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ABSTRACT 

Modern mechatronic products make use of the close inter-
action between mechanics, electronics, control engineer-
ing and software. As those systems increase in complexity 
and the interaction with its environment demands 
autonomous behavior, the need for inherent intelligence 
becomes ever urgent. Based on a framework for self-
optimizing mechatronic systems, this paper introduces 
Working Principles of Self-Optimization as intelligent 
building blocks for self-optimizing module-agents. As a 
consequence of changing influences on the technical sys-
tem, the working principles allow for an endogenous 
modification of the module-agents’ multi-objective sys-
tem and for an autonomous adaptation of its parameteriza-
tion, behavior and structure. Knowledge bases of working 
principles together with an extended process model for 
learning from past experience enables the mechatronic 
agents to apply stored working principles to current situa-
tions and to learn from the outcome of their execution. 
The proposed approach is verified within a railway 
application scenario. The linear-motor drive of shuttle 
trains is self-optimized by the working principle of 
Preview Control. 

Keywords: Hybrid System Applications; Case-Based 
Reasoning; Intelligent Agents 

1  INTRODUCTION 

Mechatronic systems comprise the domains of mechanical 
and electrical engineering as well as control systems and 
software. About forty researchers from various disciplines 
such as mathematics, computer science, mechanical and 
electrical engineering investigate methods and tools for 
the development of self-optimizing systems within the 
“Collaborative Research Center 614 – Self-Optimizing 
Concepts and Structures in Mechanical Engineering“ 

[SFB614-ol] set-up at the University of Paderborn, Ger-
many. The “New Railway-Technology Paderborn” project 
[NBP-ol] serves as a demonstration object for self-
optimizing mechatronic systems. 

This paper introduces working principles of self-
optimization as building blocks for intelligent self-
optimizing systems. Functional agent-modules learn from 
past experience by applying working principles stored in 
the agents’ knowledge base to current situations. By 
communicating with other agent-modules and by revising 
own behavioral adaptation strategies, the agent-modules 
optimize themselves with time passing. The remainder of 
this paper is organized as follows: The second chapter 
introduces the architectural framework of self-optimizing 
mechatronic systems. Derived from the proposed func-
tional module-hierarchy, the third chapter elaborates on 
the novel idea of working principles of self-optimization. 
The fourth chapter incorporates the working principles of 
self-optimization into knowledge bases of agent-modules 
together with a process-model based on an extended case-
based reasoning approach. The fifth chapter exemplifies 
the usage of the process-model and the knowledge base of 
working principles with the help of an application sce-
nario – the preview control of shuttles. The last chapter 
gives a short summary of the findings and an outlook on 
future work. 

2  SELF-OPTIMIZING 
MECHATRONIC SYSTEMS 

In order to cope with the inherent complexity, large 
mechatronic systems are usually decomposed into func-
tional units which create a multi-hierarchical system of 
superordinated and subordinated modules [Gau02].  [SFB-
ol] defines self-optimizing technical systems as follows: 
“Self-optimization of a technical system refers to the en-
dogenous modification of the target vector due to chang-
ing environmental conditions and the resulting target-
compliant, autonomous adaptation of the structure, the 



   

behavior and the parameters of this system. Self-
optimization therefore far exceeds known control and 
adaptation strategies; self-optimization enables empow-
ered systems with inherent intelligence which is able to 
react autonomously and flexibly to changing environ-
mental conditions.” The approach deployed by the Col-
laborative Research Center is based on a hierarchical 
structure of cooperating and communicating module-
agents on three main-levels, see figure 1. The Mecha-
tronic Function Module (MFM), e.g. a drive-train, repre-
sents the lowest-level with assembly groups consisting of 
sensors, actuators, and other subassembly-groups. The 
Autonomous Mechatronic System (AMS), e.g. a train 
shuttle, is made up of multiple MFM’s and is character-
ized by its autonomous behavior which allows for interac-
tion with the environment and reaction to external influ-
ences. The Cross-Linked Mechatronic System (CMS), e.g. 
a convoy of some shuttles or a track-network, constitutes 
the highest level of the hierarchical structure. The CMS 
consists of AMS’s that may not physically be connected 
any more but cross-linked by exchange of information 
only. The lower the level the more strict the real-time 
constraints and the less intelligent – in the sense of simple 
reactive behaviors – the modules are. The higher the level 
the more deliberative and autonomous intelligent behavior 
the modules show. So-called Operator Controller Mod-
ules (OCM) realize the functional structure of the mecha-
tronic system on each level. The functionality of OCM’s 

is depicted in the subsequent paragraph. Each module-
agent owns a Knowledge-Base (KB) of past experienced 
Working Principles of Self-Optimization (WPso). Facing a 
new situation the agent selects the most similar and prom-
ising working principle experienced in the past and adapts 
it to the current needs. By evaluating the outcome of the 
employed working principle, new behavioral patterns can 
be learned and the knowledge base can be enhanced. The 
methodology of using past experience to solve current 
requirements is also known as Case-Based Reasoning 
(CBR) [Ber02] and will be addressed in chapter four. 

Operator-Controller-Modules (OCM) control the behav-
ior of mechatronic systems. The OCM consists of so-
called Operators and Controllers, see figure 2. The Opera-
tor incorporates the intelligent self-optimizing information 
processing unit of the mechatronic system. Considering 
the influences from the environment as well as a multi-
objective system provided externally by a user or another 
OCM via communication, the Behavior-based Self-
Optimization determines the next optimum action on a 
behavioral model. The optimization process cycles 
through a Loop of Behavior where it analysis the current 
situation, plans the next steps and evaluates the possible 
outcomes, decides on the optimal action and executes the 
calculated plan. The Model-Based Self-Optimization in-
corporates physical, mathematical and optimization mod-

Figure 1: Hierarchical Mechatronic System 



   

els of the mechatronic system to decide on one of various 
possible control system models to be employed.  

 

Figure 2: Operator-Controller-Module 

By applying one of those models, the Controller part of 
the OCM directly impacts the respective mechatronic 
structure via actuators and sensors. [Kle+02] elaborates in 
more detail on the OCM and the design of self-optimizing 
agent-based controllers based upon OCM’s. [SS03] pre-
sented an approach for an ontology for the above men-
tioned decentralized intelligent self-optimizing mecha-
tronic system at the CMS level. The proposed ontology 
will be used for terminological references in the remainder 
of this paper. 

3  WORKING PRINCIPLES OF 
SELF-OPTIMIZATION 

Working Principles of Self-Optimization (WPso) form the 
building blocks of intelligent mechatronic systems. [SFB-
ol] defines working principles of self-optimization as a 
combination of the application scenario of the working 
principle (e.g. driving on a track or crossing a switch) 
together with a technical system (e.g. drive-train) as well 
as the influences on the technical system from the envi-

ronment, users or other system elements and adaptation-
components as depicted in figure 3. The technical system 
constitutes of a structural model (e.g. topology of me-
chanical components, sensors and actuators, or physical 
models of the mechatronic system) as well as behavioral 
models (e.g. differential equation systems) and their 
parameterization. A multi-objective system prescribes 
necessary constraints imposed from subordinate systems 
and goals given by superordinated systems of the techni-
cal system at hand. The working principle of self-
optimization allows for the endogenous modification of 
the multi-objective system based on changing influences 
on the technical system, as well as for the multi-objective-
compliant, autonomous adaptation of parameters, behav-
ior and structure. Adaptation strategies and tactics define 
the kind and process of modifications whereas adaptation 
costs represent the effort of adaptation in terms of e.g. 
energy-consumption, time-delays, or monetary payments.  

 

Figure 3: Working Principles of Self-Optimization  

Altogether the working principles reflect a structure of 
detailed or generalized behavioral patterns for a mecha-
tronic system which may be used by the Operator module 
to guide the behavior of the OCM in a specific situation 
[GS03]. Typical examples for low-level working princi-
ples may be Hierarchical Clustering and Focus-Search-
Group [MA02] to build-up internal world-models of the 
environment and Reinforcement-Learning [KLM96] as a 
method for the OCM-agent to explore unknown state-
spaces via stimulus-response schemata. The subsequent 
chapter on the application scenario of driving on a track 
presents the higher level working principle of Preview-
Control by Pareto-Optimization [Del+03] at the autono-
mous mechatronic systems (AMS) level. Future work will 
deal with working principles at the level of cross-linked 
mechatronic systems such as Auction- or Negotation-



   

based Crossing of Switches by the autonomous coordina-
tion of multiple shuttles. For example [Ger03] propose a 
so called negotiation-graph that represents the characteris-
tics of the trading-agents or [MP99] describe a multi-agent 
bidding mechanism based on a cooperative Case-Based 
Reasoning (CoopCBR) model.  Both the negotiation graph 
and the CoopCBR approach may be interpreted as work-
ing principles of self-optimization within the application 
scenario of auction- and negotiation-based crossing of 
switches. 

4  KNOWLEDGE BASE OF 
WORKING PRINCIPLES 

Each OCM-agent owns an individual knowledge-base KB 
of working principles of self-optimization that represent 
past experiences. The OCM-agent employs a working 
principle in a specific application scenario. When facing a 
new situation, the OCM agent selects the most similar 
historic application scenario from the knowledge-base and 
adapts the respective working principle to the new situa-
tion. After having employed the working principle, the 
OCM agent evaluates the outcome and stores the new 
experience if necessary. The methodology of using past 
experience to solve current problems is known as Experi-
ence Management [Ber02] or Case-Based Reasoning 
(CBR). [AP94] describe the process from retrieving a 
situation or problem case up to the stage of storing a 
learned case with the help of a Case-Based Reasoning 
Cycle.  Figure 4 depicts an adapted version of the CBR-
cycle as a novel process model which controls the applica-
tion of working principles within the scope of knowledge 
bases of mechatronic systems. A set of n sensors si (i=1, 
…, n) deliver a sensor input vector i = (i1, i2, …, in) in the 
Sense step. The sensor vector i is decomposed into an 
environmental vector e, a vector for the user demands u, 
and a vector standing for superordinated systems s en-
hanced by an externally given multi-objective system z. 
The tupel CPC = (e, u, s, z) represent the influences on the 
technical system and make up the initial problem case 
CPC. A similarity vector function sim: CPC × KB → [0;1] 
calculates the weighted similarity value of all working 
principle cases  

Cwp ∈ KB = {(CHPC,CHSC) | CHPC=historical prob-
lem case; CHCS = historical solution cases}  

that are part of the agent’s knowledge base KB with re-
spect to the problem case CPC. The similarity values range 
from 0 (not similar) to 1 (full similarity). The Retrieve 
step returns a ranked list of similarity-judged cases where 
only the most similar case CSim = (CSimPC,CSimSC) is used. 
The solution case tupel CSimSC = (S, B, P, AS, AT, AC) 
includes the solution of the historical most similar case 
CSim as vector-elements of Structure S, Behavior B, Pa-
rameters P, Adaptation-Strategy AS, Adaptation-Tactics 
AT, and Adaptation-Costs AC. With the help of the adapta-

tion vector function adapt: CPC × CSimPC × CSimSC → CSC 
the Reuse step adapts the historical solution CSimSC accord-
ing to the functional differences between the initial prob-
lem case CPC and the historical solution case CSimSC and 
thus returns the solved case CSC. The Revise step applies 
the solved case by uploading the working principle into 
the Operator of the respective OCM agent. After execu-
tion of the working principle a new tested case CTC is 
constructed from the outcome of the executed solved case 
CSC.  

 

Figure 4: CBR-Cycle (adapted from [AP94]) 

The real outcome of the executed working principle ver-
sus its expected outcome is evaluated by the function 
judge: CSC × CTC → ACTC and leads to adaptation-costs 
ACTC of the tested case CTC. The Retain step decides on 
whether the tested case shall be added to the knowledge-
base as a new learned case CLC. 

The experience management setting proposed in this pa-
per differs from traditional approaches in many respects. 
Traditional approaches of CBR in mechatronics are typi-
cally used within a single domain only. For example, 
[SV98] formulates and processes design knowledge in 
fluidics by the use of CBR.  [SKC01] utilizes hierarchical 
case-based reasoning and decompositional problem-
solving techniques for plant-control software design. Our 
work not only proposes working principles of self-
optimization as connecting elements to cover all mecha-
tronic domains – mechanical and electrical engineering as 
well as control systems and software.  But also we put 
forward the CBR method as a fully automatically running 
coordination and communication process among all OCM 
agents on all levels of the hierarchical mechatronic system 
framework – CMS, AMS and MFM. 



   

5  APPLICATION SCENARIO 

This chapter exemplifies the use of the OCM-agents’ 
knowledge base of working principles of self-optimization 
with the help of a real-world application scenario – the 
optimized driving of a shuttle on a track. Figure 5 depicts 
the application scenario. For a detailed technical descrip-
tion of the shuttle system see [NBP-ol]. The track is di-
vided up into several track sections. Each track section is 
controlled by a specific track control which controls the 
track current (phase and amplitude) that builds up a mag-
netic field on the track section. The track sections com-
municate with each other to generate a continuous mag-
netic wave especially at the connecting elements of 
neighboring track sections. The track section agents may 
also communicate with other actors of the scene, e.g. the 
shuttle or the station. The goal system of the track-control 
mainly includes the setting of an optimal track-current 
which allows for a minimum attrition of the track when 
shuttles cross the track. The shuttle accelerates and decel-
erates on a track by generating an own magnetic field 
which is functional dependent on the magnetic field of the 
track. Let the multi-objective system of the shuttle on the 
AMS level consist of 1) the desired manoever – driving 
single which leads to more freedom of choice regarding 
velocity etc. or driving in a convoy of shuttles which is  
energy saving – 2) the desired energy management and 3) 
the desired safety.  

 

Figure 5: Application Scenario – Preview Control 

On a lower hierarchical level – the MFM level – the shut-
tle constitutes of the drive-train module. The objectives of 
the drive-train include parameters such as velocity and 
thrust which are imposed by the shuttle objective system. 
Other agents that may influence the technical system can 
be identified as users driving in a shuttle and stations 

where users may enter and exit the shuttles. The typical 
multi-objective system of users consist of the target loca-
tion the user wants to go to, the budget the user is willing 
to spend for the trip and the comfort the user wishes to 
enjoy. This example shows clearly that budget and com-
fort are contradictory goals which must be balanced. The 
station’s objectives may include the optimum scheduling 
of its platforms. However, the station-agent is only de-
picted to show a complete picture of the whole scenario. It 
will be neglected for the further studies. Each OCM-agent, 
the track-control, the shuttle, the drive-train, the user, and 
the station, exhibit its own knowledge base of working 
principles of self-optimization. The agent-specific work-
ing principles control the specific behavior of each agent. 

Figure 6 depicts the process of applying the knowledge 
base of working principles on the application scenario. Let 
the user u impose a certain level of comfort C on the shut-
tle. The system scenario reflects the current state of the 
shuttle and drive-train state-variables. In particular, let the 
system scenario s comprise the safety objective S of the 
shuttle. Let the shuttle sense its environment E leading to 
an environmental vector e. Using this information, step 1) 
Sense / Query builds up the problem case CPC = (e, u, s, z), 
where z := Z1 = (C, S). Let the most similar historical 
case of the shuttle’s knowledge base be the working prin-
ciple of self-optimization CSim = (CSimPC, CSimSC) consist-
ing of the solution tupel CSimSC = (S, B, P, AS, AT, AC). 
The adaptation strategy AS comprises a Preview-Control 
behavior. Preview control incorporates knowledge about 
the track sections ahead in order to modify the current and 
future behavior of the drive-train, see [HO03]. The shuttle 
actually driving from track section 1 to track section 2 
may have communicated with track section 3 in order to 
receive information about the current situation on that 
segment. Other adaptation strategies such as reinforce-
ment learning may favor the immediate information of the 
current situation when other information about upcoming 
segments is not available because of communication fail-
ure or the like. The adaptation tactics AT = (P1,M1,O1,Z1) 
comprise information about the adaptation of the physical 
models P1, the mathematical models M1, the optimization 
model O1 and the multi-objective system Z1 of the se-
lected drive-train working principle of self-optimization. 
Instead of the real shuttle model, a simpler vertical dy-
namics car model is used in the remainder of this paper 
(see [Ril02]). The simplified structure P1 of the physical 
model is depicted as a chassis P1.1 and a wheel P1.2. The 
parameterization of P1 consists of the mass mA, the 
spring-constant cA the damper constant dA of the chassis 
as well as the mass mR and the spring-constant cR of the 
wheel. The movement zA of the chassis, zR of the wheel 
and zS of the drive-train can be observed. The mathemati-
cal models M1 are derived from the physical models as 
differential equation systems. The optimization model O1 
subsumes the optimization of 1) the comfort C and 2) the 
safety S objectives as minimizing the area of the squared 
1) weighted movements of the chassis zA and the ac-



   

celeration of the chassis Az  and 2) the movement of the 
chassis zR within a time-interval [0;tE]. However, the 
multi-objective system Z1 prescribes a pareto-optimality 
of both objectives C and S. With the help of the evolu-
tionary pareto-algorithm put forward in [Del+03] a pareto-
curve of pareto-optimal states is calculated and concep-
tional depicted in the lower left part of figure 6. Let the 
blue P1 = (C1,S1) and the green P2 = (C2,S2) be two 
pareto-optimal states for comfort and safety settings. P1 
and P2 lead to two goal-trajectories, blue and green, 
which control the behavior of the preview-control mecha-
nism where P1 was used in the historical most similar 
solution case CSimSC. The Reuse step adapts CSimSC accord-
ing to the current situation leading to the adapted working 
principle as a solved case CSC. For example more safety 
was demanded which must be traded for less comfort. 
Within the mathematical and optimization model, more 
safety induces stronger spring-damper components which 
in turn reduce the comfort of driving. The adaptation to 
the current situation leads to discarding the pareto-optimal 
blue point P1 and using the green point P2 instead. P2 
again involves the application of the green goal trajectory 
in favor of the blue one. 

The drive-train acts according to the chosen and adapted 
working principle and leads to a real-world tested case 
CTC. The Revise step evaluates the real outcome of this 
action versus the expected outcome presumed by the 
adapted working principle. Among others the value judg-
ment leads to an update of the adaptation costs AC, e.g. 
energy-consumption, monetary payments, and the adapta-
tion tactics AT. Using this information, the Retain step 
decides whether the so constructed learned case CLC shall 
be stored in the knowledge base or not. 

6  SUMMARY  

This paper introduced working principles of self-
optimization as basic building blocks of intelligent self-
optimizing systems. It has been shown, how the working 
principles of self-optimization can be incorporated into 
the knowledge bases of functional-module-agents of self-
optimizing systems on all levels – ranging from the 
Mechatronic Function Module (MFM) via the Autono-
mous Mechatronic Module (AMS) to Cross-Linked 
Mechatronic Systems (CMS). A process model was pro-
posed that constitute an extension to the common case-
based reasoning approach. This process model controlled 

Figure 6: CBR-Process for applying Working Principles of Self-Optimization 



   

the application of the working principles of self-
optimization according to the principle of using past ex-
perience to solve current problems. An adaptation of the 
working principles and the incremental learning of the 
functional module agent by incremental storing new ex-
periences in the knowledge base were presented. 

Future work will include the extension of the idea of 
working principles of self-optimization on the cross-
linked mechatronic system level, in particular the evolu-
tionary and evolving behavior patterns of communicating 
and cooperating functional-module agents. Also the need 
of fuzzy representations of mechatronic systems and vari-
ables will drive the research into the fuzzification of the 
process model of retrieval, adaptation and learning of 
working principles. Last but not least, new application 
scenarios within the Collaborative Research Center 614 
and the New Railway Technology Paderborn will require 
the investigation of new working principles of self-
optimization. 
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