

AGVENT: AN AGENT BASED DISTRIBUTED EVENT SYSTEM

Ozgur Koray SAHINGOZ
Air Force Academy

Computer Engineering Department
Yesilyurt, Istanbul, TURKEY

sahingoz@hho.edu.tr

Nadia ERDOGAN
Istanbul Technical University
Electrical-Electronics Faculty

Computer Engineering Department, Ayazaga
80626, Istanbul, TURKEY

erdogan@cs.itu.edu.tr

ABSTRACT
In recent years, a growing attention has been paid to the
publish/subscribe communication paradigm as a means for
disseminating information (also called events) through
distributed systems on wide-area networks. As it allows
events to be propagated in a way that is completely hidden
to the component that has generated them as well as to its
receivers, it is particularly interesting when easy
reconfiguration and decoupling among components in a
distributed system is required. The historical development
of publish/subscribe systems has followed a line which
has evolved from channel-based systems, to subject-based
systems, next content-based systems and finally object-
based systems. In this paper, we propose a new model for
agent based distributed events systems, the Agvent
System, which combines the advantages of
publish/subscribe communication and mobile agents into a
flexible and extensible distributed execution environment.
The Agvent system exploits mobile agents as mediators
between participants of an event based distributed system.

1. INTRODUCTION

In the traditional client/server computing model, which is
used in RPC and RMI, communication is typically
synchronous, tightly coupled and point-to-point. Clients
invoke a method on the remote server and wait for the
response to return. This type of communication requires
clients and servers to have some prior knowledge of each
other.

With the use of mobile and/or large-scale systems, the
need for asynchronous, loosely coupled and point to
multipoint communication pattern arises. The
publish/subscribe paradigm serves these needs.
Event models are application independent infrastructures
that satisfy communication requirements of such systems.
Event-based communication generally implements the
publish/subscribe model, as shown in Figure 1. A publish/
subscribe system consists of a set of clients that
asynchronously exchange notifications, decoupled by a

dispatch service, which is interposed between them.
Clients can be characterized as producers or consumers.
Producers (publisher) publish notifications, such as
current stock quotes, and consumers (subscribers)
subscribe to notifications by issuing subscriptions, which
are essentially stateless message filters.

To receive event data, subscribers register to an event
service with the definitions of the events they are
particularly interested in. A definition can include a
simple subscription message, a subscription message with
filtering on events or a subscription message for
composite events [1].

In this paper, we present an agent based distributed event
system, the Agvent system, which exploits mobile agents
as mediators between publishers and subscribers of
events. The Agvent system implements the
publish/subscribe protocol, thus enabling many-to-many
interaction of loosely coupled entities. It also allows
publishers and subscribers to dynamically connect and
disconnect from the system, a capability that extends the
flexibility of the working environment.

The rest of this paper is organized as follows. In the next
section, we present a classification of publish/subscribe
systems with references to related work. Section 3
introduces the design decisions and framework of Agvent
system. Our conclusions are presented in Section 4.

Event Service

Storage and
management of
subscriptions

publish()

subscribe()

unsubscribe()

Publisher

Publisher

Publisher

Publisher
Subscriber
notify()

Subscriber
notify()

Subscriber
notify()

Figure 1. Publish/Subscribe model

2. PUBLISH/SUBSCRIBE SYSTEMS

Publish/subscribe communication systems are
characterized by the complete decoupling of producers
(publishers) and consumers (subscribers) of data. In this
model, receivers of messages express their interest by
subscribing to a class of events and they are
asynchronously notified if a sender publishes an event
which matches their subscription. In this way, the model
allows a flexible n-to-m communication among
communicating parties. Publish/subscribe systems can be
present in the application domain of software systems,
networked interactive games, news, internet-based
trading, etc. They can be classified into four groups
according to their subscription mechanism. Each one is
discussed in detail below.

2.1. Channel-based systems

The simplest subscription mechanism is what is
commonly referred to as a channel. Subscribers subscribe
or listen to a channel. Applications explicitly notify the
occurrence of events by posting notification to one or
more channels. The part of an event that is visible to the
event service is the identifier of the channel to which the
event has been sent. Every notification posted to a channel
is delivered by the event service to all the subscribers that
are listening to that channel. Channels can be
implemented efficiently because they can easily be
mapped to multicast groups, but they have some inherent
disadvantages. Firstly, the expressiveness, i.e., the
filtering capability, of channels is rather limited because
notifications can only be classified with respect to a
number of channels. Secondly, channels are inflexible and
inhibit changes. If the assignment of notifications to
channels changes, both producer and consumers may have
to be changed. Finally, producers and consumers are not
fully decoupled because the producer decides into which
channel(s) a notification is to be published.

The abstraction of the channel is equivalent to the one
given by a mailing list. A user sends an e-mail to an
address, and message is forwarded to those who have
registered to that mailing list. CORBA Event Service [2]
adopts a channel-based architecture. Another widely used
channel based model is the Java Delegation Event Model
[3], which encapsulates events from the platform's
Graphical User Interface

2.2. Subject-based systems

Some systems extend the concept of a channel with a
more flexible addressing mechanism that is often referred
to as subject-based1 addressing. In this case, an event

1 Some authors use “topic-based subscription” instead of “subject-based
subscription”

notification consists of two different parts: a well-known
attribute, the subject, which determines the address, which
is followed by the remaining information of the event
data. The main difference with respect to a channel is that
subscriptions can express interest in many subjects/
channels by specifying some form of expression to be
evaluated against the subject of a notification. This
implies that a subscription may define a set of event
notifications, and two subscriptions may specify two
overlapping sets of notifications. This, in turn, implies that
one event may match any number of subscriptions.

JEDI [4] adopts the subject-based subscription
mechanism. In JEDI, an event is given in the form of a
function call; where the first string is the function/event
name followed by parameters, e.g., “print (tez.doc,
myprinter)”. Each event is labeled with a subject.
Subscriptions are specified with an indication of the
subject of interest. Notice that the subject-based approach
is a variation of the channel based concept, as the rest of
the event data except for the subject is content-free. The
subject can be a list of strings in a hierarchical form, over
which it is possible to specify filters based on a limited
form of regular expressions. For example, the filter
“economy.exchange.*.*HOL” (as a subtree structure) will
select all the notifications whose subject contains
economy in first position followed by exchange in second
position, any string in third position, and a fourth string
that ends with the string “HOL”.

The above examples show that subjects provide more
powerful notification selection than channels.
Nevertheless, subjects have a number of drawbacks.
Firstly, they still have a limited expressiveness. With
subjects it is possible to have a subject for each single
stock, but what if the user is interested in the stock price
only if it rises above a certain limit? Secondly, subjects
are only suitable to divide the notification space with
respect to one dimension. Finally, changes to the subject
tree can require major application fixes.

2.3. Content-based systems

By extending the domain of filters to the whole content of
notifications, some researchers obtain another class of
subscriptions called content-based [5]. Content-based
subscriptions are conceptually very similar to subject-
based ones. However, since they can access the whole
structured content of notifications, an event server gives
more freedom in encoding the data upon which filters can
be applied and that the event service can use for setting up
routing information. The increase in expressiveness
allows the delivery of uninteresting notifications to be
reduced or even to be avoided. In particular, this is
important for applications that run on mobile devices
having limited processing power and network bandwidth.

Examples of event systems that provide this kind of
subscription are Yeast [5] (uses a centralized structure)
and SIENA[6]. In SIENA, an event notification is a set of
attributes in which each attribute is a triple, as in “attribute
= (name; type; value)”. Attributes are uniquely identified
by their name. An event filter defines a class of event
notifications by specifying a set of attribute names and
types and some constraints on their values, e.g., “attr filter
= (name; type; operator; value)”.

2.4. Type (Object) -based systems

Type based publish/subscribe model [7], proposed by
Eugster, is a new model of subscription that has been
developed to access event data in a more structured
manner. Events are often viewed as low-level messages
and a predefined set of such message types are offered by
most systems, providing very little flexibility. To
overcome this deficiency, type-based publish/subscribe
mechanism manipulates events as objects, called obvents.
The core idea underlying this integration consists in
viewing events as first class citizens, and subscribing to
these events by explicitly specifying their type. So an
application-defined event data can be used in the event
system.

Type-based publish/subscribe has several advantages over
other publish/subscribe variants. By reusing the type
scheme of the language to classify message objects, type-
based publish/subscribe avoids any unnatural subscription
scheme and provides for a seamless integration of a
publish/subscribe middleware with the programming
language. The knowledge of the type of message objects
also enables the generation of static filters for content-
based publish/ subscribe from dynamically defined
requirements.

While surveying the progression of the publish/subscribe
systems, we have concluded that the next step of the
evolution should be based on agents. Therefore, in this
paper, we propose a new model for a distributed event
system , the Agvent System, which uses mobile agents
(agvents - agent events) as event data in publish/subscribe
protocol. In the next section, we explain the advantages of
the proposed system and describe the major design
decisions along with its framework.

3. AGVENT SYSTEM

The Agvent System is an agent based distributed event
system whose framework is shown in Figure 2. The
system consists of three main components: publishers
that submit information to the system, subscribers that
express their interest in specific types of information and a
dispatch service, which is responsible for
dispatching the incoming agvents. Our goal is to combine
two developing technologies, mobile agents and

publish/subscribe system, in order to benefit the
advantages of both. The advantages derived from the
general characteristics of the publish/subscribe protocol
are the following [8].
• Space Decoupling: producers do not need to address

consumers and vice versa. Instead, consumers
simply specify the notifications they are interested
in. This loosely coupled approach facilitates
flexibility and extensibility because new consumers
and producers can be added, moved, or removed
easily.

• Flow Decoupling: communication is asynchronous,
thereby removing the disadvantages and in flexibility
of synchronous communication described above.

• Time Decoupling: producers and consumers do not
need to be available at the same time. This means
that a subscription causes notifications to be
delivered even if producers join after the
subscription was issued.

We want to combine the general properties of software
agents to this system [9].
• Autonomy: Agents should be able to perform the

majority of their problem solving tasks without the
direct intervention of humans or other agents, and
they should have a degree of control over their own
actions and their own internal state

• Social Ability: Agents should be able to interact,
when they deem appropriate, with other artificial
agents and humans in order to complete their own
problem solving and to help others with their
activities. This requires that agents have, as a
minimum, a means by which they can communicate
their requirements to others and an internal
mechanism for deciding when social interactions are
appropriate (both in terms of generating appropriate
requests and judging incoming requests).

• Reactivity: Agents should perceive their
environment (which may be the physical world, a
user via a graphical user interface, a collection of
other agents, the INTERNET, or perhaps all of these
combined) and respond in a timely fashion to
changes, which occur in it.

• Proactiveness: Agents should not simply act in
response to their environment; they should be able to
exhibit opportunistic, goal-directed behavior and
take the initiative where it is appropriate.

The system applies the capabilities of agents stated above
to real-world “entities” on whose behalf they operate,
whether that entity be a person, a place, or even a less
concrete notion like an organizational group.

 The Agvent system integrates mobile agent technology
with publish/subscribe communication to reach a new
model for agent based distributed system. The Agvent

System differs from other distributed event systems with
its distinct characteristics that are described below.

a) Autonomous Events. Events are not viewed as
simple messages. In most event systems, events are
defined as low-level messages, which consist of
record-like structures, list of strings, tuple-based
structures, or etc. In type-based systems, events are
defined as objects and viewed as first class
citizens. Nevertheless, they are not autonomous.
 In the Agvent System, events are defined as
mobile agents that have their own goals, beliefs
and behaviors, which are loaded to the agvent
when they are created.

b) Agvent Based Subscription: In most
distributed event systems, Subscribers register on a
channel or on a specific topic.

In the Agvent System, subscribers register on
agvent types. For example, a subscriber can
register on an agvent, which is an instance of
“Agv_type1” class.

c) Information Hiding. In previously developed
event systems, event servers can access (has to)
the content of the published event data before it
can dispatch these data to the registered targets.

In the Agvent System, the published agvent itself
searches the knowledge base of the event server,
selects the registered subscribers, clones itself and
sends each agent clone to a subscriber on the list.
Therefore, the role of the event server is reduced
and an event server can be developed easily.

d) User/Application defined event
(agvent) types. Distributed event systems
generally use predefined event types. Therefore, to
add a new event type you have to make
programmatic changes in dispatch service,
publisher, and subscriber sites.

In the Agvent System, a publisher creates its own
agvent type and sends it to the dispatch service.
Once an agvent type is defined, subscribers can
subscribe on agvents of that type.

Participants of the Agvent System follow two different
models: the publication model and the subscription model.

3.1. Publication model:
The publication model defines data model for publishable
event data. In most distributed event systems, this model
should classify services according to the following
parameters:
• structure:characterizes the structure of

notifications. Typical publications can be classified
as unstructured, lists of strings, record-like structures
with positional or name-based identification of
attributes, recursive structures, such as LISP
expressions or XML documents, and composite
publications, made of digests of other publications

• types:predefined domains of values. Typical type
classifications would be binary or string, simple
atomic types (such as integers, dates, booleans), and
typed structures, that is, structures whose
combination of fields constitute a type in itself.

• limits: total byte size, number of attributes, limits
for types (string length, integer sizes or ranges of
values), and number and depth of sub-structures.

The Agvent System uses mobile agents [10, 11] for
searching, retrieving and dispatching event data. There are
at least seven main benefits of using mobile agents.
a) They reduce the network load. Mobile

agents allow users to package a conversation and
dispatch it to a destination host where interactions
take place locally.

b) They overcome network latency. Mobile
agents offer a solution, because they can be
dispatched from a central controller to act locally and
execute the controller’s directions directly.

c) They encapsulate protocols. Mobile agents,
on the other hand, can move to remote hosts to
establish channels based on proprietary protocols.

d) They execute asynchronously and
autonomously. Mobile devices often rely on

Dispatch Service

Publisher 1

Publisher 2

Publisher 3
Subscriber 1

Subscriber 2

Subscriber 3
Subscriber 4

Subscriber 5

Event
Server

Event
Server

Event
Server

Event
Server

Event
Server

Event
Server

Figure 2. Framework of the Agvent System

agvent

agvent

agvent

expensive or fragile network connections. Tasks
requiring a continuously open connection between a
mobile device and a fixed network are probably not
economically or technically feasible. To solve this
problem, tasks can be embedded into mobile agents,
which can then be dispatched into the network. After
being dispatched, the agents become independent of
the process that created them and can operate
asynchronously and autonomously. The mobile
device can reconnect at a later time to collect the
agent.

e) They adapt dynamically. Mobile agents can
sense their execution environment and react
autonomously to changes.

f) They are naturally heterogeneous. Mobile
agents are generally computer- and transport- layer-
independent (dependent on only their execution
environments), they provide optimal conditions for
seamless system integration.

g) They are robust and fault-tolerant.
Mobile agents’ ability to react dynamically to
unfavorable situations and events makes it easier to
build robust and fault-tolerant distributed systems.

Publishers are responsible of creating agvents. When a
publisher decides to create a new agvent, it defines the
agvent’s goals, beliefs and behaviors. After that, it sends
this agvent to the Dispatch Service over an Event Server
to which it is connected (as depicted in Figure 1). Event
Servers and publishers provide a platform for incoming
agvents to run autonomously.

After an agvent is activated on the Event Server, it

• checks the knowledge base of the event server,
• selects the targets (event servers or subscribers)
• creates its clones for each target
• send these clones to the targets

When an agvent reaches a subscriber site, it

• checks the knowledge base of the subscriber,
• communicates with the subscriber agent through an

agent communication language,
• delivers it a message (a complex event data, a

secret password, a negotiation for an e-commerce
or etc.) or requests something to be carried out (to
update its database according to incoming data
with the agvent, run a routine for updating its
software, or etc.) according to its creation goal.

3.2. Subscription model:

Subscription model defines the selection capabilities of
the publish/subscribe service. In designing a subscription
model, the following properties should be considered in
detail.

• scope: defines what parts of a publication can be
evaluated and selected within subscriptions.

• language power: characterizes the language that
defines subscription in terms of its expressive power.

• language style: declarative or imperative
• other features: extensibility (for example, by

means of plug-ins), useful special operators such as a
“certificate-based authentication” predicate that
would select all the publication that a client can
successfully authenticate.

The expressiveness of the subscription model is crucial for
both the flexibility and the scalability of a notification
service. Insufficient expressiveness can lead to
unnecessary broad subscriptions stressing the network and
raising the need for additional consumer-side filtering. On
the other hand, scalable implementations of more
expressive description models require complex delivery
strategies [13].

In the Agvent System, we use a rule based subscription
model [1, 12], which uses the Rule Definition Language,
whose grammar is shown in Figure 3. A rule is an
expression or function that is evaluated or executed
depending on the arrival of an agvent. It also defines
necessary subscription information and the filtering
conditions of the subscribers.

<Rule_def> ::= <Rule>| <Rule> where <Condition>

<Rule> ::= rule identifier
 onAgvent <Agvents>

<Agvents> ::= class/interface_type identifier |
 class/interface_type identifier, <Events>

<Condition>::=Condition <Boolean_Operator> Condition
 | (Condition) |! Condition
 | <Exp> <Relation_Operator> <Exp>
 | true | false

<Exp> ::= (<Exp>) | identifier
 | <Exp> Arith_Operator <Exp>

<Arith_Operator> ::= + | - | * | /

<Relation_Operator>::= > | < | >= | <= | == |!=

<Boolean_Operator>::= and | or

Figure 3. The grammar of RDL in BNF notation

A rule definition is composed of three parts, each
introduced by the keywords rule, onAgvent and where,
respectively. The first part sets a unique identifier for the
rule, the second part specifies the type of the target agvent
and the last part describes the conditions on which a
filtered agvent should be caught. Some samples of
subscription messages is shown in Figure 4.

rule rule_1
onAgvent Agv1

a. Simple Subscription

rule rule_2
onAgvent Agv2
where (price > 250 and
 price < 370)

b. Filtered Subscription

Figure 4. Subscription Rules

Subscription can be classified in two groups:
• Simple Subscription is used to subscribe on an

agvent type (as shown in Figure 4.a).
• Filtered Subscription is used to define a subscription

with different criteria related to its attributes (as
shown in Figure 4.b).

Subscribers are likely to select very specific information
out of a varied information space. The increase in
expressiveness through filters reduces the delivery of
uninteresting notifications or even avoids totally.

3.3 Message/Agent flow in Agvent System

Communication between participants of the system (event
servers, publishers and subscribers) is carried out using
Java RMI. Due to architecture neutrality, Java and RMI
handle geographically distributed heterogeneous machines
and provide a transparent view to the participants. Figure
5 depicts the message/agent flow between components of
the system and the details of the transfer are described
below. Firstly, a publisher advertises its agvent type to the
system. This advertisement is dispatched to all event
servers in the dispatch service through a broadcast
message.
1. If a subscriber is connected to an event server, it can

get the advertisement list which includes a list of
agvent types available on the system. All event
servers have the same advertisement list.

2. If a subscriber decides to subscribe on an agvent
type, it sends a rule based subscription message to
the system to register itself and this message is
dispatched to all event servers in the dispatch service
(broadcast). These subscriptions are stored in
subscription tables of knowledge bases, in each
event server.

3. When a publisher observes and event and sends an
agvent to the system, the event server to which it is
connected receives the mobile agent and activates it.
The agvent executes its pre-specified code to select
the targets (subscribers or other event servers) from
the subscription table.

4. Next, the agvent creates its clones and sends these to
the targets.

5. A subscribers continues to receive published agvents
until it unsubscribes from that particular agvent.

6. When a publisher stops publishing a certain type of
agvent, it informs the system through an unadvertise
message.

Figure 5. Message/agent flow in Agvent System

4. CONCLUSIONS

This paper presents a new model for agent based
distributed events systems, the Agvent System, which
combines the advantages of publish/subscribe
communication and mobile agents into a flexible and
extensible distributed execution environment. The system
enables the utilization of mobile agents as mediators
between participants of the system. The publish/subscribe
protocol allows for adding participants dynamically which
extends the adaptability of the system. Currently a
prototype of system is being implemented in Java.

REFERENCES

[1] O. K. Sahingoz, N. Erdogan, “RUBCES: Rule Based
Composite Event System”, in proceedings of XII. Turkish
Artificial Intelligence and Neural Network Symposium
(TAINN), Turkey, July (2003)

[2] Object Management Group, “CORBAservices:
Common Object Service Specification”, Technical
Report, Object Management Group, July (1998).

[3] “Java AWT: Delegation Event Model”. Available
online at http://java.sun.com/j2se/1.4.1/docs/guide/awt/
1.3/designspec/events.html (2003)

[4] G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI
event-based infrastructure and its application to the
development of the OPSS WFMS”, Technical Report,
CEFRIEL - Politecnico di Milano, Italy, August (1998).

[5] B. Krishnamurthy and D. S. Rosenblum, “Yeast: A
General Purpose Event-Action System”, IEEE
Transactions on Software Engineering, 21(10):845–857,
Oct. (1995).

[6] A. Carzaniga, “Architectures for an Event
Notification Service Scalable to Wide-area Networks”,
PhD Thesis, Politecnico di Milano, Italy, December
(1998).

Agvent

System

Publisher
Site

Advertise Agvent1

Notify Agvent1

Subscribe on Agvent1

Publish Agvent1

*
*
*

Publish Agvent1

*
*
*

NotifyAgvent1

Unsubscribe
from Agvent1

Unadvertise

1
2

3

4

5

7

6

T
i
m
e

Get Advertisement
List

Subscriber
Site

[7] P.T.Eusgter, “TypeBased Publish/Subscribe”, PhD
Thesis. Ecole Polytechnique Federale De Lausanne,
France, (2001)

[8] Th. Eugster Felber. The many faces of
publish/subscribe. Technical report, Swiss Federal
Institute of Technology in Lausanne (EPFL), 2001.

[9] M. Wooldridge and N. R. Jennings. Intelligent
agents: Theory and practice. The Knowledge Engineering
Review, 10(2):115–152, 1995.

[10] Jennings, N., R.: An agent-based approach for
building complex software-systems. Communication of
the ACM, Vol. 44, No. 4, acm Press, New York (2001)

[11] D. B. Lange and M. Oshima. Seven Good Reasons
for Mobile Agents. Communications of the ACM,
42(3):88-91, March 1999.

[12] O. K. Sahingoz, N. Erdogan, “RUBDES: Rule Based
Distributed Event System”, ISCIS XVIII - Eighteenth
International Symposium on Computer and Information
Sciences, LNCS, Springer-Verlag, 282-289, Nov. (2003).

[13] A.Carzaniga,D.S.Rosenblum,and A.L.Wolf.Design
and evaluation of a wide-area event notification
service.ACM Transactions on Computer Systems
19(3):332 –383,2001.

