
Usage of OpenPGP with mobile agents
in peer-to-peer networks

Jorge Marx Gómez, Daniel Lübke,
Department of Computer Science
Technical University of Clausthal

38678 Clausthal-Zellerfeld, Germany
Julius-Albert-Str. 4

Tel: +49-5323-67-18386
Fax: +49-5323-67-11216

{daniel.luebke,gomez}@informatik.tu-clausthal.de

Abstract

Much research effort has been put into the development
of mobile agent systems based on peer-to-peer network
technology. However, not a very strong focus has yet
been on the security of these systems. Only rudimen-
tary security measures have been implemented which
are not suited for developing open and anonymous
networks which are very popular today, like for exam-
ple Kazaa. This paper proposes the use of the OpenPGP
standard for encryption and digital signatures allowing
much more flexibility and fine grained user control of
the security settings.
Keywords: OpenPGP, Mobile Agent, Encryption,
Signature, Peer-to-Peer Network, X.509

1 Introduction to Mobile Agents

There are lots of different definitions what an agent is.
Within this paper we assume that an agent is a process
that is able to autonomously initiate changes within its
environment and react to changes therein [1, pp. 202].
This definition matches a lot of process types but con-
tains the important characteristics which distinguish
agent-bases systems from “standard” designed soft-
ware. These characteristics are summarized in table 1.

Property Description
Autonomous Can act independently
Reactive Reacts in time to changes in its

environment
Proactive Initiates actions which are changing

the agent’s environment
Communicative Can exchange information with

other systems, including but not
limited to users and other agents

Table 1: Characteristics of an agent(compare [1, p.
202])

The Foundation for Intelligent Physical Agents (FIPA) has
released lots of specifications dealing with agent-based sys-
tems and how they should be designed.

A very important aspect of this is the communication lan-
guage: All agents who want to be able to communicate which
each other need to agree on a language. A standard for such a
language is the FIPA Agent Communication Language
(ACL) [2] which specifies a standard language for inter-
agent communication.

The use of software agents is also propagated as a solution to
common software engineering problems [3].

However, really powerful agents become as mobile agents.
Mobile agents are a mixture of mobile code and agents which
allows them to travel between different systems.

In classical client/server- and multi-tier- applications only
data will be sent over the network. However it may be bene-
ficial or necessary to transfer code, e.g. an agent, and execute
it on another computer. This process is called relocation or
migration. Advantages of using mobile code and agents are
[1]:

• Migrate processes to machines which have unused re-
sources available to distribute the load.

• Execute code near the data or the input, which means that
less data needs to be transferred over the network thus
enhancing response times.

However sending and execute code and mobile agents on
other machines raises some concerns:

• The source of the code needs to be authenticated or exe-
cuted in a secure environment so that no damages to local
data and/or other resources may occur.

• The migration possibly shall take place between different
platforms which means further efforts have to be made to
make the code portable.

• Currently lots of platforms are being developed, which
allow the use of mobile agents, like D'Agents [4]. A list
can be found under [5]. Furthermore, mobile agents based
systems are being deployed for simulation and load bal-
ancing [6].

2 Peer-to-Peer Networks

The term peer-to-peer-network (p2p-network) has a
wide range of definitions which sounding nearly identi-
cal but sometimes have very different emphasis.

What is common to all definitions is the fact that a p2p-
network is a network of devices which are able to ac-
cess resources on all other devices as well as providing
resources to them.

Fig. 1: A small peer-to-peer network where every node can
directly access all other nodes

The main issue at where most definitions significantly
differ is the question whether this network may have
some central services like servers [7] for special sup-
porting purposes, especially name resolution, or not [8].

Examples for p2p-networks include ICQ [9] (instant
messaging, chat) and Napster (file sharing) for p2p-
networks with centralized lookup-services on the one
hand and Windows Networking (file and print services)
and Gnutella (file sharing) without centralized re-
sources on the other hand.

The different implementation of how to resolve name
shows a real problem when designing a p2p-network:
Because these networks are normally designed for
applications where nodes can join and leave and may

rejoin with different IP addresses and consistently with
different DNS names, a p2p-network needs to design
and manage its own namespace. This resource centric
addressing, like your chat nickname, is something
which may be seen as one of the greatest changes and
perhaps benefits when using p2p-networks [10].

A common myth is that p2p-networks only scale to a
dozen network nodes [11]. This may be true for some
kind of software, like Windows Networking, but exam-
ples like Gnutella clearly demonstrate that there may be
thousands of computers connected within a p2p-
network. However scalability within p2p-networks has
always been a very critical point and there has not been
a golden answer for this problem.

Within the last years, p2p-technology has become gen-
erally known through the rise of file-sharing software,
although there are many new developments like dis-
tributed search engines DFN S2S [12] designed by
Germany’s National Research and Education Network
(Deutsches Forschungsnetz, DFN) and many other
prominent ones, like instant messaging, which are also
relying on p2p technology.

P2P networks have the advantage, that if one node fails,
not the entire network goes down, as well. For exam-
ple, if in a client-server system, the central server fails,
the whole network is not usable any more. In p2p net-
works, if one node fails, all others are able to proceed
and only resources available exclusively from that node
are not accessible.

Furthermore, Resources can be distributed, so that
failover support can easily implemented, for example,
files can be replicated over many nodes, so that when
one node is down, the file is accessible through another
node. Another advantage is, that resources can be
cached or replica can be stored dependent on the net-
work load and performance, so that nodes can query
nearby nodes to quicker receive resources.

P2P Solu-
tion

Type Homepage

ICQ Chat www.icq.com
Gnutella File-Sharing
eDonkey File-Sharing
S2S Fulltext

Search
s2s.neofonie.de

Windows
Networking

File- and
Printservices

www.microsoft.com

Table 2: Examples of p2p solutions

Node
A

Node
B

Node
C

3 Existing Solutions for Security

For ensuring secure communication between two hosts
systems based on mobile agents have to deploy a secu-
rity concept depending on the applications' needs. En-
crypting data ensures privacy, while digital signatures
provide authentication and protection against tamper-
ing. Because the key-exchange is much easier with
public key algorithms, they are widely used.

Public key cryptography uses two keys, one called the
public and the other the private key. Both keys are
complementary: Data encrypted with one can only be
decrypted with the other and vice versa. The public key
may be distributed over insecure channels to all entities
with whom you want to communicate. The public key
is then used by the sending entity to encrypt the data
which are then send to the receiver who has the corre-
sponding private key with which he is able to decrypt
the data. For signing data digitally the sender takes his
private key and encrypts a hash [description hash, foot-
note] of the data. The encrypted hash is send with the
data to the recipient which can decrypt the hash with
the sender's public key and compare the hash of the
sent data with the received hash.

The public and private keys are generated together.
Theoretically it is possible to calculate one key if you
have the other but this problem is mathematically so
hard that in practice it is impossible.

Probably the most known algorithm for public key
encryption is RSA - named after its developers Ronald
Rivest, Adi Shamir, and Leonard Adleman.

But a new problem arises: the question whether a key
really belongs to the entity it should belong to, for
example, because a name is stored with the key. You
need to trust a key before using it, so that you do not
encrypt traffic to a man in the middle. Therefore a vali-
dation process has to be established which leads to a
public key infrastructure where users and software can
retrieve and validate keys.

Many systems, which are designed for deploying mo-
bile agents [13], utilize the X.509 certificate standard
for storing and managing keys in the underlying public
key infrastructure, which is defined in RFC 2459 [14].

X.509 depends on a centralized architecture where so
called Certification Authorities (CA) sign keys. The
key is trusted, if you trust the CA and the CA has is-
sued the certificate containing the key. Examples for
CAs are VeriSign [15] or TC TrustCenter [16]. The CA
may also sign another entity and allow it to sign other

keys as well. This chain of CAs and the key is called a
trust path or certification hierarchy. The public key
together with user information like name, e-mail etc.,
and the complete trust path are stored in a so called
certificate. The certificate may also contain information
about what a user is allowed to do. These may be tech-
nical, like acting as a CA, or from a economic view,
like ordering goods for a company. However, the X.509
standard is very unprecise here which has lead to differ-
ing and incompatible implementations how to handle
these extensions. This and many other drawbacks of the
standard are discussed in [17].

Fig. 2: Principle use of Certification Authorities

The X.509 standard is widely used in industry for
storing keys which are used for securing web transac-
tions (Secure Socket Layer (SSL) [18]) or for sending
e-mails (S/MIME, RFC 2633 [19]) and are tightly inte-
grated in standard software like browsers and e-mail-
software. However, the central approach has some
drawbacks:

• if the CA's private key is exposed, the whole secu-
rity model collapses,

• a key can only be signed by one CA,

• only CAs can sign keys,

• for each CA the certificate has to be installed lo-
cally,

• implementations of peer-to-peer networks without
any central resource are not possible.

4 The OpenPGP Standard

4.1 Introduction

In 1991 Phil Zimmermann released the first version of
Pretty Good Privacy (PGP). It should make the use of
encryption easy and usable for private persons as well.
It uses strong public key algorithms for encryption and

Root CA

Other CA

Certificate

digital signatures. Because of this and the legislation in
the United States of America in that time, PGP faced
lots of legal trouble, which were all resolved. PGP was
further developed and the program changed ownership
a lot. Since 2002 it is owned by PGP.com [20] which in
turn belongs to Phil Zimmermann [21].

The message format has been slightly changed and
standardized as RFC 2440 [22] in the year 1998 as
OpenPGP. Today it is widely used in the academic and
open source area to encrypt and sign e-mail traffic and
software packages.

The OpenPGP standard allows the use of many encryp-
tion and signing algorithms and allows the extension by
any new algorithm. Commonly supported ones for
encryption and digital signatures are:

• RSA,

• DSA,

• ElGamal.

A key should uniquely be identified by its key finger-
print. The fingerprint is a hash value, consisting of 128
bit, which is hard to construct and should be unique
world-wide.

However, for simplicity, for normally referencing keys,
so called key ids are used, which are the last 4 bytes of
the key fingerprint. These are not unique world-wide
[23], but can used practically without causing too much
headaches.

The keys are normally distributed via so called key
servers. These servers contain a database of all known
keys and, in general, are syncing their key repositories
with each other. One key server can be found under
[24]. Users submit their keys to the servers in order to
make it possible for others to find and retrieve keys
they need.

4.2 Web of Trust

Instead of relying on a hierarchical trust model,
OpenPGP uses a decentralized approach which is called
the “web of trust”. Its principle is very easy: Everyone
can sign any key. By signing one guarantees that the
key really belongs to the one, whose name is saved
with that key. This practice leads to a graph which
represents the trust relationships between the keys and
their persons. The vertices represent the persons and
keys and the edges represent the signatures and there-

fore the trust relationships. A real world example is
illustrated in figure 1.

Fig. 3: A small web of trust

To validate a key, the user has to obtain a trustworthy
chain between his key and the key he wants to use. This
chain is called a path or trust-path. For making this task
easy, there are so called pathfinder, like [25].

To establish signatures, keys are signed between col-
leagues, friends and after so called keysigning parties.
A keysigning party is a meeting where people come
together in order to exchange their key fingerprints and
show their id cards or similar official documents so that
everyone can clearly verify that the key really belongs
to its assumed owner. Afterwards the keys are getting
signed and normally uploaded to the key servers.

The main problem with this approach is, that one often
has to trust one or many chains between one's own key
and another. The trust in a chain can be controlled via
so called “owner trust” which describes to which de-
gree one trusts signatures made by another key: If one
thinks, the key's signature are fully trustworthy, that
means that a signature really does guarantee that the
user carefully verified the key's ownership, one will
assign full owner trust to that key. If one is not sure,
also marginal or no trust can be assigned.

This way, it is possible to establish CAs in the
OpenPGP world as well. The standard proposes an
ultimate owner trust, which normally is only assigned
to one's own key. This ultimate trust can also be as-
signed to other keys which in turn means, that this key
is as trustworthy as one's own key. So by assigning
ultimate owner trust to a key, that key becomes a de-
facto CA key. There are CAs for OpenPGP keys as
well, like HeiseCA [26], which can be treated as a CA
but can also be treated as a key like any other, depend-
ing on the user's trust settings.

However, it is not possible to inherit trust from a CA:
With X.509 a CA may certify another CA. If one trusts
the top-level CA, one will also trust certificates issued
by the lower-level CA, which automatically is not pos-
sible in OpenPGP because the user has full control
about the trust settings.

The more keys a verified in that peer-review process,
the securer is communication is getting. The web of
trust is getting more complete; in it's perfect form,
everyone verified everyone and in turn signed every
key. There are statistics available for the web of trust,
as well as for individual keys. One very prominent
example can be found under [27].

4.3 Software and existing solutions

The OpenPGP standard is widely implemented. The
most prominent examples are PGP and the GNU Pri-
vacy Guard (GPG) [28] which is an open source devel-
opment, which also was funded by the German gov-
ernment and ported to a variety of platforms, like Win-
dows, Linux, MacOS X, etc. Both implement the cryp-
tographic algorithms and the standard message format.
PGP also allows integration into the most famous,
commercially used e-mail clients, while GPG uses
plugins, developed by 3rd parties for integration.

GPG integration is very famous within open source
applications. Native support, for example, is provided
by KMail [29], the e-mail client of the K Desktop Envi-
ronment [30]. Examples for plugins are Enigmail [31]
for Mozilla [32]/Netscape Messenger [33] and Thun-
derbird [34] e-mail clients, as well as the GData plugin
[35] for Outlook [36], which is not distributed under an
open source license. Enigmail’s integration into mozilla
is shown in figure 2.

Fig. 4: Enigmail integration into Mozilla (see [31])

PGP has a own graphical user interface for managing
keys, which is shown in figure 3.

In contrast, GPG allows the full control of the program
from the command-line, however, there are graphical
interfaces available, like the GNU Privacy Assistant
(GPA)[37] or the GPG Shell [38].

Fig. 5: PGP screenshot [see 39]

5 Suggestions for Implementation

The OpenPGP standard is well suited for use in p2p
networks. It allows a security model which is not de-
pendent on central resources like CAs. Instead the users
can choose and verify which keys and users are trust-
worthy.

By further bringing the web of trust to the world of
mobile agents, new applications are possible: Applica-
tions in which agents can learn trust, p2p networks of
agents which are operating in an open manner etc.

The question which therefore needs to get resolved is
what things need to be encrypted or signed and on what
things can security policies work and decide what
rights an agent has on the system or within a transac-
tion.

The proposed security architecture is based on three
signatures for the agent: One signature for the code,
which identifies the programmer of the agent. The next
signature identifies the agent's owner. Furthermore,
hosts have to sign the agent's state when it is sent over
the network.

The rights an agent has within transactions, for exam-
ple, on line auctions, is stored within an agent passport,
in which the owner can state what limits an agent has.

Every participant in the p2p network can have a key: a
host, a user and an agent. The keys are correspondingly
named host key, user key and agent key.

The host keys and agent keys are identified by a prefix
in their description: HOST: and AGENT:, like “HOST:
myhost”. It should be taken care that these two key
types are never uploaded to the central key servers.

Instead their distribution should be part of the p2p
network, so that the central key servers are not polluted
by keys belonging to virtual entities, which are not part
of normal e-mail communication. The user keys can be
uploaded to the servers and used for normal e-mail
traffic as well.

5.1 Signatures verifying the agent's code

The code of transferred agents can be signed. This is
similar to the signing of Java Applets [40] or ActiveX
controls [41]. The signature verifies the programmer of
the code. Security policies can use this information to
check whether trustworthy programmers developed an
agent or not.

For instance, a small text file can be send along with
the agent, containing file names and their hash values,
all signed by the programmers’ key, belonging to a
human being or a company:

--- BEGIN PGP SIGNED MESSAGE ---

SearchAgent.class: 235476AAB7C5D35A
QuickSearch.class: 8306B56D0B2A34CA
--- BEGIN PGP SIGNATURE
...
--- END PGP SIGNATURE ---

The programmer's key is only used for verifying the
signature. No communication should be necessary
between the host system and the agent on the one hand,
and the programmer on the other hand.

5.2 Signatures verifying the agent's owner

The owner of an agent is the person or system which
sent an agent. The owner is not necessarily the pro-
grammer of the agent, because the agent can be devel-
oped by a 3rd party and send on demand by a person,
for example, for searching the network.

The ownership can be proved by a text file, which con-
tains the agent's name, and the files, belonging to this
agent. The files are signed by the programmer as well
as the owner, so that the programmer cannot exchange
code while the agent is traveling. An example file could
look like this:

--- BEGIN PGP SIGNED MESSAGE ---

SearchAgent.class: 235476AAB7C5D35A
QuickSearch.class: 8306B56D0B2A34CA
--- BEGIN PGP SIGNATURE
...

--- END PGP SIGNATURE ---

Because the signature contains the key id as well, the
owner can be identified and results, orders etc. can be
send encrypted to him.

It is possible to include the key in this file as well, for
example as an ASCII dump, so that the key is auto-
matically distributed with the agent.

5.3 Signatures verifying the agent's data

The internal state of the agent needs to be send from
host to host, wherever the agent travels. The host need
to sign the data as they pass them to other hosts, so that
no data corruption or tampering can occur. The target
node can then verify, if the agent comes from a trust-
worthy node or not.

5.4 Agent passport

In some application scenarios, the agent needs to pro-
vide the rights it has, for example, how high the value
of acquired goods may be. In X.509 certificates these
permissions can be stored and certified, which is di-
rectly not possible in OpenPGP. Consequently, this
functionality has to be added. The agent passport stores
the rights the agent has. It must at least include the
agent's unique name in the network and has to be
signed by its owner.

The passport can have an start and an expiry date,
which can be used to limit the lifetime of the agent's
permissions and making it harder to tamper or forge
with the passports.

It is possible to store one time passwords or transaction
numbers (TANs) in the passport, making it necessary to
encrypt it. Using the TANs, e-commerce applications
can be implemented easily: The host can decrypt the
passport and do transactions on agent's behalf, authen-
ticate itself using the TAN.

By supplying many passports encrypted to different
host keys, it is possible to extend this scenario to have
different rights when running on different nodes, which
may be not equally trustworthy. Furthermore, this al-
lows different set of TANs for different nodes on the
network.

An agent passport may look like this:

--- BEGIN PGP SIGNED MESSAGE ---

Agent Name: trully.in.tu-clausthal.de
Passport Start: 2003-01-01 00:00
Passport End: 2003-01-02 00:00
TAN: pktncAN4ccs, ujgvhre§$s2, 4c§jfS
MaxAmount: 1000$
--- BEGIN PGP SIGNATURE
...
--- END PGP SIGNATURE ---

5.5 Encryption

Preferably the agent, his state and all other information
should be transmitted not only signed but encrypted as
well. Host-to-host encryption is no problem and many
solutions are already implemented, like SSL.

In [42] a solution is proposed specifically for security
in mobile agent networks. The idea is quite simple, yet
powerful: The agent package or parts of it, are en-
crypted with many recipients. The agent is then routed
from the first to the second recipient and so on. Only
hosts on that route can read and execute the agent,
because they are the only ones who can decrypt the
agent package. Especially with custom passports this
solution is very powerful. Since OpenPGP allows en-
cryption to many recipients, this functionality can eas-
ily be implemented.

However, the agent's route has to be known before, so
this method is not an option for randomly searching a
network or for following or not deterministic route.

6 Comparison between OpenPGP

and X.509

Although OpenPGP and X.509 deploy the same cryp-
tographic algorithms and are therefore equally techni-
cally secure, both are using a completely different trust
model.

This leads to some differences: In the OpenPGP world
the user has more control over his security settings.
There is not necessarily a CA and keys can be verified
as well as certified by more than one person. In turn,
the user has more responsibilities.

The CA model in X.509 public key infrastructures
represents a single point of failure, but allows easy key
distribution because on the clients no additional options
have to be edited.

The CAs advantage is, that a certificate is either fully
trusted or not trusted at all, depending whether the CA
is trustworthy or not and the certificate is valid or not.
In OpenPGP keys can be marginally trusted because of
the paths through which the keys are being validated.
There might not always be a short path between two
keys making the decision, if a key is trustworthy or not
,very difficult.

An advantage of the OpenPGP model is the fact, that
the key validation is not commercialized. CAs are nor-
mally getting paid for issuing certificates, but the key-
signing process with OpenPGP is free.

While X.509 certificates include a number of optional
fields, allowing the extension of the standard to contain
information about the rights of an agent, this informa-
tion has to be transmitted seperately. While this might
seem as a disadvantage, it certainly is an advantage: If
you want to change the agent’s permissions or want to
have different rights depending on the host system it
runs on, the use of seperate agent passports is easier.

For both X.509 certificates and OpenPGP keys imple-
mentations are available, both commercial or open
source, so that they can be easily be integrated into
applications and both systems have proved their
strength in day to day applications. However, the ap-
proach of the web of trust is more suited to the world of
p2p networks: No central resources are needed and the
security infrastructure is as easily extensible as the
network itself. Each node can choose their individual
security settings as well as nowadays users can choose
which files to share on a file sharing network.

7 Conclusions and Outlook

By using the OpenPGP standard in p2p networks with
mobile agents, security can be enforced. Open source
utilities like GPG already implement the needed cryp-
tographic functionality and can be used without any
licensing costs.

Furthermore the standard allows very flexible trust
relationships between all entities participating in the
p2p network: Agents can sign each other, users can
sign agents and hosts can validate everything as well as
signing their network traffic.

Once implemented, new application types are possible:
File-sharing networks could be extended in a way to
allow mobile agents to move through the network,
searching for resources and returning better results.
These agents can be anonymous as well as identified
through trustworthy signatures without any corporate or

central instance controlling the network or enforcing
additional costs.

In terms of research, it is possible to develop agents,
which are learning which agents and hosts are trustwor-
thy and in turn sign them, so that a flexible trust model
is working efficiently. Consequently, learning trust is a
field where further research can occur.

References

[1] Verteilte Systeme, 2003, Maarten van Steen, And-
rew S. Tanenbaum, pp. 186, pp. 202

[2] FIPA Agent Control Language, Foundation for
Intelligent Physical Agents, 2001,
http://www.fipa.org/specs/fipa00061/

[3] Agent-Oriented Software Engineering; Nicholas R.
Jennings and Michael Wooldridge, 1999

[4] D'Agents: Mobile Agents at Dartmouth College,
Center for Mobile Computation, 2002,
http://agent.cs.dartmouth.edu

[5] The Mobile Agent List, Fitz Hohl, 2003,
http://mole.informatik.uni-
stuttgart.de/mal/preview/preview.html

[6] An Agent based approach towards home automation
control, Tiago S., 2003

[7] P2P (peer to peer), Network World, Inc., 2002,
http://www.nwfusion.com/links/Encyclopedia/P/654.ht
ml

[8] On Death, Taxes, and the Convergence of Peer-to-
Peer and Grid Computing, Ian Foster & Adriana Iam-
nitchi, 2003, http://iptps03.cs.berkeley.edu/final-
papers/death_taxes.pdf

[9] ICQ.com - Get ICQ instant messenger, chat, people
search and messaging service!, ICQ Inc., 2003,
http://www.icq.com

[10] What is P2P... and what isn't, O'Reilly & Associ-
ates, 2000,
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky
1-whatisp2p.html

[11] peer-to-peer network, CNET Networks, Inc., 2003,
http://www.cnet.com/Resources/Info/Glossary/Terms/p
eer.html

[12] Was ist S2S? - Übersicht , DFN, 2003,
http://s2s.neofonie.de/index.jsp

[13] Secure Mobile Agents, Ulrich Pinsdorf, 2003,
http://www.inigraphics.net/publications/topics/2003/iss
ue1/1_03a10.pdf

[14] Request for Comments: 2459, The Internet Soci-
ety, 1999, http://www.ietf.org/rfc/rfc2459.txt

[15] Verisign Inc., 2003, http://www.verisign.com/

[16] TC Trustcenter, 2003, http://www.trustcenter.de

[17] X.509 Style Guide, Peter Gutmann, 2000,
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guid
e.txt

[18] Secure Socket Layer and Transport Layer Secu-
rity, Liisa Erkomaa, 1998,
http://www.tml.hut.fi/Studies/Tik-
110.350/1998/Essays/ssl.html

[19] Request for Comments: 263, The Internet Society,
1999, http://www.ietf.org/rfc/rfc2633.txt

[20] PGP Corporation, 2003, http://www.pgp.com/

[21] PGP History, PGP Corporation,2003,
http://www.pgp.com/company/pgphistory.html

[22] Request for Comments: 2440, The Internet Soci-
ety, 1998, http://www.ietf.org/rfc/rfc2440.txt

[23] PGP Keys with Duplicate KeyIDs, Jason Harris ,
2002,
http://skylane.kjsl.com/~jharris/duplicate_keyids.html

[24] DFN-PCA, DFN, 2003,
http://wwwkeys.de.pgp.net/

[25] Experimental PGP key path finder, Jonathan
McDowell, 2002,
http://the.earth.li/~noodles/pathfind.html

[26] Krypto-Kampagne, Heise Verlag, 2003,
http://www.heise.de/security/dienste/pgp/

[27] Keyanalyze report, Jason Harris, 2003,
http://keyserver.kjsl.com/~jharris/ka/

[28] The GNU Privacy Guard, Free Software Founda-
tion, 2003, http://www.gnupg.org/

[29] KMail - the KDE mail client, Daniel Naber, 2003,
http://kmail.kde.org/

[30] KDE Homepage - Conquer your Desktop!, KDE
e.V., 2003, http://www.kde.org/

[31] Enigmail, mozdev.org, 2003,
http://enigmail.mozdev.org/

[32] mozilla.org, Mozilla Foundation, 2003,
http://www.mozilla.org/

[33] Netscape 7.1, Netscape., 2003,
http://channels.netscape.com/ns/browsers/download.jsp

[34] The Mozilla Thunderbird Mail Project, Mozilla
Foundation, 2003,
http://www.mozilla.org/projects/thunderbird/

[35] GnuPG Plugin, G DATA Software AG, 2003,
http://www3.gdata.de/gpg/download.html

[36] Microsoft Office - Outlook Home Page, Microsoft
Corp., 2003,
http://www.microsoft.com/office/outlook/default.asp

[37] GPA - The Gnu Privacy Assistant, Free Software
Foundation, 2003,
http://www.gnupg.org/related_software/gpa/

[38] GPGshell, Roger Sondermann, 2003,
http://www.jumaros.de/rsoft/gpgshell.html

[39] CWSApps - PGPfreeware Screenshot #2, Jupiter-
media Corp., 2003,
http://cws.internet.com/screenshots/pgp2.html

[40] Applets, Sun Microsystems, 2003,
http://java.sun.com/applets/

[41] COM: Delivering on the Promises of Component
Technology, Microsoft Corp., 2003,
http://www.microsoft.com/com

[42] Securing Your Data in Agent-Based P2P Systems,
Xiaolin Pang et. al., 2003,
http://www.computer.org/proceedings/ das-
faa/1895/18950055abs.htm

