: de
la Modélisation & la Smulation. These al'Université de
La Réunion, 155 pages.

Gershenson Carlos, Gonzdlez Pedro Pablo, Negrete
Jose Martinez (2000). Action Selection Propertiesin a
Software Smulated Agent., in Cair6 et. a. (Eds)
MICAI 2000: Advances in Artificia Intelligence.
Lecture Notes in Artificial Intelligence 1793, Springer-
Verlag, pp. 634-648.

Guillot Agnés, Meyer Jean Arcady (1998). Synthetic
Animals in Synthetic Worlds. In Kunii et Luciani (Eds.)
Cyber Worlds. Tokyo: Springer Verlag, pp.111-123.

Maes Pattie (1991). A BottomUp Mechanism for
Action Selection in an Artificial Creature. From
Animals to Animats. Proceedings of the Adaptive
Behavior Conference '91, edited by S. Wilson and J.
Arcady-Meyer, MIT Press, February, pp. 238-246.

Malec Jacek (2000). On Augmenting Reactivity with
Deliberation in a Controlled Manner. Workshop on
Balancing Reactivity and Social Deliberation in Multi-
Agent Systems at the 14th European Conference on
Artificial Intelligence (ECAI), Berlin, Germany,
Lecture Notesin Al, volume 2103, Springer, pp. 76-91.

Maslow Abraham (1954). Toward a Psychology of
Being, 3rd Edition. Edited by Lowry Richard, JWiley
& Sons, Inc, November 1998, 320 Pages.

Mavromichalis Vangelis Kourakos, Vouros George
(2000). ICAGENT: Balancing between Reactivity and
Deliberation. In Workshop on Balancing Reactivity
and Social Deliberation in Multi-Agent Systems at the
14th European Conference on Artificial Intelligence
(ECALI), Berlin, Germany, Lecture Notes in Al, volume
2103, Springer, pp. 53-75.

Newell Allen (1982). The knowledge level . In Artificial
Intelligence. Volume 18, n°1, pp. 87-127.

Tambe Milind (1996). Executing Team Plans in
Dynamic Multi-agent environments. In AAAl Fall
Symposium on Plan Execution: Learning Complex
Behaviors In Adaptive Intelligent Systems, November
9"-11™, Boston USA.

