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Abstract 
Beforehand, the concept of natural motivations 
(i.e.motivations related to the satisfaction of natural 
needs) has been generally integrated into reactive 
agents, and particularly to animats. In this paper, we 
present and discuss a generic model which introduces 
such notions into hybrid agents. The basis of our model 
is the Abraham Maslow’s pyramid of needs. 
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1 Introduction 
In hybrid context, the interplay between reactivity and 
deliberation is one of the issues of paramount 
importance for intelligent1

 agent design. (Malec, 2000). 
But even if this interplay is important, it mainly deals 
with the manner the goal should be achieved. Only few 
things are told about the notion of motivations (the 
reason), which are nevertheless the basic source of this 
goal. When we here say “motivations”, it is about the 
particular case of “natural motivations” i.e. motivations 
which are related to the satisfaction of natural needs 
(hunger, sexual impulse, etc.) coming from instinct or 
homeostasis, and mainly found in artificial agents2. 

In fact, some works already started to consider natural 
motivations in hybrid context. We can mention obstacle 
or fire avoidance behavior which are actually related to 
the natural preserving instinct (Au and al. 98, 
Mavromichalis and Vouros, 2000), or the running away 
from enemy (Tambe, 1996). But these works are taken 
case by case, according to the study. There is no real 
generic specifications for natural motivations in hybrid 

                                                                 
1 The term “intelligence” in this paper is defined, for an entity, 
as the ability to use all information it has to achieve its goal 
(Newell, 1982). 
2 This work is focused only on Artificial Life domain. Then, 
all notions we develop here follow this hypothesis. 

models unlike in animat ones (Guillot and Meyer, 
1998), in which natural motivations completely 
determine the behavior of agents (Gershenson et al. 
2000). However, as both humans and animals are firstly 
natural creatures and their behavior essentially starts 
from motivations (Andriamasinoro and Courdier, 2002), 
all artificial agents (either reactive or cognitive ones) 
should also permanently integrate them. The 
psychologist Daco (1965) who wanted to stress the 
importance of instinct in living being stipulated that a 
person (i.e. containing cognitive concepts) who lives 
with uniquely its reason is  only a semi-person. 

The aim of this paper is then to report on progress 
towards our effort to introduce this theory of basic 
motivations in hybrid agent paradigm, and at a generic 
level. Key issue towards this aim is the fact that we have 
to cope with the motivation selection problem while 
taking into account that the model should work for both 
reactive and cognitive agents. Precisely, this issue is 
about finding a set of generic criteria which determine 
the most important motivations an agent has to 
dynamically take into account its behavior. As a result, 
this generic approach will reduce the task of the user 
when using the system. Note that in this work, we cope 
with only individual agents. The social interaction is not 
treated here yet.  

To make the paper objective clearer, we organize it as 
follows: Section 2 presents the model we propose in this 
work and Section 3 describes our experimentation. 
Section 4 next discusses the work before we conclude 
the paper in Section 5. 

2 Description of the agent model 
Our agent model is named MASLOW. It is based on three 
components: a pyramid of needs / motivations3 (noted 
Π), a network of actions (noted Ω) and a component 
                                                                 
3 Here, needs and motivations may be confusing. Actually, 
since the basic motivation of an agent is the satisfaction of its 
basic needs, these two terms can be alternatively used. 



called NIM (for Need Importance Manager) which 
“pilots” Π and Ω and particularly manages the generic 
agent behavior. The difference between these 
components is that users can act on Π and Ω  while it 
cannot do so on the NIM. As we will see, the latter only 
concerns the agent proactivity.  

The following sections successively explain these 
components. Note that Ω , as well as the interaction of 
components to each others are first reported in this 
paper.  

2.1 The pyramid Π  
This component is inspired from the pyramid of needs 
designed by the American psychologist Abraham 
Maslow (Maslow, 1954) which stipulates that all 
actions led by the living being’s behavior are motivated 
by at least one of the following five hierarchical needs 
mentioned from the bottom (the most important) to the 
top (the less important) of the pyramid: the 
physiological needs, the need for security, the need for 
love, the need for esteem and the need for self-
realization.  

Based on this pyramid, our approach in this work is the 
following: we consider first that each level of Π is 
abstract. Then, for each level, we adopt two types of 
needs:  
• the Low-Need (LN) which groups all natural needs. 

They are common and permanent and exist in all 
agents, independently of the application. It is 
handled either by instinct or homeostasis. In other 
words, the concept of LN corresponds to generic 
basic motivations.  

• the High-Need (HN) which includes all individual 
and temporary needs which depend on the 
application. A HN may be for instance assimilated 
to the notion of desire found in many BDI models. 
What is important is  that the satisfaction of a HN is 
always motivated by at least one LN. 

Both types are conceptually grouped in a common 
abstract type named PN (for Pyramidal Need). Thus, 
Π={PN}={LN}∪{HN}. We only remind here the 
formalization of a PN, previously detailed in 
Andriamasinoro and Courdier (2002):  

PN ={lib, level, rank, state_lib, list_actions} 
in which:  
• lib is the unique identifier of PN 
• level/rank correspond to the “physical” position 

of PN in Π: level is that of Abraham Maslow 
while rank differs the PN situated at a same level.  
Actually, a HN motivated by a LN means that this 
HN has the same level  and rank than the LN.  
In the formalization of a HN, the two parameters 
are directly replaced by the associated LN as 

follow: 
HN={lib, LN, state_lib, list_actions}.  

• state_lib formalizes the list of states in which PN 
may be. It may take one of the following values: 
insufficient, limit_low, sufficient, 
limit_high, excessive.  

• list_actions={action[insufficient], …, 
action[excessive]} contains the set of actions 
corresponding to each state (except sufficient 
which has no action). The current state of PN is 
named currentstate. Note however that all states 
are not always represented in a PN. It depends on 
the semantic of the PN at application level.  

A state can be presented as a set of intervals (SI) or 
points (SP). A specific case of the latter is the 
representation known as boolean  (SB) where the 
associated PN can be only in two states : insufficient 
(= false) and sufficient (= true). In a general way, 
state_lib can be described as: 
state_lib={representation_lib, description} in 
which, for each presentation, description is written as 
follow: 
• SI: <interval (state1), …, interval (staten)> 
• SP: <val (state1), …, val (statek)> 
• SB: <proposition> which is a proposition 

returning true or false. 

The representation_lib parameter may take the 
following value: “interval”,” point” or “Boolean”. 

2.2 The network Ω of actions  

Preamble: the concept of actions  
We have two kinds of actions:  
• a primitive (PR): it corresponds to the fine-grained 

action. It is uninterruptible during its execution. 
• a composed action (AC): it is a combination either 

of PR or of other sub-AC. 

The set of actions is noted Γ. In sum, Γ={PR}∪{AC}. 

Each action act ∈ Γ is formalized as follow: 
act={pn_satisf, precond, list_conflicts} in 
which : 
• pn_satisf is the need to be satisfied via act, i.e. 

pn.action[state]=act ⇔ pn=act.pn_satisf, 
• precond is a PN that must be satisfied before act 

can be executed. If precond is not set, it means that 
the action is always executable. The difference 
between precond and pn_satisf is that the former 
is not manipulated by the NIM during the 
motivation selection process (Section 2.3) while the 
latter does.  

• list_conflicts contains the list of actions that the 
agent cannot simultaneously execute with act. 



During the initialization of an action, last parameters 
which are non-initialized may be omitted. 

The network Ω  

Ω  is a network formalized as Ω=(∆, C) in which  
• ∆ are the nodes, constructed of actions (∆ ⊆ Γ),  
• C are the arcs, composed by a set of 4 connectors: 

then, imp, xor and and. Precisely, 
C={then}∪{imp}∪{xor}∪{and} 

Let a1, a2, a3 ∈ ∆, and let the predicate 
isConnector(a1, a2) which is true when a1 is 
effectively connected to a2 via connector, we have: 
• then(a1, a2) means that a2 will be executed after 

a1. This connector is set when: 
 a2.precond == a1.pn_satisf, 

• imp(a1, a2) is possible only if a1 ∈ {AC}.After 
this connection, a2 is hence one of subactions of a1. 
For information, the proposition  
 imp(a1, a2) ∧  imp(a1, a3)  
does not automatically involve isThen(a2, a3). In 
fact, a1 ignores the relation between its subactions. 

• xor(a1, a2) means that a1 and a2 cannot be 
simultaneously executed. This connector is set 
when a1 ∈ a2.list_conflicts. If a2 is a AC and 
a1 is in conflict with a2, then a1 is automatically in 
conflict with all subactions of a2 even if no explicit 
connector is set. This is the law of conflict . 
Formally, if isXor(a1, a2) ∧ isImp(a2, a3) 
⇒ isXor(a1, a3).  

• and(a1, a2) is the connector by default if no 
connector is set between actions and the law of 
conflict does not hold. This connector means that 
agent can simultaneously execute a1 and a2. 

Relation between Ω  and Π  

This relation is set by the fact that ∆ is composed by the 
set of PN.action[state] issued from all PN in Π. 
Inversely, if ∆={ai} then Π={pn_satisf{ai}}. 

Besides, the existence of AC involves us to introduce 
the notion of decomposition level (noted dl) in Ω . This 
parameter situates the place of each action (and then 
their associate pn_satisf) in the network. 
Independently of the application, the entry-point of Ω  is 
a AC generically named net_entry and having a dl as 0. 

If dl(a1)=k and isImp(a1, a2) then dl(a2)=k+1. 

2.3 The NIM 

Generalities 
As we have said, the initialization of the system by the 
user is made via Π and Ω . Once this user level task is 
performed, the agent drives these two components in a 

generic way via the NIM. For that, the NIM cyclically 
performs an algorithm called algorithm of proactivity 
whose main role is to select the most important needs 
(i.e. those which have to be treated first) in Π. This 
selection of motivations is followed by that of primitives 
that the agent should next simultaneously perform. 

The algorithm of NIM is based on two functions: 
• isImportantBetween(PN, PN’) which determines 

the most important need between two PN. In this 
paper, the notion of importance is noted by ‘>’.  
Note that this function acts only on Π, i.e. it works 
independently of the studied Ω .  

• algoNIM(AC, dl), firstly introduced in this paper, 
which manipulates all needs and actions in the 
system.  

The first function  
It selects the most important need by applying the 
successive following generic criteria:  
• type: the rule is that LN > HN 
• level: if the two PN have the same type, the NIM 

detects their level according to the specification of 
Abraham Maslow: a lower need is more important. 

• rank: the NIM detects the rank if the above criteria 
cannot determine the most important need. 

• then, the NIM sees the states, based on the rule: 
insufficient/excessive>limit_low/limit_high>suffici
ent. 

The above general steps are actually more dynamic. For 
example, even if LN>HN and LN is in sufficient state 
while HN is in insufficient one, then HN>LN.  

The second function  
It is more complicated than the first one. Let: 
• ListPN the list from which needs are to be selected, 
• finalPrim the list which will take the final 

primitives.  

then, algoNIM(AC, dl) acts as follows (note first that 
the initial value of AC is net_entry and dl is 0): 

1. for each act ∈ ∆ / isImp(AC, act) do 
listPN=listPN + {pn_satisf(act)} 

2. removing from listPN all PN/ 
currentstate==sufficient. 

3. sorting listPN from the most important to the less 
important PN. The function isImportantBetween is 
used when comparing two elements. 

4. generating listAct. It is composed by the set of 
PN.action[currentstate] of each PN in listPN, 



5. removing act ∈ listAct / act.precond is not 
sufficient (i.e. not verified). This step makes the 
selection between actions connected by then 

6. for each act ∈ listAct, successively do: 
- if act ∈ {PR} ⇒finalPrim=finalPrim+{act} 
- if act ∈ {AC}  
⇒ finalPrim=finalPrim+{algoNIM(act, dl+1)}. 
Thus, each time this step is performed, finalPrim is 
progressively filled by primitives. 

The above six steps are finished when at any dl where 
algoNim is called during the selection, the sixth step 
does contain no more act ∈ listAct / act ∈ {AC}. 

At the end, we have a given value of the list finalPrim. 
We then apply the xor criteria among primitives as 
follow: ∀ pri, prj ∈ finalPrim, ∀ i, j their respective 
position in finalPrim (with i < j), if isXor(pri, prj), 
then remove prj from finalPrim. We remove prj 
instead of pri because prj comes from a less important 
need resulting from the sorting in step 3.  

The remaining primitives in finalPrim will be those 
simultaneously executed by the agent. These primitives 
are implicitly connected by the and connector. 

3 Experimentation 
To evaluate our model, we use for the first time the 
ADK platform developed by Calderoni (2002). Initially, 
ADK was mainly designed to simulate reactive agents. 
ADK had no cognitive structure at all.  

The architecture of an ADK agent is based on three 
components: sensors, effectors and the control 
architecture.  

Our concern is about the improving of this controller 
architecture. Particularly, we deal with the way the 
behavior rules are managed there. Our case study is 
RDK, a specialization of ADK to the robot foraging 
problem The scenario simulated in RDK is the 
following: in a given physical 2D environment, there is 
a situated robot, a set of blue and red pucks, one blue 
base, one red base and some obstacles. The robot first 
has to explore (action explore) the environment to find 
pucks, then it comes up to the detected puck region and 
acquires the closest puck (action acquireClosestPuck). 
Then, it delivers this acquired puck to the base having 
the same color color  as it (action 
deliver[Color]Puck). In its moving, the robot has to 
avoid obstacles. Due to the size of the robot’s gripper, it 
can deliver only one puck at a time. Furthermore, in 
case of reactive robots, each base respectively utters a 
signal, to help these robots to find where to deliver the 
pucks.  

The objective of the experiment is twofold: 

• to evaluate how our approach lets the robot to better 
reach by itself its goal (i.e. delivering the pucks to 
their respective base) with a less user intervention; 

• to show the possible application of our generic 
model based on LN, in hybrid context. 

3.1 The three experimented scenarios 

Scenario (a): preprogrammed rules  
This corresponds to the initial version of RDK where 
the behavior rules were handcoded at application level. 
They are only made by an automatic successive 
repetition of <explore, acquire[blue/red]puck, 
deliver[blue/red]puck> until all pucks are delivered 
to their respective base.  

Scenario (b): generic rules with a reactive 
robot 
In this scenario,  we introduce into the controller our 
generic architecture based on natural motivations. The 
robot behavior will hence be managed by the algorithm 
of the NIM. However, a user first has to introduce all 
information needed by the applicative scenario. During 
that initialization phase, users are free to introduce 
motivations according to its own semantic interpretation 
of a given instance of motivations. Indeed, such an 
interpretation may possibly differ from one user to 
another (e.g. from a sociologist to a psychologist).  

Unlike the preprogrammed scenario, we add the fact 
that the robot may be hunger or tired, in order to show 
that those needs can be introduced without a coding 
process.  

Scenario (c): generic rules with a cognitive 
robot 

In (b), we deal with a reactive robot, that is, a robot 
which acts only according to what it perceives from its 
sensori-motor (Ferber, 1997). In order to valid the 
model in cognitive domain (and then in hybrid one), we 
add Scenario (c) in which the robot has a partial 
representation of the environment, particularly the last 
location where a puck has been found, and the 
respective location of the two bases. Thus, we here 
remove the signals. 

3.2 User initialization 
As in Scenario (a), the initialization corresponds to a 
direct preprogramming of the behavior, we immediately 
present in this section the user initialization according to 
the generic MASLOW model. 

Initialization of all pn_satisf  

no_hunger=(“eat”, 1, 1, state_hunger, {eat, eat}} 
with  



 state_hunger=(interval, <[0…2[ (insufficient), 
[2…5] (limite_b), ]5…8] (sufficient)>} 

fatigue_away=(“fatigue”, 1, 1, state_fatigue, 
 {pause, sleep}} with  
 state_fatigue=(interval, <[0…3] (sufficient), 
 ]3…4,5] (limite_h), [4,5…7] (excessive)>} 

obstacle_away=(“obstacle_away”, 2, 1, 
 state_obstacle, {avoid}} with 
 state_obstacle=(boolean, <is_obstacle_away>} 

loved=(“being_loved”, 3, 1, state_love, 
 {search_agent}} with 
 state_love =(boolean, <is_loved>} 

all_puck_delivered=(“all_pucks_delivered”, 
 no_hunger, state_apd, {deliver_all_pucks}} with  
 state_apd=(interval, <[0 → 3] (insufficient), [3 → 5] 
 (sufficient)>}. 

We assume here that the HN all_puck_delivered is 
motivated by the need no_hunger, that is, the conveying 
is the work of the robot in its general life and the 
resulting wage will be used to buy foods. If the pucks to 
be conveyed is for example used to reinforce the 
security of the bases, we would first have created a LN 
like “to_be_secure” having a level=2 and rank=2, and 
would have associated the above HN to this LN. 

All above needs and actions are situated at dl = 1. 

env_explored=(“env_explored”, no_hunger, 
 state_eve, {explore}} with  
 state_eve =(boolean, <puck_visible or 
 puck_in_gripper>} 

red_acquired=(“red_acquired”, state_red_acq, 
 {acquireRedPuck}} with  
 state_red_acq =(boolean, <red_puck_in_gripper or 
 not red_puck_visible>} 

red_delivered=(“red_delivered”, no_hunger, 
 state_red_dlv, {deliverRedPuck}} with  
 state_red_dlv =(boolean, <at_red_base and not 
 red_puck_in_gripper>} 

blue_acquired=(“blue_acquired”, state_blue_acq, 
 {acquireBluePuck}} with  
 state_blue_acq =(boolean, <blue_puck_in_gripper 
 or not blue_puck_visible>} 

blue_delivered=(“blue_delivered”, no_hunger, 
 state_blue_dlv, {deliverBluePuck}} with  
 state_blue_dlv =(boolean, <at_blue_base and not 
 blue_puck_in_gripper>} 

Initializing all preconditions  
prec_explore = (“prec_explore”, no_hunger, 
 state_precond_explore) with 

 state_precond_explore = (boolean, <not 
 puck_visible and not puck_in_gripper>) 

prec_red_acquired=env_explored 

prec_red_deliver=red_acquired 

prec_blue_acquired=env_explored 

prec_blue_deliver=blue_acquired 

explore.precond=prec_explore 

acquireRedPuck.precond= prec_red_acquired 

deliverRedPuck.precond= prec_red_deliver 

acquireBluePuck.precond= prec_blue_acquired 

deliverBluePuck.precond= prec_blue_deliver 

Setting the action connections  
The then connectors have been here implicitly created 
by the steps before. For instance, given that  
• prec_blue_deliver=blue_acquired 
• acquireBluePuck.pn_satisf= blue_acquired  
• deliverBluePuck precond= prec_blue_deliver, 

⇒ then(acquireBluePuck, deliverBluePuck) is 
implicitly created. The same principle is valid for all 
other needs and actions in this application. 

The imp and the xor connectors are set as follow: 

imp(deliverAllPucks, explore) 
imp(deliverAllPucks, acquireBluePuck) 
imp(deliverAllPucks, acquireRedPuck) 
imp(deliverAllPucks, deliverBluePuck) 
imp(deliverAllPucks, deliverRedPuck) 

xor(acquireRedPuck, deliverBluePuck) 
xor(deliverRedPuck, acquireBluePuck) 
xor(sleep, deliverAllPucks) 
xor(sleep, eat) 
xor(sleep, avoidObstacle) 
xor(pause, deliverAllPucks) 

With the imp connector, actions such as explore, 
acquireBluePuck and their associate pn_satisf are 
automatically situated at dl=2. 

3.3 Experiment results 

Figure 1 shows the robot behavior related to each 
scenario. The numbers found in their trail are actions. 
This figure shows that the robot behavior in Scenario 
(b) is as coherent as that presented in Scenario (a), the 
human preprogrammed scenario while in both 
scenarios, the objective to delivering all pucks is 
progressively performed. The advantage of MASLOW  is 
however that our intervention as a user, in behavior 
preprogramming is largely reduced. The robot is more 
capable by itself to reach its goal. And even after adding 
needs, this coherence in behavior is maintained. 

Besides, as we can see, our model can also be used in 
hybrid scenarios. We agree that the robot behavior is



 

Figure 1: The robot behavior in the three experimented scenarios 

 

different in (b) and (c). Indeed, unlike the reactive 
scenarios in which the robot always proceed to a new 
exploration, the agent in Scenario (c) comes back to the 
last location where it has previously found a puck. 
However, this behavior results from its (partial) 
knowledge of the environment and this difference can 
be explained at behavioral level, not at motivational 
one where our current work is situated.  

4 Discussion 
4.1 Natural motivations in agent models 

As we have told in Introduction, the consideration for 
natural motivations in a generic way does not really 
exist in artificial agent design, except in animat 
models. Even the concept of desire in BDI ones, also 
called “motivational attitudes” by (Brazier and al. 
1999) is actually an abstract representation of natural 
motivations at a higher level. However, the interest to 
extend this concept to hybrid agents is that since 
natural motivations permanently exist into artificial 
agents, they constantly influence the agent behavior 
whatever its type (reactive, cognitive, hybrid), its 

current goal, as well as its abilities to fulfill this goal 
(reasoning, planning, etc.).  

Currently, a hybrid agent fulfills its plan while 
avoiding obstacles, running away from enemy, etc. 
(remind Introduction), but there is no general 
consideration for the fact that this cognitive plan may 
be interrupted because the agent is hunger or wants to 
sleep. The idea in this work is then to reduce this 
limitation by giving the user the possibility to introduce 
as many natural motivations as possible. And since it is 
impossible to list all of them, the idea is to set a generic 
specification of them. Afterwards, the application can 
instantiate them. 

4.2 About the modeling of MASLOW 

The network Ω  

Ω  can be compared to the ANA architecture initially 
developed by Maes  (1991) in which the link between 
actions are emphasized via the successor links (similar 
to the then connector, and the conflict links (similar to 
the xor connector). The main difference is that in 
ANA, the degree of motivations for each action is 



determined by only its activation level whilst in 
MASLOW, the selection of motivations are also guided 
by other generic criteria like level , type, etc. Remind 
that the level criterion is issued from a real-world 
study: the pyramid of Maslow. 

A less user intervention 
As we have said, the users’ intervention in the agent 
behavior rules programming is reduced as we here 
prevent them to still hardcode. This reduction of the 
user intervention is useful because not only everybody 
is not specialized in computer programming. 
Additionally, it shows that our agent is now more able 
to reach its goal by itself. 

Note however that the network in our model contains a 
methodological problem at user level. It is about the 
connection of actions. Indeed, the determination of the 
actions in conflict (related to the xor connection) is not 
always obvious at a first glance, especially when the 
application complexity (i.e. the involved manipulated 
data number) is increasing. Currently, only the 
simulation can help to progressively detect such 
connections. We are currently analyzing this issue.  

5 Conclusion 
In this paper, we attempt to build a generic model 
based on natural motivations (i.e. motivations related to 
the satisfaction of natural needs) intended to hybrid 
agents, as it is currently found in animat models. To 
deal with this problem, we base our model to the 
Abraham Maslow’s pyramid of needs (managing the 
motivations) and especially try to find the generic 
criteria for the motivation selection process of the 
agent. 

As for the evolution of our agent model MASLOW 
itself, we plan to integrate the learning capacity in the 
model so that the motivation selection process, is 
further dynamic. In addition, the social part of the 
model, and especially the interaction, will be 
emphasized. 
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