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ABSTRACT 
 
The flexibility and adaptability of Fuzzy Logic are 
convenient qualities to Decision Making. Its capacity to 
elaborate linguistic models could be very useful to solve 
real problems getting a better communication with 
Decision Makers and Experts. Many revealing studies 
has been accomplished on Multi-valued Logics, 
including the explorations of a variety of operators; 
however, the real possibility to incorporate expert 
knowledge, and Decision Maker subjectivity in practical 
models still being limited.  This lack is crucial; the 
necessity of better axiomatic approaches and practical 
capacity is evident. The aim of this paper is to provide a 
new axiomatic development on Multi-valued Logic, 
with applications in Decision Making. The proposal 
disregards the classical point of view of norm and 
conorm,. Existential and Universal quantifiers are 
defined consequently and Propositional Bivalent Classic 
Calculus is introduced from this Logical System.  
 
Keywords: Fuzzy Logic, Management, Decision 
Making, Multivalued Logic. 
 
1. INTRODUCTION 
 
To combine the knowledge comprised in the literature 
with that contained in expert’s brains may be 
acknowledged as a clear demand for rational decision-
making in complex and dynamic environments (French 
1986, Ostanello 1984). The conditions that modern 
managerial practice experiments, such as breakthroughs 
in technology of information, and the prescriptions of 
the new managerial paradigms demand the existence of 
more flexible mathematical models. Thus encompassing 
the subtleties of knowledge. This may enhance the 
organizational intelligence in a way that its strategic 
goals become more attainable as a result of 
improvements in tactical and operative decision-making 
processes.     

The application of the Fuzzy Logic approach has 
expanded very rapidly to obtain models in non 
formalized sciences; and remarkable progress has been 
made in the developing of computing systems for 
several purposes, including finances and enterprise 
direction (Von Altrock 1995, Kauffman/Gil Aluja, 
1990, Gil Aluja 1996). Its flexibility permits the 

effective interpretation of natural language, as expressed 
in any situation, to construct formal models, and to 
render conclusions on the basis of these models.  
 
Even though the main aspects of this theory are 
remarkable, several pragmatic concerns show the 
necessity to perfect. One of the most well-known 
applications of Fuzzy logic is Automatic Control 
(Passino 1998, Reznik 1997). It could be said, that the 
use of simple rules, instead of intricate procedural 
patterns has shown better results in this practice. The 
usage of average methods of defuzzification may be 
recognized as evidencing the appropriateness and 
relevance of the new logic-system development which 
essence is compensation.   
          
It can be argued that in the current practice of 
managerial decision-making, the use of complex 
predicates, such as those coming from exchanges with 
experts, shows a tendency to construct complex and 
subtly frameworks. This puts demands on the 
possibilities of a logical approach in order to cope with 
the structural complexity of businesses and their 
unstable environments.   
 
On the other hand, the assignment of truth-values to 
predicates through application of diverse multi-value 
logics, lack some desirable properties. One of these 
concerns their sensibility to changes in truth-values of 
the basic predicates, or the ‘verbal meaning’ of the 
truth-values of one agent. Likewise, the variations 
associated with the selection of the connective 
implication are significant, and the theory proposes a 
high number of diverse operators that are not strictly 
determined by specific conjunctions and disjunctions. 
The aim of this paper is to propose a logical system that 
can cope with these drawbacks.                
 
2. BASIC NOTIONS OF FUZZY LOGIC 
 
In Boolean logic a predicate p is a mapping from the 
universe set X to {0, 1}. For example, the sentence ‘x is 
a friend of y’ admits a model in which, according to this 
logic, the predicate  p from the set of pairs (x, y) to 
{0,1}, assigns 1 if x is effectively a friend of y and 0 if 
it cannot be assured that x is a friend of y. 
 



The propositional connectives ∧ , ∨ , y, ¬,  symbolize 
operations on sentences.          
 

• p ∧  q is true when and only when both  p and 
q are true. It is called conjunction, and  
symbolizes the inclusive use of “or” in natural 
language.  

• p ∨  q is false when and only when both p and 
q are false. It is called disjunction, and 
symbolizes the use of “and” in natural 
language.  

• ¬p is true when p is false, and conversely. It is 
called the negation of p. 

  
As they are defined in regard to truth values, their 
functional nature can be addressed as  mappings from 
{0, 1}×{0, 1} and ({0;1} for ¬p) to {0;1}  
(Aranda,1993)  
 
Thus, for instance, if  p(x, y) symbolizes the sentence ‘x 
is a friend of y’, then the sentence ‘x is a friend of y, but 
he is not a friend of x’ should be symbolized by the 
predicate p(x, y) ∧ ¬p(y, x). 
 
The set of predicates built up by the application of ∨, ∧, 
and ¬ satisfy a number of properties which render the 
structure of the classical Boolean Algebra. Each 
statement composed by propositional connectives 
determines a truth function, which assigns its truth-
values by virtue of the truth-values of the component 
statements, and the truth tables of the propositional 
connectives. One of the basic notions of propositional 
algebra is the ‘Law of the Excluded Middle’, which 
asserts the tautological character of the statement ¬ 
(p∨¬p). 
 
In contrast to the Law of the Excluded Middle, the 
principle of gradual simultaneity is ascertained within 
new logical approaches for which a predicate is a 
mapping from the universe X to the interval [0, 1]; 
instead of the classical set {0, 1}. This definition 
satisfies the Boolean ‘Propositional Calculus’, excepting 
the law of the exclusion, and its implications.    
  
The exertion of these logics in practical problems 
requires the construction of category scales, or 
classifications, which can aid experts to assign truth 
values; or specify the dependence of predicates on 
proxy attributes to permit their direct assignment. A 
widely used scale is the following:      
0: false; 0.1: nearly false; 0.2: very false; 0.3: somewhat 
false; 0.4: more false than true; 0.5: as true as false; 0.6: 
more true than false; 0.7: somewhat true; 0.8: very true; 
0.9: nearly true; 1: true.  
 

One multi-valued logic arises from the following 
definitions: 
 

• u(p∧q) = u(p).u(q) 
• u(p∨q) = u(p) + u(q) − u(p).u(q) 
• u(¬p) =1− u(p) 
•  

where u(p) is the truth value of p. 
 
The logic so defined does not satisfy transitivity, but it 
satisfies commutativity, associativity, and De Morgan’s 
Laws. This type of logic is usually referred to as 
probabilistic logic. The definition of connectives is 
accomplished by the probabilistic expressions for union 
and intersection of events. However, the assignment 
does not assume any interpretation in terms of 
probability.  
 
In addition, connectives ∧ y ∨ satisfy the following 
properties.  
� Any increment in the truth values of p and q cause 

increments in the truth values of p∧q, whenever one 
of the truth values remains at level 0. 

� Any increment in the truth values of p, or of q, 
cause increments in the truth values of p∨ q, 
whenever any of the truth values remains at level 1.  

 
The latter reveals an ‘attractive’ sensibility, which, in 
regard to the normative approach to decision analysis, 
can be related to the axiom of continuity. Yet this 
property allows the possibility to modelling veto 
conditions, as considered by the so-called European 
approach. This feature makes it rather convenient for 
structuring and solving problems concerning ranking 
construction or alternative selection. The failure to 
satisfy the idempotent property causes the loss of verbal 
significance, or its attainment to a category scale. This 
feature disregards the approach to be used in 
classificatory or evaluation problems.      
           
Considering: 
� u(p ∧q) = min(u(p), u(q)) 
� u(p∨q) = max(u(p), u(q)) 
� u(¬p) =1− u(p) 
 
the most used logic is obtained. It is, of course, the 
Fuzzy Logic system. Certainly, this is an extension of 
the two-value logics; moreover it is the only associative 
and idempotent system that satisfies properties (1) and 
(2): 

)1())(),(min()( qvpvqpv ≤∧

)2())(),(max()( qvpvqpv ≥∨
 
 



 
 These statements are sufficient to assure the cardinality 
of the truth values; which is convenient for 
classification and appraising problems. However, the 
values of the compound predicates may remain 
unaffected by important modifications exerted on values 
of the basic predicates; thus making the approach 
unsuitable for ranking or selection problems.  
 
The operators * that satisfy 
are called average operators. 

 
The definition of operators for implication is rather 
diverse (Dubois D. /Prade H. 1980); for example, the 
definition qpqp ∨¬=→

pqp ¬=→

()( qqp →∧→=

, and the so-called Zadeh 
implication , which is 
widely utilized in control theory. Similar to Fuzzy Logic 
(in a narrow sense), the latter satisfies the classical 
inductive implication ‘modus ponens’ in terms of 
Zadeh’s definition of a well-formed deductive structure 
(Dubois D. /Prade H. 1980,  Zadeh 1965). Thus, the 
equivalence is defined by 

 and the respective 
universal and existential quantifiers over X are defined 
by:  

)( qp ∧∨

)pqp ↔

                   ∃   =  )(xpx ))(( xp
Xx∈

∨

 

These definitions convey the virtues and defects of the 
used conjunction and disjunction connectives. 

))(()( xpxpx∀

3. COMPENSATORY LOGIC 
In this theory, conjunction is usually defined as a 
continuous, associative and symmetric connective that 
satisfies (1); and the disjunction is defined as an 
operator implied by De Morgan’s laws, according to the 
definition of conjunction. In such circumstances, 
conjunction satisfies the t-norm property, and 
disjunction satisfies the t-conorm property.   
 
It should be noticed that properties 1 and 2 lead to the 
conclusion that the truth-value of the conjunction is 
equal or less than those of its components; and the truth 
value of the disjunction is equal or greater than those of 
its components. The rejection of these properties 
constitutes the basic idea of the Compensatory Logic. In 
contrast, it bears the notion that an increase or decrease 
of the truth value of the conjunction or disjunction, as a 
result of changes in the truth value of one of its 

components, can be compensated by an increase or 
decrease, respectively, in another component. This 
notion yields a very sensible Multi-value Logic, which 
also maintains the category value of the truth values. 
This makes it especially useful for selection problems, 
but it is also convenient for ranking, appraising, and 
classificatory purposes.   
 
In this logic, conjunction should be a continuous 
operator from [0,1]n  to [0,1] , such that the following 
holds. 
 )3())(),(max()*())(),(min( qvpvqpvqvpv ≤≤ 1. c(1,1,...,1) =1 
2. If  xi=0 for any i then c(x1,x2, ...., xn)=0. 
3. c(x1,x2,,...,xi,...,xj,...,xn)= c(x1,x2,,...,xj,,...,xi,...,xn) 
4. If   x1=y1, x2=y2, ...., xi-1=yi-1, xi+1=yi+1,...., xn=yn  are not 

equal zero, 
and  xi>yi  then c(x1,x2,...,xn)>c(y1,y2,...,yn) 
4. c(x,x,....,x)=x 
 
In this case, associativity is not included, because it is 
not compatible with other desirable properties. Thus, it 
is necessary to define this operator over [0,1]n. 

Properties 1, 2 guaranties that the restriction of c to 
{0,1} matches the conjunction of the binary logic; 
property 3 is symmetry, but extended to the n-
dimensional case.  
  
The idempotent property is a necessary condition to 
preserve the significance of the given truth values, as 
well as the strict monotony of the operator for all the 
variables, whenever these are not zero. The latter 
assures the so-called sensibility of the connective 
predicates without losing the veto restrictions furnished 
by condition 2.  
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From 4, it follows that the operator is strictly increasing 
on [0,1] n for all variables. This assures the ‘sensibility 
of the conjunctive predicates’ to changes exerted on 
basic predicates. Indeed, property 4 determines the 
impossibility of associativity. This arises because there 
are no average strictly-increasing operators 
(Dubois/Prade, 1985), and c is an average operator, as 
proved in what follows. Let (x1,x2,...,xn) in [0,1] n , 
xm=min{xi] y xM=max{xi}; then, strictly increasing 
property verifies if   
    

),....,,(),....,,(),....,,( 21 MMMnmmm xxxcxxxcxxxc ≤≤
 
and from idempotent property 

Mnm xxxxcx ≤≤ ),....,,( 21

c is therefore and average operator. 
 



Among the operators found in literature, the unique 
operator satisfying the previous axioms is the geometric 
mean. 
 

n
nn xxxxxxc /1

2121 )......(),....,,( =  

 
The following axioms for negation n: [0,1] → [0,1] are 
demanded whenever they preserve their convenience for 
the pursued goals: 
 
6. n(0)=1 
7. n(1)=0 
8. n is continuous and strictly increasing. 
9. n(n(x))=x 
 
When 10. n(1/2) = 1/2, is added, which is a rather useful 
property to preserve a categorical meaning, it can be 
shown that: n(x) = 1-x. 
 
On the other hand, disjunction must be defined in a 
sense that satisfies the De Morgan’s Laws: 
 
11.      n(c(x1, x2, .... , xn))=d(n(x1),n(x2), ...., n(xn)) 
            n(d(x1, x2, .... , xn))=c(n(x1),n(x2), ...., n(xn)) 
 
Thus, by taking the geometric mean as a definition for 
conjunction, disjunction is defined by  
 

n
nn xxxxxxd /1
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From these properties, similar properties for disjunction 
can be shown. This is, 

 
12. If  xi =1 for any i then d(x1, x2, ...., xn) = 1 
13. d(x1, x2,..., xi,..., xj,...,xn)= d(x1, x2,..., xj,,..., xi,..., xn) 
14. If   x1 = y1, x2 = y2, ...., xi-1 = yi-1, xi+1 = yi+1,...., xn = yn  
are not equal zero, 

and xi > yi, then d(x1, x2,..., xn) > d(y1, y2,..., y n) 
15. d(x, x,..., x) = x 
 
Other very important properties with utility in Decision 
Making situations are: 
 
16. ),,())),,(( zyxcxzyxccx −≥−  

17. ),,())),,(( zyxdxzyxddx −≥−  
 
This elementary properties of average operators are very 
important because establishes that the influence of 
predicates in superior levels in a logical definition trip is 
more than the inferior levels. 

The implication could be defined naturally as 
i(x,y)=d(n(x),y) like was made in previous papers 
(Espin,  2002) 
 
For this implication the following properties hold  
a) i(x, y) = 0 if and only if x = 1 and y = 0  
b) i(x, y) = 1 if and only if x=0 or y=1 
c) i(x, y) = i(n(y), n(x)) 
d) If x1, x2, y ] [1,0∈  and 

),(), 2121 yxiyxx >(xithen<  

e) If x, y1, y2 ] [1,0∈   

),(),( 211 yxiyxiyand <2 theny<  

Such properties guarantee the extensionality of the 
binary logic implication, and provide an increasing 
implication over y for this logic system; but decreasing 
on x. 
 
But this last characteristic it could be good for 
modelling deductions, but it have practical troubles in 
decision making problems, like it will be illustrated in 
this paper. 
 
The naturality of  this operator is an illusion; because 
the idea of its definition is influenced of the third 
excluded axiom. It would be better the use of: 
 i(x,y)=d(n(x),c(x,y)) a generalization of the so-called 
Zadeh implication. 
 
This operator has the following very recommended 
properties: 
 
17.  i(x, y) = 0 if and only if x = 1 and y = 0  
18.  i(x, y) = 1 if and only if x=0 or (y=1 and x=1) 
19.  If x, y1, y2 ] ]1,0∈  

),(),( 2121 yxiyxiyyand <then<  

20.  If y ] [5.0,0∈  and 

),(), 211 yxiyxx >(2 ithenx<  
 
21.  If y [ ]1,5.0∈ . 
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   Existential and Universal quantifiers are defined in the 
case of limited sets on Rn, in natural way from the 
concepts of disjunction and conjunction, respectively. 
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A predicate such as C )()( jii PIij →∀=  where Ii 
is the predicate that models the sentence ‘the goal i is 
important’, and predicate Pji expresses the 
accomplishment of the goal i aims or desires of i, , by 
the alternative j is a very general scheme for Decision 
Making  problems. Note that, when predicates 
associated to attributes are considered, then the resulting 
situation can be identified as the classical multi-criterion 
decision problem. The very difficult form to obtain 
rigorously the so-called weights in normative additive 
models of decision making (French, 1986) is substituted 
hear for the corresponding truth values of the predicates 
‘The attribute i is important’ for each attribute i.  
 
Further, this approach guaranties the effective 
combination of ‘intangibles’, such as those obtained by 
consulting experts −considering category scales−, with 
quantitative information obtained by predicated that 
depend on the involved elements. The importance of the 
predicates, or attributes, can be obtained by a 
structurally complex way born from knowledge problem 
decision. This has been the case in some of the models 
developed by GEMINIS group to solve frequent 
managerial problems (Espin 1999, Espin 2002).  
 
To summarize, this approach involves ‘trade offs’ 
between attributes, and the possibility of veto conditions 
for each of them; moreover, it permits to model the 
preferential independence by using conditional 
predicates. An empirical research program for the 
validation of this approach was carried out by 
GEMINIS group, which consisted of comparing a 
variety of management models (Espin,2002). In these 
studies, the best results were obtained by using 
Compensatory Logic, thus ratifying its convenience for 
selection, appraising, ranking, and classification 
problems. 

 

The formulas of Propositions Compensatory Calculus 
are composed functions of  the operators c,d, n and i. 
Following the spirit of the introduced Compensatory 
Predicates Calculus, a formula [ ] [ ]1,01,0: →nf  of 
this Propositional Calculus would be true if f(x)>0 for 
every element of the domain, and 
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In this sense the satisfied properties are exactly the 
formulas of Classic Bivalent Propositional Calculus 
using the natural implication or the Zadeh Generalized 
Implication.  
 
 Authors calculated the truth value of all the formulas of 
Kleene Axiomatic System using the 6.5 version of  
MATLAB. Axioms and Results of the calculus are the 
followings: 
 

    

 

)(:1 ABAAX →→
)(:2 BAAX →→

(:3 BAAX →→
))())((( CACBA →→→→

)BA ∧
ABAAX →∧:4     BBA →∧
BAAAX ∨→:5     BAB ∨→

))())(()(:6 CBACBCAAX →∨→→→→
)))(()(:7 ABABAAX ¬→¬→→→

AAAX →
 

¬¬ )(:8  
 
             Natural    Zadeh 
Ax 1      0.5859     0.5685 
Ax 2      0.5122     0.5073 
Ax 3      0.5556     0.5669 
Ax 4      0.5859     0.5661 
Ax 5      0.8533     0.5859 
Ax 6      0.5026     0.5038 
Ax 7      0.5315     0.5137 
Ax 8      0.5981     0.5981 
 
ILLUSTRATION EXAMPLE 
 
An hypothetical case of Multi attribute Decision 
Making is presented below to illustrate the convenience 
of Generalized Zadeh Implication in Compensatory 
Logic. 
Fourth attributes are considered. The Importance 
Attributes Matrix and the Column Vectors of two 
alternatives are in the Matrixes I and P.   
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 The alternative of the second column of matrix P is 
obviously better alternative than another one, because of 
the very bad performance of the first alternative in the 
second attribute, the more important one.  
 
The Matrix T1 of the truth values of  each implications 
and the  result matrix C1 using natural implication are: 
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0.6838    1.0000    
0.6838    1.0000    
0.6838    0.2254    

   0.6838    1.0000    

1T

[ ]0.6838    0.68901 =C

       

 
 
The Corresponding Matrixes for second alternative are: 

 



















=

0.5713    0.6173    
0.5713    0.6173    
0.7735    0.3937    

   0.5713    0.6173    

2T

[ ]0.6163    0.55172 =C

      

 
 

The first alternative is preferred by the first model, and 
the second one by the model using Generalized Zadeh 
Implication. 
 
This express a wrong performance of the Model with 
Natural Implication, its  incapacity of appreciate 
adequately the attributes importance, because this 
implication  takes the constant value one whenever the 
truth value of consequent is 1, independently of the 
attribute importance. 

 
4. CONCLUDING REMARKS 
Decision Making problems are solved frequently in the 
framework of Fuzzy Logic using aggregation operators; 
but Decision Making needs to be hold using systems   
Probabilistic Logic and other multi-valued logic models 
are convenient for selection and ranking problems. 
Fuzzy Logic ‘in a narrow sense’ is convenient for 
appraising and classification problems. Definitions of 
implication may be stated in different ways, and their 
convenience is prescribed by the properties of the 

connectives. Compensatory Logic is convenient for 
selection, ranking, appraising, and classification 
problems. These qualities were exhibited through 
empirical research, in which a variety of Logical 
Systems were developed to resolve managerial 
problems.  Demonstration of Traditional Propositions 
Calculus from this perspective is a good support to this 
axiomatic model. Demonstration of all the classical 
Predicates Calculus system from this, is being 
demonstrated.  
 
5. REFERENCES 
Aranda J.(1993) , y otros. Lógica Matemática. Sanz  y 
Torres. 
Dubois  D. and Prade  H. (1980)  Fuzzy Sets and 
Systems: Theory and Applications. Academic Press Inc.  
Dubois D., Prade H. (1985) : A review of fuzzy set 
aggregation connectives. Information Sciences 36, 85-
121. 
Espin, R and E. Fndez. (1999) Fuzzy Logic Model for 
Bargaining. Foundation of Computing and Decision 
Sciences (FCDS). Poznan. Vol 24. No. 4.  
Espin, R. and others, (2002)Logical Management 
Models. Proceedings of AMSE Conference. Girona, 
Spain. 
Espin, R. And others. (2002): Compensatory Logic. 
Proceedings  of the Congress of Fuzzy Logic for 
Management and Economy. SIGEF 2002. Mérida. 
Venezuela. 
French S.(1986). ``Decision Theory: An Introduction to 
the Mathematics of Rationality´´NY-Brisbane –Toronto. 
Halsted Press. 
Gil Aluja  J. (1996) Lances y desventuras del nuevo 
paradigma de la decisión. Proceedings of the 
International Society  Congress on Management and 
Fuzzy Economy , Buenos Aires. 
Gil-Aluja, J. (1999) Elementos para una teoría de la 
Decisión en la Incertidumbre. Editorial Milladoirro. 
Barcelona. España. 
Kaufmann A. y  Gil Aluja  J. (1990): ``Las matemáticas 
del azar y de la incertidumbre´´ Editorial Centro de 
estudios Ramón Areces, Madrid.  
Ostanello, D. (1984) ``Outranking Relations´´.Summer 
School of MCDM.Sicilia. 
Passino,K. Yorkovich, S. (1998)‘Fuzzy Control’ 
Addison Wesley.  
Reznik,L. (1997) ‘Fuzzy Controllers’, Victoria 
University of Technology.Ed Newness. 
Von Altrock  C. (1995) Fuzzy Logic and Neurofuzzy 
Applications in Bussines and Finance. Prentice Hall, 
New Jersey.  
Zadeh, L. A. (1965). Fuzzy Sets. Inf. Control 8, 338-
353. 
 



 


	COMPENSATORY LOGIC:
	A FUZZY APROACH TO DECISION MAKING
	ABSTRACT
	The flexibility and adaptability of Fuzzy Logic are convenient qualities to Decision Making. Its capacity to elaborate linguistic models could be very useful to solve real problems getting a better communication with Decision Makers and Experts. Many rev
	INTRODUCTION
	
	BASIC NOTIONS OF FUZZY LOGIC


	These statements are sufficient to assure the cardinality of the truth values; which is convenient for classification and appraising problems. However, the values of the compound predicates may remain unaffected by important modifications exerted on valu
	
	
	
	COMPENSATORY LOGIC
	
	
	Dubois  D. and Prade  H. (1980)  Fuzzy Sets and Systems: Theory and Applications. Academic Press Inc.









