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Abstract  
The Rural Postman Problem (RPP) consists of 
determining a minimum cost tour of a specified arc set 
of a graph (G=(V,A)) with the particularity that only a 
subset T (T ⊆ A) of arcs is required to be traversed at 
least once. The arcs can be directed, undirected or both. 
 
This problem appears in a variety of practical contexts 
like mail, fuel and newspaper deliveries, school bus 
routing, electrical lines inspection, etc. (Frederickson, 
1979). RPP is a NP-hard problem, therefore it has been 
tackled with some heuristics and metaheuristics due to 
the difficulty of using exact approaches to global 
optimality. 
 
Up to now, and based in computational results using 26 
instances described in Christofides et al. (1981) and in 
Corberán & Sanchis (1994), an heuristic algorithm for 
the RPP by Fernández de Córdoba et al. (1998) based 
on Monte Carlo method had obtained the best results. 
Baldoquín et al. (2002) developed a hybrid approach 
based on GRASP and Genetic Algorithm comparable 
with the above method testing the same instances.  
 
In this paper a new hybrid approach based on Simulated 
Annealing, GRASP and Genetic Algorithm is 
introduced to solve the Undirected Rural Postman 
Problem (URPP). 
 
We describe the design of a computational experiment 
to compare the performance of  Monte Carlo and the 
two hybrid method mentioned before, using the same 26 
instances. Computational results indicate that the new 
hybrid approach presented in this paper, and considering 
the instances tested, outperformed the other methods. 
 
Key words: heuristics, metaheuristics, routing 
problems, GRASP, Genetic Algorithms, Simulated 
Annealing. 
 

 

1. Introduction  
 

The Rural Postman Problem (RPP) consists of 
determining a minimum cost tour of a specified arc set 
of a graph (G=(V,A)) with the particularity that only a 
subset T (T ⊆ A) of arcs is required to be traversed at 
least once. The arcs can be directed, undirected or both. 
The first formulation of this problem is due to Orloff 
(Orloff, 1974).   
 
RPP is a NP-hard problem (Lenstra, et. al, 1976) 
therefore it has been tackled with some heuristics and 
metaheuristics due to the difficulty of using exact 
approaches to global optimality. 
 
Christofides et al. (1981) developed a heuristic 
algorithm using the Shortest Spanning Tree problem 
over a graph whose vertices correspond to the connected 
components of the graph induced by the edges in T. 
Also Christofides et al. (1981) proposed an exact 
algorithm with a branch and bound scheme with lowers 
bounds based on Lagrangean Relaxation and with upper 
bounds from the heuristic procedure mentioned before. 
24 randomly generated problems associated to graphs 
up to 84 vertices, 180 edges and 74 required edges were 
solved up to optimality. Corberán et al. (1994) 
developed a branch and cut code which performs better 
on the Christofides instances and also solved two 
additional instances derived from the street network of 
Albaida (Valencia, Spain). To our knowledge, these 26 
are the unique RPP instances with optimal solution 
published.  
 
Concerning Metaheuristics in general we can mention 
the papers of Kang et al. (1998) using Genetic 
Algorithms, Rodrígues et al. (2001) using Memetic 
Algorithms and Baldoquín et al. (2002) using the 
metaheuristics GRASP (Feo et al, 1995) and Genetic 
Algorithms (Goldberg, 1989). The authors are not aware 
of any other metaheuristic used to solve the RPP. 
 
Fernández de Córdoba et al. (1998) proposed a heuristic 
algorithm for the RPP based on Monte Carlo methods.  
 
To our knowledge, up to now, and based in 
computational results using the 26 instances described 
before, the heuristic algorithm for the RPP by 
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Fernández de Córdoba et al. (1998) had obtained the 
best results, comparable with the hybrid approach 
developed by Baldoquín et al. (2002). 
 
In this paper a new approach based in the metaheuristics 
GRASP, Simulated Annealing and Genetic Algorithms 
is introduced to solve the Undirected Rural Postman 
Problem (URPP). In a first phase Simulated Annealing 
approach, with a good starting solution using GRASP, is 
used. In a second phase an elite population is 
constructed with the best solutions obtained for each 
temperature with the Simulated Annealing approach and 
a genetic algorithm is applied. We also use two 
simplification routines to improve the tours obtained.    
 
The URPP problem is solved on a simplified graph 
G’=(V’, A’) where V’ is the set of nodes of the 
subgraph induced by the required edges. A’ is obtained 
modifying the required edges T. Firstly, adding to T  an 
edge (u,v) for each u, v ∈ V’ with cost cij equal to the 
length of a shortest path between u and v. Secondly, 
deleting all edges (i,j) for which the cost cij is equal to 
cik + ckj for some k as well as one of two parallel edges 
if they have the same cost.   
 
The paper is organized in the following way: the next 
section gives a brief overview of different heuristic and 
metaheuristics approaches to solve the RPP. Section 3 
introduces a new hybrid approach to solve the URPP. 
The experiment designed and the experimental results 
are summarized in Section 4. In section 5 conclusions 
and future perspectives are given.  
 

2. Brief overview of heuristics and 
metaheuristics for the URPP 

 
The basis of the idea of the approach based in Monte 
Carlo (Fernández de Córdoba et al., 1998) is to simulate 
a vehicle traveling randomly over a graph. The vehicle 
starts on an randomly node of the graph. It moves, 
randomly and on the basis of certain probabilities, from 
a node to an adjacent node until all the required edges 
have been traversed  and then return to the initial node. 
This process is repeated a specified number of times and 
the shortest travel is considered as the output of the 
algorithm. In this approach 3 simplification routines, 
with different combinations and order in their use, are 
designed and tested to improve the tour found in each 
iteration. 
 
The idea on the procedure based in Memetic Algoritms 
consists of 13 agents organized in a ternary tree 
structure where each one handles two tours (the current 
solution and the best solution until that moment) . The 
key issues to a near-optimal solution are recombination 

and local search, keeping the organization of the tree 
and the diversity of the population. 
 
In Baldoquín et al. (2002) an hybrid approach based on 
Genetic Algorithms and GRASP is introduced to solve 
the Undirected Rural Postman Problem (URPP). 
The method consists of two phases. In the first phase a 
Genetic Algorithm is used. Some members of the initial 
population are generated using GRASP and others 
randomly. A specific crossover operator designed for 
this problem is used and also a family elitist approach 
that preserves two chromosomes from each family 
group of four 
In the second phase an elite population is constructed 
with the best solutions obtained in each run of the 
algorithm. Then the genetic algorithm is applied with 
this as initial population and a unary crossover operator: 
a modification of the inversion operator. 

 
3. Proposed approach 

 
In a first phase a Simulated Annealing approach is 
applied with a good starting solution using GRASP. We 
summarize the decisions concerning with parameters of 
the annealing algorithm itself and problem-specific.  
 
The initial solution is the best solution regarding n/2 
GRASP solutions, where n is the number of nodes of 
the graph. In Baldoquín, 2002 is described how was 
implemented GRASP for this type of problem.  
 
The initial temperature is tei = co/(cmedia – co) where 
cmedia = average cost of m random solutions  
m = number of edges of the graph 
co: cost of the initial solution 
 
This initial temperature (not a high temperature) avoids 
to destroy the characteristics of a good initial solution 
and has the advantage of saving a substantial amount of 
solution time. 
 
The cooling schedule is the following: 
Let nrep the number of repetitions at each temperature. 
In the first iteration (for the first temperature) nrep = n. 
For the following temperatures  nrep = nrep + m  
b. Temperature reduction function a:  
The temperature reduction function α is  
 α (t)=r°t  where r° = 0.75 if t ≥0.3 
                                 0.8 if t < 0.3 
 
The final temperature is  tf = 0.1 
 
Neighbourhood structure:  



Let  a = (a1,..., ai,..., aj,..., an)  a solution. We select 
neighbours of a in the following way: let i a randomly 
break point. Then: 
1. we eliminate the subtour ai …ai+3  or the subtour ai-3 
…. ai. The obtained tour  is    a1… ai-1   ai+4   …  an  or 
a1….ai-4  ai+1  … an 

2. we link the nodes ai-1   and ai+4    or ai-4  and ai+1  with 
the shortest path between them. 
3. we repair the tour obtained, if it is necessary. (Fig. 1)

 
 
1.        a1….ai-1   ai    ...  ai+3   ai+4 … an   (i random) 
 
 
           a1… ai-1   … ai+4   …  an                             Repair (if necessary) 
                          SP (shortest path) 
 
2. a1….ai-4  ai-3  …   ai  ai+1  … an 
 
 
            a1….ai-4  …  ai+1  … an                                Repair (if necessary) 
                          SP (shortest path) 
                                  
                              Fig. 1: Neighbors of a solution  
   
In a second  phase an elite population is constructed 
with  the best solutions obtained for each temperature 
with the Simulated Annealing approach. 
A Genetic Algorithm is applied with this as initial 
population and the inversion operator (Bedarahally et 
al., 1996), with a slight modification: the cut points are 
based on preserving feasibility of solutions. 
Let a = (a1…ai-1    ai    ai+1…   aj-1   aj   aj+1 … an) a father 
and i, j two cut points such that (ai-1, ai) and  (aj, aj+1) 
satisfy: 
1. are non required edges   or 

2.the tour passes two times or more by these edges   
 
Then the tour a1…ai-1 …aj    aj-1…   ai+1   ai … aj+1 … an  
is a feasible solution of the RPP where ai-1  … aj (ai 
….aj+1) is the shortest path between the nodes a i-1   and  
aj (ai and aj+1) (Fig. 2). 

 
                                  a1…ai-1    ai    ai+1…   aj-1   aj   aj+1 … an    
 
                                  a1…ai-1   …   aj    aj-1…   ai+1   ai …  aj+1 … an    
 
 
                                                              Shortest length path 

 
Fig. 2: Inversion operator 

 
The general scheme of the procedure is the following: 
1.Determine a good solution with GRASP 
2.Apply Simulated Annealing with the solution obtained 
in step 1 as initial solution.   
3.Let P the set of the best solutions obtained for each 
temperature with SA in step 2. 
Then apply GA with P as initial population and an unary 
operator (inversion operator) 

 
We also avoid an early convergence in this way: if after 
3 reductions of temperature the best solutions at the 
beginning and at the end of that period are the same we 
apply to this solution the inversion operator and then the 
search continues with the new tour obtained. 
 



4.  Designed computational experiment and 
computational results 

 
This approach was applied to the 26 instances described 
in Christofides et al. (1981) and in Corberán & Sanchis 
(1994). This method was compared with the heuristics 
of Christofides et al. (1981), Fernández de Córdoba et 
al. (1998) and Baldoquín et al. (2002).  
In our approach we experiment with: 
Different values of α, when solutions with GRASP were 
obtained.  
Different neighbourhoods structures  
Different initial temperature, different stop criterion in 
both phases as well as different temperature reduction 
function α 
 
The best results in the experiment were obtained with: 
solutions GRASP with α ≤ 3, α random and the 
annealing parameters described before. The number of 
iterations in the phase II was 30. 

   
The Table 1 shows, for the 26 instances described in 
Christofides et al. (1981) and in Corberán & Sanchis 
(1994), the number of nodes, number of edges, number 
of required edges, the total cost of the optimal tour, the 
cost of the tour obtained by the heuristics described in 
Christofides et al. (1981), Monte Carlo (1998), and the 
cost of the tour obtained by the best version of our 
hybrid heuristic.  
 
The values presented in the Table I show that, according 
with the quality of solutions, our hybrid approach 
outperformed the other methods. It reaches the optimal 
tour  in all the instances except in P25 where it reports 
the best result obtained so far.  The hybrid approach of 
Baldoquín (2002) doesn’t reach the optimal tour in 5 
instances, Monte Carlo heuristic in 7 instances, and 
Christofides heuristic in 11 instances.  
 

  
Inst. 

 
#  of 

nodes 

 
# of 

edges 

# of req. 
edges 

 
Opt. 

 
Chri. 
Heur 

 
M.C. 
Heur 

 
Hybrid 
Heur 

New 
hybrid 
Heur. 

P01 11 13 7 76 76 76 76 76 
P02 14 33 12 163 164 163 163 163 
P03 28 57 26 102 102 102 102 102 
P04 17 35 22 84 84 86 84 84 
P05 20 35 16 129 135 129 129 129 
P06 24 46 20 102 107 102 102 102 
P07 23 47 24 130 130 130 130 130 
P08 17 40 24 122 122 122 122 122 
P09 14 26 14 83 84 83 83 83 
P10 12 20 10 80 80 84 80 80 
P11 9 14 7 23 23 23 23 23 
P12 7 18 5 21 22 21 21 21 
P13 7 10 4 38 38 38 38 38 
P14 28 79 31 209 212 209 209 209 
P15 26 37 19 445 445 445 445 445 
P16 31 94 34 203 203 203 203 203 
P17 19 44 17 112 116 112 112 112 
P18 23 37 16 148 148 148 148 148 
P19 33 54 29 263 280 263 263 263 
P20 50 98 63 398 400 399 398 398 
P21 49 110 67 366 372 368 372 366 
P22 50 184 74 621 632 621 636 621 
P23 50 158 78 480 480 489 487 480 
P24 41 125 55 405 411 405 405 405 
P25 102 160 99 10599 - 10784 10995 10612 
P26 90 144 88 8629 - 8721 8883 8629 

 
Table1: Instances and best tours obtained with 4 approaches  



 
Table 2 shows statistical results obtained with our 
approach with N = 30 repetitions per test problem: 
worst tour (cost) obtained in 30 repetitions of the 
algorithm, times that the optimal tour was reached, 
mean, standard deviation and the percentiles Q1 and Q3.  
 

Table 3 shows the phase where the optimal cost is 
reached,   with N = 10 repetitions per test problem. 
 
It may be possible we could still have better results if 
we use the 3 simplification routines as Fernández de 
Córdoba did. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inst. Optim Worst 
Cost 

Repet. 
optim 

Mean Median StDev Q1 Q3 

P01 76 76 30  76 76 0.00 76 76 
P02 152 156 29 152.1 152 0.73 152 152 
P03 102 109 12 104.9 107 2.52 102 107 
P04 84 86 21 84.6 84 0.93 84 86 
P05 124 127 29 124.1 124 0.55 124 124 
P06 102 107 21 102.9 102 1.62 102 104 
P07 130 132 26 130.3 130 0.69 130 130 
P08 122 125 23 122.3 122 0.65 122 122.2 
P09 83 83 30 83 83 0.00 83 83 
P10 80 84 28 80.3 80 1.01 80 80 
P11 23 23 30 23 23 0.00 23 23 
P12 19 19 30 19 19 0.00 19 19 
P13 35 35 30 35 35 0.00 35 35 
P14 202 208 25 202.8 202 1.95 202 202 
P15 441 448 29 441.2 441 1.28 441 441 
P16 203 214 14 204.7 205 2.31 203 205.2 
P17 112 114 29 112.1 112 0.37 112 112 
P18 147 158 23 149.0 147 3.81 147 148 
P19 257 277 14 265.1 264.5 8.17 257 274 
P20 398 404 11 399.7 400 1.58 398 400 
P21 366 376 9 369.6 370 2.89 366 372 
P22 621 647 5 626.1 623 6.72 622 631.5 
P23 475 446 15 477.3 475.5 4.28 475 477.2 
P24 405 407 21 405.3 405 0.55 405 406 
P25 10599 10971 0 10760 10737 106 10680 10871 
P26 8629 9115 9 8689.9 8657 90.2 8629 8709 

 
Table 2: Statistical Results with N = 30 repetitions per test problem 

 



 
 

 
 
 
 
 
 
 
 
 

 
 
 

Inst. GRASP SA Improv. Inst. GRASP SA Improv. 
P01  10   P14  7 2 
P02 1 9  P15 6 4  
P03  5  P16  4 4 
P04  9  P17 2 8  
P05 5 5  P18 1 7  
P06  7 1 P19  1 3 
P07  9  P20  4  
P08  6 3 P21  1 3 
P09 10   P22   2 
P10 1 9  P23  3 5 
P11 10   P24  5 3 
P12 10   P25    
P13 10   P26   3 

Table 3: Phase where the optimal cost is reached,   with N = 10 repetitions per test problem 
 
 

5. Conclusions and future directions 
 
We apply a new approach using GRASP, Simulated 
Annealing and Genetic Algorithm to solve the Rural 
Postman Problem. The results of a designed experiment 
realized to compare the performance of  Monte Carlo 
heuristic and the two hybrid methods described in this 
paper, using a set of RPP instances taken from the 
literature, indicate that the new hybrid approach 
presented in this paper outperformed the other methods. 
To our knowledge, up to now and considering these 
instances, Monte Carlo results had been the best. 
 
We will continue this work using the simplification 
routines as in Fernández de Córdoba et al. (1998). We 
will implement this approach to others routing 
problems.  
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