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Abstract. The study discusses the nature of fuzziness in 
oxygen saturation (SaO2) values taken by 
spectrophotometry measurements during intranatal fetal 
monitoring. The SaO2 were taken from umbilical artery 
(UA) and umbilical vein (UV) with corresponding 
gestational week. Then, we employ a set of fuzzy rules 
relates SaO2 values to output pH values in a neurofuzzy 
system. The output of the neurofuzzy system generates 
values for intranatal monitoring.  

 
Mothers with singleton, livebirths were included in the 
study (N=1537). The afterbirth measurements were also 
included. But it is assumed that they have indicated 
SaO2 values just before birth. Fuzzy rules extracted to 
model uncertainty at the input. It is verified that the local 
oxygen saturation information approximates the pH 
values for the continuous intranatal monitoring. The 
significance and reliability of the method were 
discussed. 
 
1. Introduction 
 
During intranatal monitoring, continuous and reliable 
information of the conditions of fetus is required. 
Various methods are used individually or combined to 
obtain indication of intranatal fetal conditions. One of 
noninvasive methods, spectrophotometry measurements 
[2-7] is used and it discusses the effect of measurements 
of oxygen saturation in various cases. Although there is 
not a clear conclusion of these studies that shows the 
effect of umbilical artery (UA) and umbilical vein (UV) 
oxygen saturation on the acidosis clues, it is shown that 
there is a particular relationship. But this relationship 
still needs a better discussion. On the other hand, there 
are some empirical studies of preductal oxygen 
saturation that indicates oxygen values of intranatal 
fetus [3-4]. Also, it is obvious that there is a need for 
this area to be introduced a better discussion and 
conclusion of methods. Overall, the most important 
issues of the intranatal monitoring become the speed 
and reliability. 

Our study employs a neurofuzzy approach [8-14] that 
extracts fuzzy information from inputs which are the 
oxygen saturation (SaO2) measurements. The approach 
then relates the input variables to the output pH values. 
The pH values correspond to normal/ risk of hypoxia 
cases. The study also models fuzzy sources of input 
data. 
 
The principal goal of this study is to indicate two fuzzy 
sources caused by spectrophotometry measurements: 
first is the spectrophotometry method itself and the 
second is commonly-used prediction equation of oxygen 
saturation. Also, we assume that the data values do not 
change during a very short time difference. This is 
interpreted as oxygen saturation values regarded 
unchanged during and after delivery. Previous studies 
[2-3] express conventional prediction of hypoxic cases 
through the spectrophotometry measurements of oxygen 
saturation. Here, our fuzzy model reflects the effects of 
these sources.  
 
The sections are organized as follows: the second 
section discusses material and method. Here, we 
describe potential predictive factors. In the third section, 
fuzzy rules of oxygen prediction are presented. Then, 
fuzzy conditions that occur in the intranatal monitoring 
are discussed and ANFIS simulator is described.  In the 
fifth section, experimental results are given and 
discussed. Finally, in the last section, conclusions are 
made. 
 
2. Materials and Methods 
 
The study analyzes umbilical cord blood samples of 
1537 live-born singleton neonates. The measurements 
were taken from deliveries performed by practicing 
obstetricians affiliated with a hospital [2-3]. Oxygen 
saturation, pH and base excess were available. The aim 
is to use fuzzy predictive value of oxygen saturation for 
the risk assessment of hypoxemia and acidosis by PO2 
during intranatal fetus monitoring. For this purpose, we 



only employ the measurements of umbilical artery (UA) 
and umbilical vein (UV) oxygen saturation levels 
(Figure 1). As an important indicator, afterbirth pH 
levels and base excess are used: acidosis was defined as 
below the value of 7.09 for UA pH or 10.50 mmol/L for 
base excess.  

 
 
Figure 1: A group of 1537 cases with measurements: 
SaO2 UA, SaO2 UV and week index (WI) value. 
 
The region of oxygen saturation for a typical case of 
asidosis is raised as an important issue. Various studies 
of preductal oxygen saturation are available [4]. In these 
studies, an empirical equation was used to compute the 
value with vein and artery oxygen saturation values: 
 
 
Preductal SaO2 =(0.8 x UA SaO2)+(0.2 x UV SaO2)  
 
 
In our study, we use a fuzzy model that generates fuzzy 
rules to predict the pH values from oxygen saturation 
values. This models the two sources of vagueness on 
measuring  SaO2 values at the input. As the second task, 
we examine the ability to continuously distinguish the 
birth modes through the measurements: normal case or a 
case of acidosis risk based on the rules defined on 
fuzzy-input level of neurofuzzy system. Here, we 
assume that the pH values under and over 7.09 are 
indicated as major risk cases.  
 
The proposed neurofuzzy system is trained with fuzzy 
input-output (SaO2, pH) pairs. In the fuzzy-input level, 
fuzzy rules are defined, then, weighted fuzzy rules are 
combined at the output level. The testing was performed 
with (SaO2, unknown) values. The neurofuzzy structure 
has been modified for various input organiza 
tions. With the proposed approach, we combine the 
following sources of fuzziness: empirical prediction of 
SaO2 values of UA and UV, and the blood oxygen 
saturation (SaO2) and spectrophotometry measurements 
relationship. Various fuzzy membership functions are 
used such as triangle, gaussian, etc. The gaussian 
functions were then used. The output of the fuzzy-input 
level is then applied to layers 2-5 and trained with known 

pH values. At the training phase, the weights of the 5th 
hidden unit are computed for the given output function of 
pH values. During the test phase, unknown output values 
are approximated to the discrete pH function values.  
 
The measurements are taken during the delivery 
operation and the pH value estimates are obtained 
instantly. The afterbirth tests, base excess and pH values 
were made available to check the findings of the study. 
 
3. Fuzzy rules for oxygen saturation 
 
In literature [2-6], empirical estimation for the oxygen 
level of fetus during intrapartum has been studied. An 
estimated value was introduced and used in the 
experiments. 
 
The proposed neurofuzzy method has two levels: fuzzy-
input level and neural hidden unit level. The fuzzy-input 
level defines the fuzzy rules based on given input SaO2 
values. The gaussian membership functions are used to 
obtain a number of rules up to 9. Rules of fuzzy-input 
are then used to train to weights of hidden units in the 
neural structure.  

 
 

 
 

 
 
Figure 2: Neurofuzzy structure (ANFIS) for fuzzy 
sources and risk regions 
 
The fuzzy sources of intranatal monitoring are: 

•  The correlation between spectrophotometry 
measurements and blood oxygen saturation. 
The accuracy of readings is also affected by 
factors such as the placement of electrode, 
noise interference.  

•  Emprical preductal oxygen saturation method.  
 
In example case, fuzzy rules are inducted from the given 
data (Figure 2). Data values at the output of the system 
can be categorized in three regions of hypoxic risk: 

•  Normal region 
•  Low-hypoxic-risk region 
•  High-hypoxic-risk region 

   (1)



 
4. Fuzzy conditions that occur in 
spectrophotometry measurements and 
ANFIS simulator 
 
The main cause of fuzziness comes from 
spectrophotometry measurements that were suggested 
for intranatal monitoring [2-3]. The previous results 
have proven that there is no clear conclusion. The 
oxygen saturation measurements suggest a vague 
correlation between the values and the risk conditions of 
fetus. Also, measurements are affected by electrode 
noise, etc. This source becomes a main cause of 
uncertainty.  
 
The second cause of uncertainty comes from the fact 
that there is no exact formulation to find the oxygen 
saturation of fetus from the measurements. UA and UV 
values are combined with a preductal equation to come 
up with a single value. This is an empirical estimation 
that is related to previous animal experiments.  
 
Both sources of fuzziness are combined in the decision 
procedure with fuzzy computations. We employ ANFIS 
system for our computations (Figure 3). ANFIS is a 
neurofuzzy system simulator that receives input values 
and applies to the user-defined system model. Various 
parameters are set and system simulator is trained with 
these data. Then, test set or unseen data are applied to 
model to obtain results.  
 
 

 
Figure 3: The neurofuzzy system (ANFIS) [14]. 

 

 
 
Figure 4: The proposed neurofuzzy structure 
 

Layer 1: the output of the node is the degree to which 
the given input satisfies the linguistic label associated to 
this node. Thus we describe our first-fuzzy level for 
entrance to the ANN structure. 
 
Layer 2: each node computes the firing strength of the 
associated rule. 
The output of top neuron is 

α1 =L1(a1) ∧ L2 (a2 ∧ L3 (a3), 

the output of the middle neuron is 

α2 =H1(a1) ∧ H2 (a2) ∧ L3(a3), 

and the output of the bottom neuron is 

α3 =H1 (a1) ∧ H2 (a2) ∧ H3 (a3). 

All nodes in this layer are labelled by T, because we can 
choose other t-norms for modeling the logical “and” 
operator. The nodes of this layer are called “rule” nodes. 
 
Layer 3: every node in this layer is labeled by N to 
indicate the normalization of the firing levels. The 
output of the top, middle and bottom neuron is the 
normalized firing level of the corresponding rule 

β1 =α1/(α1 +α2 +α3), 

β2 =α2/(α1 +α2 +α3), 

β3 =α3/(α1 +α2 +α3), 

 
Layer 4: the output of the top, middle and bottom 
neuron is the product of the normalized firing level and 
the individual rule output of the corresponding rule 
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Layer 5: the single node in this layer computes the 
overall system output as the sum of all in-coming 
signals, i.e. 

3322110 zzzz βββ ++=  
Suppose we have the following crisp training set 

{(x1, y1),..., (xk, yk) } 

   (2)

   (3)

   (4)

   (5)



where xk is the vector of the actual exchange rates and 
yk is the real value of our portfolio at time k. 
We define the measure of error for the k th training 
pattern as usually 
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where ok is the computed output from the neurofuzzy 
system corresponding to the input pattern xk, and yk is 
the real output, k =1,...,K. 
 
The steepest descent method is used to learn the 
parameters of the conditional and the consequence parts 
of the fuzzy rules. We show now how to tune the shape 
parameters b4, c4 and c5 of the portfolio value. Learning 
rule for the slope, b4, of the portfolio values 

321

321
2
4

4
4

44 )()()1(
ααα
αααδηη

++
−+−=

∂
∂−=+ k

k

b
tb

b
Etbtb  

In a similar manner we can derive the learning rules for 
the center c4 
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and for the shifting value c5 
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where δk =(yk -ok )denotes the error, η>0 is the lear
rate and t indexes the number of the adjustments [14
 
5. Experimental results 
Experiments are conducted with a neurofuzzy sy
(Figure 4) built in ANFIS simulator. The neurof
structure is trained with oxygen saturation values. A
first fuzzy-level rules were constructed from given
inputs: oxygen saturation values from UA and 
Even though gestational week value is tried
additional input, it was not improving average erro
the further levels (layers 2-5) firing levels are obta
and normalized. Layer 2 is used for logical A
operation of three units for each UA SaO2 and UV S
(a total of 6 units). Layer 3 is used for normalized f
level of the outputs. It has a total of 9 units. Layer
employed for the product of the normalized firing 
and the individual rule output of the corresponding 
Layer 4 includes 9 units and an extra normalization
(a total of 10 units). Then, at the last level weig
firings are transferred to output for approximating to
values. But they indicate the effect of fuzzy input 
derived from input SaO2 values. 

 
Experimental data were divided into three port
training, validation and test portions. Each portion
466 samples. Time complexities for training data 
taken a few minutes. Testing results were take
moment. This requirement of fast, contin
monitoring is thus satisfied. As it is known,
obstetrician takes spectrophotometry measurements
continuously operates on the case during delivery.
values are counted as significant if they are on time
contribute to doctor’s decision.  

 

The rules obtained from the first-fuzzy level was 
shown in the Figure 2. Each rule makes a contribution 
to the firing level of the next level. Extracted rules are 
thus conveyed to the output of neurofuzzy system. The 
value at the output is a pH values that correspond to 
normal, risky or hypoxic region.   

 
The results (Figure 5) confirm the importance of 

fuzzy information derivation from the input level. This 
information is conveyed to the output by means of 
logical-based and weight-based transition. The mapping 
between SaO2 and pH is constructed by fuzzy rules and 
firings of logical and weighted connections. Fuzzy-input 
layer models the vagueness of the measurements and 
transfers them to output. Instead of a preductal equation 
which is commonly used in the literature [4], here, we 
include this empirical formula included in the fuzzy 
input.  Table 1 shows average error values for the 
estimation of pH values. It has a total error value of 7%. 
It generates warnings for cases that are in hypoxia 
suspicion. 
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Figure 5: The pH output of neurofuzzy intranatal 
system (* : system output,  o : real data)  

 
 

Data Set Average Error 
Training Data %7.33 
Checking Data %7.60 
Testing Data %7.20 

 
Table 1 Error of the estimation of pH values 

 
1537 live-born singleton neonates becomes a reasonable 
size to study. In this database, the ages of women and 
the sizes of babies are obtained as the other quantities. 
The mapping between oxygen saturation values and pH 
values generated a conclusion for each individual case. 
The total number of training samples is chosen from 
1537 cases: mostly normal cases (1489) were available 
and 48 cases were observed as in hypoxia risk. After the 
delivery, the most of the cases were normal in the 
database.  
The results also support our claim of reliability of 
diagnosis decision for the 1537 cases. The speed issue 
does not introduce any important problem in this vital 
application since this neurofuzzy system denotes the 
conditions immediately after the entrance of inputs to it. 
In case of oxygen saturation based mapping (during 
delivery), the pH values have an average of 7% error 



rate for testing data. Especially, as a non-invasive 
method, the spectrophotometry becomes reliable in a 
limited degree. This result would certainly affect the 
reliability of the measurements. The performance results 
support that the intranatal monitoring technique based 
on spectrophotometry with neurofuzzy system is 
applicable for given data.   
 
6. Conclusions and Discussion 
 
Accuracy and reliability the information related to 
oxygen saturation of hemoglobin for intrapartum fetal 
evaluation is still a discussable issue. As an intelligent 
data processing approach, hypoxic values of pH are 
monitored instantly as an indicator. Fuzzy sources of 
intranatal monitoring by oxygen saturation are modeled 
by Gaussian fuzzy membership functions. The outcome 
of neurofuzzy system is defined as the approximated 
value of pH.  It was an assumption that SaO2 values did 
not change just before and just after the birth.  We may 
also conclude that when we have more information 
about important monitoring parameters, we obtain a 
better accuracy and reliability. But the delivery process 
is always under the control of obstetrician.   
 
A literature survey was conducted using Medline and 
other sources to identify articles describing various 
methods for predicting oxygen saturation. Our method 
stands as a unique, efficient method for various 
intranatal cases.  
 
This method becomes a fruitful line of enquiry to obtain 
a fast, reliable system for intranatal diagnosis 
applications. The experiments should be continued to 
validate the method with the other cases and the new 
inputs. 
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