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ABSTRACT 
 

This paper proposes a general learning mechanism 
for ART2 neural networks that relaxes the specification 
within the classic ART2 model, which restricts learning 
only to the active node. Thus the learning allows slow 
forgetting by exponential decay of all long-term 
memory traces. This approach changes the ATR2 
learning rules, but does not use additional node features, 
or supervisory subsystems. It preserves the basic ART2 
architecture and functioning, whereby makes the 
implementation straightforward. The proposed general 
learning mechanism releases redundant committed 
nodes for further learning, helps to prevent the system 
from blocking, and enhances a variety of network 
features. It may be used for some classes of applications 
that require clustering in a very large input space, or 
rapidly changing environmental conditions.  
 
 
1 INTRODUCTION 
 

Neural modelling, based on the adaptive resonance 
theory (ART), clarifies how sensory and cognitive 
processes solve a key problem, called stability – 
plasticity dilemma [1], whereby the brain can rapidly 
learn about the world throughout life without 
catastrophically forgetting our previous experiences. In 
other words, we remain plastic and open to new 
experiences without risking the stability of previously 
learned memories. This type of fast stable learning 
enables us to dealing in some degree with changing 
environmental conditions. Old knowledge 
representations can be refined by changing 
contingencies, and new ones built up, without 
destroying the old ones due to catastrophic forgetting. 
On the other hand, catastrophic forgetting is a good 
property for spatial and motor learning [1]. We have no 
need to remember all the spatial and motor 

representations that we used when we were children. In 
fact, the parameters that controlled our small childhood 
limbs in space would cause major problems if they 
continued to control our larger and stronger adult limbs.  

The forgetting phenomenon has been modelled by 
many modifications of artificial neural network. A 
method of training and zeroing of fuzzy neural networks 
(FNN) [6] use a technique, which zeroes weak 
connections before training the network with new data. 
Another technique uses decay of connection weights 
during training of FNN, followed by pruning (cutting 
off) weak connections [7]. A modification of the self-
organising feature maps of Kohonen erases redundant 
information by dropping out nodes [5], [10]. Most of the 
models of forgetting, however, incorporate additional 
node features or additional supervision of the learning 
process. 

The classic ART2 model of neural networks solves 
in a satisfactory manner the problem stability – 
plasticity, however it demonstrates some drawbacks 
when used in some classes of applications. For example, 
in case of rapidly changing environmental conditions, 
when the network cannot classify some of the new 
incoming input patterns into existing categories, it 
creates new ones. In this case the network commits 
uncommitted nodes instead of reusing those, which 
contain old and not actual data. 

The general learning of ART2 neural networks, 
discussed in this paper, models an additional mechanism 
of forgetting, designed to reuse those committed nodes, 
which contain useless old data, thus making space for 
new one. The proposed approach does not use 
additional node features, or supervisory subsystems. It 
changes the learning rules, but preserves the basic 
ART2 architecture and functioning, whereby makes the 
implementation straightforward. 
 
 



 

 

2 GENERAL ART2 LEARNING 
 

A typical ART2 architecture consists of several 
components [2], illustrated in Figure 1. The input 
representation field F1 is composed by three subfields 
of nodes, which act as a short-term memory (STM) of 
the system. The category representation field F2 
contains top-down and bottom-up long-term memory 
(LTM) traces that store learned categories. The 
orienting subsystem compares a presented input pattern 
with a category. 
 
2.1 Classic ART2 Functioning 
 

An incoming input pattern first goes through 
transformations in the field F1, and then activates a 
competition between all nodes in the field F2, each of 
which represents a stored category. The goal of this 
competition is to find a node, which matches with the 
presented input pattern better than all other competitors. 
The node, which wins the competition, becomes active. 
It provides the orienting subsystem with a category 
pattern in order to be matched with the presented input 
pattern. The orienting subsystem estimates the similarity 
between them calculating the length of the vector r. In 
case it exceeds a threshold (network parameter of 
vigilance), the system gets in resonance state. Then it 
starts learning of the active node, which adjusts its 
category pattern to be closer to the input pattern. If the 
matching in the orienting subsystem fails, a reset signal 
suppresses the active node and a new competition 
without all suppressed nodes takes place. Repeating this 
process, the neural network either finds a category that 
matches well with the input pattern, or an uncommitted 
node learns the input pattern creating a new category. 

In both cases the learning involves only one node – 
either the active one or an uncommitted one. The ART2 
model does not involve passive nodes in learning in 
order to preserve the rest of learned categories from 
catastrophic forgetting.  

Differential equations (1) and (2) represent the 
learning rules of the classic ART2 model [2]. The first 
one describes how the top-down LTM traces change, 
whereas the second one describes the change of bottom-
up LTM traces.  
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Figure 1: ART2 architecture 
 

 
2.2 General ART2 Learning Rules 
 

The modification of ART2 model, discussed in 
this paper, aims to provide an ART2 system with 
additional flexibility and adaptation to complex or 
variable input domains, making the network resources 
reusable. In order to achieve these goals, the 
modification incorporates a mechanism of general 
learning, which relaxes the specification within the 
classic ART2 model [2] that restricts learning only to 
the active node. The general learning mechanism 
involves both active and passive F2 nodes in learning by 
replacing the learning rules (1) and (2) of the classic 
ART2 model with new once, represented by differential 
equations (3) and (4). Equation (3) represents change of 
top-down LTM traces, whereas (4) represents change of 
bottom-up LTM traces . 
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The coefficient λ , where 10 <≤ λ , is a new 
network parameter which can be used to adjust rate of 



 

 

forgetting. When 0=λ , (3) and (4) become equivalent 
to (1) and (2), which corresponds to the classic ART2 
learning without forgetting. Obviously the general 
learning rules can be considered as a generalization of 
the classic ones. 

After equivalent transformations equations (3) and 
(4) can be represented by (5) and (6) . 
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Equations (5) and (6) show that learning occurs 
even when 0)( =jyg . This means that all F2 nodes, 
without exception, go through learning every time when 
the system initiates that process. Learning, however, is 
different for the active and passive nodes. The active 
node learns according to the rules, represented by the 
upper branches of (5) and (6), i.e. applying the classic 
ART2 model. All passive nodes, however, learn 
according to the lower branches of (5) and (6), which 
can be generalised by differential equation (7) 
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3 LEARNING VS FORGETTING 
 

Several issues emerge from using the learning 
rules (5) and (6) in the ART2 architecture. 
 
3.1 Exponential Decay of LTM Traces 
 

We can consider a learning of a F2 node, which 
takes place in a time period ],[ 10 tt . Inequalities 

10 << λ , 10 << d , ijz≥0 , jiz≥0 , and equation 
(7) imply that for this time period inequalities (8) and 
(9) are valid. 

 

 0<
dt

dzij  (8) 

 0<
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dz ji  (9) 

 

Inequalities (8) and (9) show that in this time 
period all passive nodes decrease their LTM traces. 

Differential equation (7) can be solved with initial 
condition (10). 
 
 0

0 )( ztz =  (10) 
 
The solution can be represented by equation (11). 

 
 ))((0 0)( ttdeztz −−= λ  ],[ 10 ttt ∈  (11) 
 

Equation (11) implies that for 0≠λ each inactive 
LTM trace decreases exponentially. The learning that 
takes place over k pattern presentations can be viewed 
as a series of k discrete time slices ],[ 10 tt , ],[ 32 tt  … 

],[ 1222 −− kk tt . In each time slice the active node learns 
the input pattern, while the passive nodes learn their 
own pattern, but weakened. At the end of each time 
slice an LTM trace has a final value that appears to be 
an initial one for the next slice. For simplicity, time 
slices can be considered as a continuous interval 

],[ 0 ktt , ignoring time between learning. The 
implication is that the LTM traces will reach zero when 
the length of interval (or number of subintervals) 
reaches infinity, i.e. 0)(lim =∞→ tz

kt
 . Therefore 

during learning the inactive LTM traces tend to zero, 
but never reach it.  

The weakening of bottom-up LTM traces impacts 
on the network behaviour. If a presented input pattern is 
similar or identical to a weakened category, it is likely 
that it will not win the competition from the first 
attempt. Such behaviour resembles the process that 
leads to forgetting in biological neural systems. 
Likewise, our own experience shows that if a part of our 
knowledge is not used for a long time, it ‘goes’ deeply 
in the mind, making its retrieval harder. When we 
identify a stimulus, an image perhaps, we first access 
appropriate and prominent, i.e. common or frequently 
used categories, and only if this first pass fails we start 
to access less frequently used, weaker, but still formed 
traces, and finally if this fails resort to learning, i.e. 
establishing a new category. 
 
3.2 System Stability 
 

Another issue of the general ART2 learning 
mechanism is that it preserves stored information during 
weakening. Decreased LTM traces do not change the 
shape of the stored categories. Let us view top-down 
and bottom-up category patterns iz and jz  of a passive 
node as multidimensional vectors with components 



 

 

LTM traces. It can be proven that the weakening makes 
them shorter, but it preserves their direction. Indeed, we 
can calculate ratio between two arbitrary chosen traces 
ẑ  and z~ , that belong to a passive category pattern, 
during weakening in a time interval ],[ qp tt . Equation 

(11) implies that for any ],[ qp ttt ∈  
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This equation shows that the ratio is a constant, 

which does not depend on the time. The implication is 
that the weakening preserves the vector direction, 
therefore encoded information. 
 
3.3 Reusability of Resources 
 

The process of LTM weakening facilitates the 
‘recycling’ of committed nodes that contain useless 
information. The general learning mechanism releases 
and reuses such nodes. 

It can be proven [3], that applying the general 
learning rules (3) and (4) to a passive F2 node, there is a 
finite time interval of weakening, after which the 
category reaches a critical state, which releases the 
node. Then it can learn another category, i.e. to be 
reused. 

Indeed, the orienting subsystem is assumed to reset 

F2 whenever an input pattern is active and 1>
r
ρ

. 

From other hand length of the vector r during the 
weakening can be represented by (12). 
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This equation implies that for a fixed ρ , where 

10 << ρ , it exists a moment ttt ~,~
0 p , such that 

for any ttt ′′ p~:  
 

 ρ>′)(tr  (13) 
 
Equation (13) suggests that after a finite time 

interval the weakened category has the same 
characteristics as an empty one. It always causes 
resonance state for any presented input pattern, and then 
learns it. 

The general learning mechanism affects also the 
uncommitted nodes by continually weakening, since 
they are always passive. Despite that the uncommitted 
nodes remain useable, because the only requirement for 
their values, represented by (14) [2], is valid during the 
weakening. 
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3.4 Biological Plausibility 
 

Although biological plausibility of the discussed 
forgetting mechanism is not main objective of its 
design, the dynamics and properties that it shows seem 
to be similar to several basic characteristics of 
phenomenon forgetting in biological neural systems. 

There are many different perspectives, 
physiological and psychological, from which forgetting 
can be viewed. Ebbinghaus [8] describes dynamics of 
the forgetting by a curve that depicts number of 
memorized items as a function of the time. That curve 
shows a negative acceleration of the forgetting along the 
time, which can be explained by the fact that most of the 
forgetting takes place in the first several hours after the 
learning. Later it slows down significantly. Kintsch [9] 
suggest that the curve of Ebbinghaus can be 
approximated well by function (15). 

 
 tabtY −=)(  (15) 
 

Here )(tY is the quantity of memorised 
information, represented as a function of the time. It 
depends on two positive constants a and b . After 
equivalent transformations, equation (15) can be 
represented by (16) [4]. 

 
 taeatY 1

0)( −=  (16) 
 

Equation (16) suggests that the forgetting in 
biological neural systems can be represented by an 
exponentially decreasing function of the time, as the 
general ART2 learning suggests. 

Other theories of forgetting in the cognitive 
psychology provide similar conclusions. For example 
the multi-component trace theory of Bower [10] offers a 
function of memorizing )(tr , represented by (17). 

 
 taJJtr )1()( −+=  (17) 
 

Here J and a are positive constants. After 
equivalent transformation [4] (17) can be represented by 
(18), 
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where the parameters J , 1C , and 2C  are also positive 
constants. Equation (18) suggests again that the 
forgetting in biological neural systems can be 
represented by an exponentially decreasing function of 
the time, as the general ART2 learning suggests. 
 
3.5 System Flexibility and Adaptation  
 

In ART2 neural networks with general learning the 
forgetting may be conceived of as a corollary of the 
release of atrophied or unused resources. It can be seen 
as a sensible strategy directed at the overall 
management of specific and limited computational 
resources. Without forgetting, plasticity and adaptation 
the neural network may become cluttered with relatively 
unused resources. For some applications, planning what 
resources a network needs is impossible and limited 
resources impose the need to release unused resources 
for further use.  

Neural networks are often given some initial, well-
defined sample of instances that represent the domain 
the network is applied to. The network is expected to 
learn this training set. Also, there are applications, 
which are not well defined and for which planning of 
network resources is more difficult or even impossible, 
because the network needs to learn about an unknown 
input space. In these circumstances the system’s future 
inputs are unknown. Often such applications use 
unsupervised self-organizing learning paradigms like 
those of ART neural networks. 

In a situation where the input space is huge the 
network may not be able to learn all details required for 
an adequate functioning of the system. For example if at 
some arbitrary level of vigilance an classic ART2 
networks runs out of resources the system will block, 
and either the granularity of the categories must be 
increased with an accompanying loss of detail, or more 
resources must be allocated. This situation may also 
arise when the input space is not huge, but continually 
changing. In this situation as learning continues, not 
only may more category nodes be required, but existing 
category exemplars may also shift and some may 
become unused as their input s become assimilated to 
other similar categories. 

Discussed above general ART2 learning is a 
possible solution. It allows the network to work 
continuously without blockage, or unlimited expansion 
of resources since it releases those nodes, which contain 
inactive information. Such a solution is attractive 
because if implemented adequately within the dynamics 
of an ART2 network the forgotten information could be 
restored. If patterns that were mapped to the forgotten 

nodes reappear in the environment they can be 
relearned. 
 
 
4 BENCHMARKS 
 

The architecture of an ART2 neural network with 
general learning rules has been implemented by a 
simulator, which uses the classic ART2 architecture 
with pre-processing layer. The learning rules were 
implemented by solving the differential equations (3) 
and (4) using the fourth order Runge-Kutta method. The 
simulator was adjusted for stable performance by the 
network parameters as follows: 

98.0=ρ , 10== ba , 9.0=d , 17.0=θ . 
Parameter λ  10 <≤ λ , which adjusts the rate of 
forgetting, used the following values for different 
simulations: 0022.0;0020.0;0018.0;0=λ . 

The general ART2 learning mechanism was tested 
by two groups of simulations using several sets of input 
patterns. The basic one A  consisted of 1500 input 
patterns, each of which was a N-dimensional vector 
(N=50) of randomly chosen numbers between 0 and 1. 

The first group of simulations compared classic 
ART2 learning with the general one in case where the 
input set contains additional patterns, capable to 
establish new categories of ‘useless’ knowledge. The 
simulations used an additional input set B of 500 
patterns, which were: 

• Deliberately damaged samples of A. The origin 
of such patterns might be practical failure or 
redundancy of information caused by bad 
transmission or errors in formation input 
patterns.  

• Patterns, which were presented relatively 
infrequently to the network. Again these may 
cause establishment of infrequently used 
categories. The origin of such patterns might 
be a wrong learning or learning unimportant 
for the practice information. 

The simulations comprised 250500 random 
presentations of patterns from both A  and B . Each of 
the input patterns of B  was presented after a series of 
500 arbitrary chosen patterns form A . The simulations 
were carried out four times – once with parameter 

0=λ , which corresponds to the classic ART2 
learning, and three times with values 

0022.0;0020.0;0018.0=λ , which correspond to 
the general learning with different rates of slow 
forgetting. After all simulations the input set A  was 
presented to the network in order to determine way of 
clustering, number of the learned categories, and 
number of committed nodes. All simulations showed 



 

 

identical clustering of A  into 126 categories, but 
different number of committed nodes. Table 1 shows 

the results from the first group of simulations. 

 
Model of  
ATR2 learning λ  Number of 

presentations 
Established 
categories for A  

Committed 
nodes 

Classic 0 250500 126 247 
General 0.0018 250500 126 163 
General 0.0020 250500 126 154 
General 0.0022 250500 126 138 

 
Table 1 Number of committed nodes used by classic ART2 learning and general ART2 
learning after infrequent presentation of untypical input patterns. 

 
 
 

Model of ART2 
learning λ  Number of 

presentations 
Established 
categories for D  

Committed 
nodes 

Classic 0 375750 73 129 
General 0.0018 375750 73 121 
General 0.0020 375750 73 114 
General 0.0022 375750 73 101 

 
Table 2 A comparison of committed nosed where the network were presented with a 
continually shifting input space. 

 
 

The second group of simulations used two sets of 
input patterns C  and D , which were derived from A . 
They divided A  into two halves by arbitrary extraction 
of input patterns form A . Each of the halves contained 
750 input patterns. The simulations aimed at observing 
the two learning mechanisms response to a continually 
changing input space. The initial input set C  was 
gradually changed to D  by replacing patterns in C  
with those in D . After 500 pattern presentations one 
pattern from D  replaces one pattern from C  until the 
input set C  became D . The simulations were carried 
out four times – once with parameter 0=λ , which 
corresponds to the classic ART2 learning, and three 
times with values 0022.0;0020.0;0018.0=λ , 
which correspond to the general learning with different 
rates of slow forgetting. Table 2 shows the results from 
the second group of simulations. 

The simulations classified identically the input 
space D  into 73 categories, but using different number 
of committed nodes. 
 
 
5 CONCLUSION 
 

This paper discusses a general learning mechanism 
that allows forgetting within ART2 neural networks. 
The proposed approach is straightforward and arguably 

biological plausible. It preserves the main properties of 
the ART2 architecture, but enhances a variety of 
network features, releases redundant resources for 
further learning, and helps to prevent the system from 
blocking. This model increases the system’s ability to 
drop out error information obtained during learning, and 
to adapt to a continually changing or very large input 
spaces. 
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