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ABSTRACT 
The neuro-fuzzy non-linear prediction of long 
segments of speech, as long as whole vowels, using 
ANFIS is reported in this paper and comparisons are 
made when neural nets are used for the same purpose. 
Emphasis is put on the generalization properties of the 
trained fuzzy inference system when both intra-vowels 
and inter-vowels variability are considered. The data-
base used is composed of Farsi vowels whose 
waveforms are sampled at 11 and 22 KHz and 
digitized at 8 and 16 bit resolution. The effects of 
sampling frequency and bit resolution on the working 
of ANFIS are also reported. It is shown that although 
results are qualitatively similar to those obtained using 
neural nets, ANFIS has the ability to train more 
quickly, in just a few epochs, and is more apt to tune 
in a given data set. The tuning is more pronounced 
when the input data is of wider bandwidth. 
 
INTRODUCTION 
The prediction of speech has applications in speech 
technology, specially coding. Linear prediction is used 
conventionally to reduce the redundancy of speech 
signal and decrease the coding bit-rate. Considering 
the non-linearity that exists in speech production 
should lead to lower dynamics of the signal to be 
coded with a consequent reduction in bit-rate and 
needed bandwidth. Artificial Neural Nets (ANN) are 
usually used to this effect and studies have shown that 
2 to 3 dB further reduction in the coder gain factor is 
possible when short frames of speech are analyzed 
with ANN. However, this further reduction is not 
observed when segments as long as whole vowels are 
considered [1] e.g. in speech synthesis by waveform 
concatenation using LP-PSOLA method. 
Neural Nets are attractive to use in non-linear 
problems because they are basically model-free 
estimators that can learn from experience. Similar to 
NN, fuzzy Systems can provide an estimation function 
without a mathematical model of how outputs depend 
on input data. This property gives opportunity to these 

systems to learn from experience with numerical or 
linguistic data [2]. Therefore, Neuro-Fuzzy computing 
i.e. soft computing approaches to system modeling has 
also attracted the attention of many researchers in the 
past recent years [3], [4]. This is because, in addition 
to the fact that they are model free, neuro-fuzzy 
methods possess both the low-level learning and 
computational power of neural networks and the 
advantages of high-level human like thinking of fuzzy 
systems making them a very powerful and versatile 
tool in non-linear modeling problems. 
 
1- Neuro-Fuzzy Speech Prediction Using 
ANFIS. 
The type of fuzzy model first suggested by Takagi and 
Sugeno [5], [6] uses fuzzy inputs and rules but its 
outputs are non-fuzzy sets. It provides a powerful tool 
for modeling complex non-linear problems when 
combined with a network structure as in Adaptive 
Network Fuzzy Inference System or ANFIS [7]. 
ANFIS can be applied to non-linear prediction of 
speech where past samples are used to predict the 
sample ahead. However, the number of ANFIS 
parameters augments exponentially when the number 
of input variables i.e. the number of past sample 
values that is necessary for a good prediction 
increases. The number of ANFIS parameters compares 
usually unfavorably with the number of parameters 
that characterize a NN. But the versatility of ANFIS 
suggests that it may succeed where neural nets have 
failed. That is why we applied it to non-linear 
prediction of long segments of speech. 
 
1-1 ANFIS. 
ANFIS is a class of adaptive multi-layer feed-forward 
networks that is functionally equivalent to a fuzzy 
inference system. It was proposed in an effort to 
formalize a systematic approach to generating fuzzy 
rules from an input-output data set. A typical fuzzy 
rule in a Sugeno fuzzy model has the format: 
 If x is A and y is B then z=f(x,y) 



Where A and B are fuzzy sets in the antecedent; 
z=f(x,y) is a crisp function in the consequent. Usually 
this function is a polynomial of the input variables x 
and y, but it can be any other function that can 
approximately describe the output of the system within 
the fuzzy region specified by the antecedent of the 
rule.  
When f is a constant we have the zero-order Sugeno 
fuzzy model that is functionally equivalent to a radial 
basis function network under certain constraints [8]. 
When f (x,y) is a first-order polynomial, the model is 
called first-order Sugeno fuzzy model and is what was 
originally proposed. Consider such a model that 
contains two rules: 

Rule 1: If X is A1  and Y is B 1 , then  

 f 1 =p 1 x+q 1 y+r 1  

Rule 2: If X is A 2  and Y is B 2 , then  

f 2  = p 2 x+q 2 y+r 2  
Figure 1(a) illustrates graphically the fuzzy reasoning 
mechanism to derive an output f from a given input 
[x,y].  The firing strengths w 1  and w 2 are usually 
obtained as the product of the membership grades of 
the premise part, and the output f is the weighted 
average of each rule’s output. Part (b) of Figure 1 
shows the corresponding ANFIS structure where 
nodes within the same layer perform functions of the 
same type as detailed below. Note that O j

i  denotes the 
output of the i-th node in j-th layer. 
Layer 1: Each node in this layer generates a 
membership grade of a linguistic label. For instance, 
the node function of the i-th node may be a 
generalized bell membership function: 
 

 O 1
i  = µ A i  (x) = 1/(1+|(x-c i )/a i |

ib2 )   (1) 
Where x is the input to node i; Ai is the linguistic label 
(small, large, etc.) associated with this node; and {a i , 

b i ,c i } is the parameter set that changes the shapes of 
the membership function. Parameters in this layer are 
referred to as the premise parameters. 
Layer 2: Each node in this layer calculates the firing 
strength of a rule via multiplication: 
 O 2

i = w i = µ A i  (x) µ B i  (y), i  =1,2     (2) 
Layer 3:  Node  i  in this layer calculates the ratio of 
the i-th rule’s firing strength to the total of all firing 
strengths: 

 O 3
i = iw = 
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+

,    i =1,2          (3) 

Layer 4:  Node i  in this layer compute the 
contribution of i-th rule toward the overall output, with 
the following node function: 
 O 4

i = iw if = iw (p i x +q i y + r i ),   (4)  

Where iw is the output of layer 3, and {p i , q i , r i } is 
the parameter set. Parameters in this layer are referred 
to as the consequent parameters. 
Layer 5:  The single node in this layer computes the 
overall output as the summation of contribution from 
each rule: 

 O 5
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ANFIS in figure 1 (b) has, as the basic learning rule, 
the back-propagation gradient descent algorithm (the 
same used in feed-forward Neural Nets) which 
calculates the error signals recursively from the output 
layer backward to the input nodes.   
From this architecture, it is seen that given the values 
of premise parameters, the overall output f can be 
expressed as a linear combination of the consequent 
parameters: 
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Based on this observation J.S.R. Jang proposed a 
hybrid algorithm which combines the gradient descent 
and the least-squares method for an effective search of 
optimal parameters [9]. ANFIS is available in the 
Fuzzy Logic Toolbox of MATLAB [10]. 
 
2- Using ANFIS In MATLAB 
Here, we recall some of the main functions available 
in the Fuzzy Logic Toolbox of MATLAB and explain 
their main features. 
 
2-1 Genfis1 and Genfis2 
The genfis1 function creates a Fuzzy Inference System 
(FIS) without using data clustering. In its general form 
it is called using the following format: 
fismat=genfis1(data,nummfs,inmftype,outmftype) 
where: 

data is the training data matrix where all 
columns except the last one are input and the 
last column is the output data vector. 
nummfs determines the number of membership 
functions for each input which can be an integer 
applied to all inputs or a matrix whose number 
of columns equals the number of inputs. 



inmftype defines the type of the membership 
functions of the inputs. It can be a string of 
characters or an array of strings. 
outmftype determines the type of the 
membership function for the output and, since 
the FIS structure here is of the Sugeno type, the 
system has only one output that can be either 
linear or constant.   

The genfis2 function is similar to genfis1 but uses the 
subtractive clustering to create a fuzzy inference 
system. 
 
2-2 The ANFIS Function 
This function is used to train the created FIS. In its 
more general form, this function is called with the 
following parameters: 
[fismat,error1,stepsize,fismat2,error2]=anfis(trndata,tr
nopt,dispopt,chkdata,optmethod) 
where: 

trndata is the training matrix. 
fismat is the original FIS created by genfis1 for 
instance. 
trnopt is a vector defining the training 
conditions such as the number of training 
epochs, the target error, the initial step size in 
updating the parameters, the rates of decrease 
and increase of the step. 
chkdata is the data used to avoid over-fitting 
with the same format as trndata. 
fismat1 is the optimum FIS returned whose 
parameters are calculated for the minimum 
training error. 
error1 and error2 are the arrays of RMS errors 
during different training epochs for the training 
and check data. 
fismat2 is the FIS returned whose parameters 
are set for the minimum error on the check data. 
 

2-3 The Evalfis Function 
This function permits to evaluate the trained FIS by 
the previous ANFIS function for a test data. 
 
3- ANFIS Used For Non-Linear Prediction 
Of Farsi Vowels 
 
The above functions have been used on a speech data-
base of Farsi vowels to train and test ANFIS for non-
linear prediction of long segments of speech. 
 
3-1 The Speech Data-Base 
The waveforms of Farsi (Persian) phrases and words 
uttered by two male speakers were recorded at 11 and 
22 KHz sampling frequencies and digitized with 8 and 
16 bits. Then words were segmented into syllables to 
be saved in separate files as items of our data-base. 

The phonetic description of the files’ contents and 
other characteristics such as the speaker code and the 
code of microphone used were attached to each file. A 
search engine permits to extract all files with a specific 
phonetic content and other needed characteristics such 
as the sampling frequency or bit representation for 
different experiments. 
 
3-2 The Experiments 
The following experiments were conducted to examine 
the efficiency of ANFIS for the non-linear prediction 
of long segments of speech one sample ahead. Here, 
the generalization capabilities of the trained structure 
play an essential role. Since the number of rules in 
ANFIS and consequently the number of its parameters 
increases exponentially with the number of inputs, five 
was the maximum number of preceding samples that 
could be used. 
In these experiments, the number of the membership 
functions for each input was set to two, justified by the 
input values being of both polarities, and the type 
chosen was Bell shaped that had given better results in 
preliminary tests. Therefore the total number of 
ANFIS parameters can be calculated as follows: Each 
membership function has three parameters, therefore 
for five inputs we have 5*2*3=30 premise parameters. 
On the other hand five inputs create 2 5 rules giving 
rise to 32*(5+1) =192 consequent parameters. Then, 
the total number of parameters is 192+30=222.  Since 
the training data must be about 5 times the number of 
parameters [11], the vowels that could be used for 
training were limited to those at least 1110 samples 
long. 
These experiments were conducted in 4 groups and in 
each group of experiments it was tried to use the 
results obtained before in order to achieve an overall 
assessment of the efficiency of ANFIS for the task in 
hand and compare the obtained results with those of 
neural nets reported elsewhere [1]. 
 
3-2-1 Defining The Best Five Inputs 
In this group of experiments we tried to find out how 
the prediction error varies with regards to the interval 
between the five neighbouring samples used to predict 
the following one.  
The experiments were conducted on the vowel O in 
different contexts. It was observed that increasing the 
interval between preceding samples from 1 to 3 led to 
a net increase in the prediction error. It was also 
observed that ANFIS was trained very quickly in the 
first few epochs and that increasing the training time 
did not result in an appreciable lower error. Figure 2 
summarizes these results. Signals used were sampled 
at 22 KHz with 16 bit resolution. Figure 3 shows the 



evolution of the prediction error versus the epoch 
number in both cases.  
It was concluded that the five input samples used in 
prediction of the next one must be adjacent. 
 
3-2-2 The Effect Of Sampling Frequency 
And Bit Resolution On The Generalization 
Of ANFIS For Vowels Of The Same Kind 
Here we tried to study the effect of sampling 
frequency and bit resolution on the working of ANFIS. 
The experiments were conducted on two sets of 
vowels A and E along with validation. Using 
validation data during training permits access to the 
FIS that has resulted in minimum error on validation 
data. In opposition to neural nets, here ANFIS 
continues the training of the FIS using further the 
training data.  
As regards the sampling frequency, it was observed 
that the FIS trained with training and validation data at 
11 KHz (either with 8 or 16 bit resolution) could well 
be used for data sampled at 22 KHz but the reverse 
was not true. 
As for the bit resolution, it was concluded that the 
prediction error was almost the same when 8 bit or 16 
bit digitized signals were used in both training and test 
i.e. the FIS was immune to quantization noise; a well 
known property in neural nets. 
Figure 4 compares the prediction error for vowel A at 
8 and 16 bit resolution. 
 
3-2-3 ANFIS Generalization Between 
Different Vowels When Training Is 
Controlled Using A Vowel Of The Same 
Kind 
In this group of experiments, we tried to study the 
generalization between different vowels of a trained 
FIS when over-training was controlled by using 
validation data of the same kind. For example the FIS 
trained and checked with vowels A was tested using a 
vowel E.   
Signals sampled at 11 KHz were used for training and 
validation whilst files of E vowels either sampled at 
11KHZ or 22 KHz were employed for test. The 
Generalization of training of vowels A was quite good 
for vowels E sampled at 22KHz (8 bit) but not 
acceptable for signals of vowels E sampled at 11 KHZ 
(8bit). It was also noted that the prediction error when 
the FIS was trained for a vowel and tested with 
another depended also on the context of the test vowel. 
For instance, when vowel E in the context LI was used 
as opposed to E in the context WI, the error was lower 
for the LI file at 11 KHz (8 bit) than for the WI signal 
sampled at 22 KHZ (8bit). 

Figure 5 shows the effect of the sampling frequency 
on the generalization in this case. 
 
3-2-4 ANFIS Generalization Between 
Vowels When Training And Validation 
Include Vowels Of Different Kinds 
In these experiments we tried to study further the 
inter-vowel generalization capabilities of ANFIS by 
combining, during training, different vowels of 
different sampling frequencies and bit resolutions. For 
example in one example only vowels A and E of 22 
KHz and 16 bit were used for the training of the FIS 
that was then tested with different vowels. These 
results were compared with when training included 
vowels A and E of different sampling frequencies and 
bit resolutions.  
We can summarize the general observations of these 
experiments as follows: When the test signals of 
different vowels were all of 22KHz and the training 
was carried out using vowels A and E only, the 
prediction error was notably higher than when the FIS 
was trained using a combination of different vowels. 
Here using vowels of different bit-rates during training 
did not have much effect on the results. But using 
training data that did not include the test vowel led to 
better results when files of 11 KHz were used in 
training as opposed to when solely signals of 22 KHz 
were employed. The inter-vowel generalization at 11 
KHz got better, as in the case of signals of 22 KHz, 
when more varied combinations of vowels were used 
for training but the prediction was higher for these 
files than those of 22 KHz. 
Figure 6 shows the effect of using a combination of 
different vowels during training in comparison to 
using only one vowel.     
 
CONCLUSION 
The following general conclusions can be made as 
regards the main results obtained in this work: 

1- Although results are qualitatively similar 
to those obtained using neural nets, as far 
as the prediction error is concerned, they 
are achieved with less input data. 

2- The computation time in the training 
phase is comparable to that of NN when 
the complexity of ANFIS structure is 
taken into account. The convergence, 
here, takes usually a few epochs to reach 
its steady state. 

3- Best results are obtained when the past 
samples are adjacent and constitute the 
previous immediate neighbours. 

4- Generalization of the network is quite 
good, for 22 KHz files, for both intra-
vowels and inter-vowels variability. 



5- The prediction error reduces when the 
network is trained on various input 
vowels as compared to when it is trained 
only with the same vowel suggesting that 
ANFIS, more than Neural Nets, has the 
capability to tune in a specific data set. 

6- Using validation data is often of no 
consequence on generalization for same 
vowels confirming the tuning in of 
ANFIS to a given data. 

7- For 22 kHz files, the bit resolution has no 
important effect on the prediction error. 

8- The sampling frequency i.e. the input 
data bandwidth has a decisive role on the 
results in the sense that it permits fine 
tuning to a given data set. 
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Figure 1. (a) First-order Sugeno fuzzy model; (b) corresponding ANFIS architecture. 
 

 
Figure 2. The predicted signal and error when samples are 1 interval distant (left) as compared to when the distance 
between them is 3 intervals (right). 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The evolution of the prediction error during training and test in both cases of 1 (left) and 3 (right) samples 
distance. 



 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Comparison of prediction error for vowel A at 8 (left) and 16 bit (right) resolution (sampling frequency 
22KHz in both cases). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Comparison of prediction error of ANFIS trained for A vowel and tested with E vowel at 22 KHz (left) and 
11KHz (right) sampling frequency. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. The predicted and error signals of the same vowel E when vowel A only is used in training (left) and when a 
combination of vowels is employed (right). 


