

XML COMMUNICATING AGENTS IN THE RULE BASED DISTRIBUTED
EVENT SYSTEM (RUBDES)

Ozgur Koray SAHINGOZ
Air Force Academy

Computer Engineering Department
Yesilyurt, Istanbul, TURKEY

sahingoz@hho.edu.tr

Nadia ERDOGAN
Istanbul Technical University
Electrical-Electronics Faculty

Computer Engineering Department, Ayazaga
80626, Istanbul, TURKEY

erdogan@cs.itu.edu.tr

ABSTRACT
Efficient agent based systems require flexible Agent
Communication Languages, such as FIPA ACL, to define
the exchange of structured and unstructured information
between agent components of the system. The problem of
encapsulating semantically rich data, which are to be
exchanged between users, applications or agents, can be
tackled by XML (Extensible Markup Language). XML is
proving to be the backbone of open, platform-neutral data
solutions. Therefore, we investigate how agent
technologies and Agent Communication Languages can
be integrated with XML. This paper discusses relevant
technology issues related to the integration task. A rule
based distributed event system scenario is outlined to
demonstrate the technologies and their integration.

1. INTRODUCTION

With the use of mobile or large-scale systems, the need
for asynchronous, loosely coupled and point to multipoint
communication pattern arises. Event models are
application independent infrastructures that satisfy
communication requirements of such systems. Event-
based communication generally implements what is
commonly known as the publish/subscribe protocol. As
shown in Figure 1, an event supplier (publisher)
asynchronously communicates event data to a group of
event consumers (subscribers), ideally without knowledge
of their number and location.

We have developed a rule based distributed event system
(RUBDES) [1, 2], which allows the use of composite
events in publish/subscribe computational model. In this
system, an event is represented as an object and a rule is
represented as an expression or a function that is
evaluated or executed depending on the occurrence of
events.

We use agents, which are based on Java RMI technology,
in our event system. These agents can operate on any
platform capable of supporting a Java Virtual Machine
and communicating with TCP/IP. They are implemented
by using open source, standards-based software including
Java, Java RMI, and World Wide Web Consortium (W3C)
XML DOM.

Jennings [3] defines agent as an encapsulated

computer system that is situated in some environment, and
that is capable of flexible and autonomous action in that
environment in order to meet its design objectives.
Wooldridge[4] says, an agent should have the following
properties; autonomy, reactivity, pro-activeness and social
ability. In social ability, agents interact with other agents
(and possibly humans) via some kind of agent-
communication language [5], and typically have the
ability to engage in social activities (such as cooperative
problem solving or negotiation) in order to achieve their
goals. Therefore we want to make conversation between
agents via XML encoded FIPA ACL. Because of XML's
features to describe both meta-data and data., software
agents can easily interpret XML-based messages. XML
provides a rich syntax for creating transactions that allow
software agents to interact with each other in a platform-
independent way. For these reasons, we decided to use
XML as the underlying language for agent
communication in our work.

Event Service

Storage and
management of
subscriptions

publish()

subscribe()

unsubscribe()

Publisher

Publisher

Publisher

Publisher
Subscriber
notify()

Subscriber
notify()

Subscriber
notify()

Figure 1. Publish/Subscribe model

The rest of this paper is organized as follows. In the
next section, we present a definition and classification of
agent communication languages with references to related
work. Section 3 introduces the general structure of the
RUBDES. Section 4 focuses on event types and how Rule
Definition Language (RDL) is used. Section 5 presents an
evaluation of the performance of the system. Our
conclusions and plans for future work are presented in
Section 6.

2. AGENT COMMUNICATION
LANGUAGE (ACL)

As the demand for more powerful, efficient and versatile
agents grows, so too does the pressure on developers.
After all, there is only so much that any one agent can do!
If you make your agent perform too many tasks, then the
complexity of development and maintenance increases.
Just like any other class of application, the more demands
we put on our software, the more work must be put in to
achieve that functionality.

Agents are generally designed with a specific purpose

in mind. They do one or perhaps several tasks very well,
but often are not designed as a jack-of-all-trades. If agents
must perform more tasks, we can either increase their
complexity (which increases the development effort), or
we can make them work cooperatively. For cooperation
between agents to succeed, effective communication is
required. It can be viewed that a collection of agents that
work together cooperatively as a small society and for any
society to function coherently we need a common
language and communication medium.

This language and communication medium is critical

for co-operation between agents. A prerequisite to the
agent communication is that all the participating agents
should be able to understand the communication contents.
This means that the agents should use the same language
and ontology.

Agent Communication Languages (ACL) have been a

cornerstone for the development of systems of
communicating agents, and simultaneously they have
been the subject of intensive standardization efforts. A
persistent theme throughout agents’ conceptual evolution
has been their ability to interact (communicate) with one
another and thus be able to tackle collectively problems
that no single agent can, individually. Agent
Communication Languages are intended to be above the
layer of mechanisms of Agent Middleware (physical
protocol, encoding schema and content language) as
shown in Figure 2.

If we look at the evolution of ACL, first research can

be seen as Knowledge Sharing Effort (KSE) [6, 7]. KSE
was initiated as a research effort circa 1990 with
encouragement and relatively modest funding from U.S.
government agencies Its goal was to develop techniques,

methodologies and software tools for knowledge sharing
and knowledge reuse between knowledge based systems,
at design, implementation or execution time. Agents,
especially intelligent agents, are an important kind of such
knowledge-based systems. The central concept of the KSE
was that knowledge sharing requires communication,
which in turn, requires a common language; the KSE
focused on defining that common language.

Knowledge Query and Manipulation Language

(KQML) [8] is a high-level, message-oriented
communication language and protocol for information
exchange independent of content syntax and applicable
ontology. Thus, KQML is independent of the transport
mechanism (TCP/IP, SMTP, IIOP, or another),
independent of the content language (KIF, SQL, STEP,
Prolog or another), and independent of the ontology
assumed by the content..

Foundation for Intelligent Physical Agents (FIPA) [9]

is a nonprofit association whose purpose is to promote the
success of emerging agent-based applications and
services. FIPA’s goal is to make available specifications
that maximize inter-operability across agent-based
systems. FIPA operates through the open international
collaboration of member organizations, which are
companies and universities active in the .field. European
and Far Eastern technology companies have been among
the earliest and most active participants, including Alcatel,
British Telecom, France Telecom, Deutsche Telecom,
Hitatchi, NEC, NHK, NTT, Nortel, Siemens, and Telia.

FIPA ACL is the language developed by the FIPA,

the first organized effort focusing on developing standards
in the broader area of agents. FIPA ACL is the centerpiece
of the FIPA effort. The emergence of FIPA ACL was
touted as an attempt for a cleaner purer ACL with well-
defined semantics. FIPA’s agent communication language
draws on speech act theory: messages are actions or
communicative acts, as they are intended to perform some
action by virtue of being sent. The FIPA ACL
specification consists of a set of message types and the

Agent Communication Language
KSE, KQML, FIPA-ACL, ...

Encoding schema
Java serialized object, String, Bytecode

Content language
KIF, WML, HTML, XML...

Physical protocols
HTTP, IIOP, TCP/IP, SMTP, Fax, Phone, WAP, ...

„Agent
middleware“

Figure 2 . Levels of Agent Communication

description of their pragmatics that is, the effects on the
mental attitudes of the sender and receiver agents.

As mentioned above most popular ACLs are KQML

and FIPA ACL. Both have similar syntax helps that a
developer will not have to alter the code about messages.
We select FIPA ACL as an our agent communication
language because it is more powerful with composing new
primitives and it is used more than 56 members from 17
countries worldwide.

3. SYSTEM DESIGN

RUBDES is an event-based publish/subscribe system

that uses rules for subscribing to an event service. Many
of the event systems use predefined events. RUBDES
implements a content-based subscription mechanism,
similar to that proposed by Carzaniga [10], which enables
handling of application-defined events.

RUBDES, being implemented in Java, makes use of

Java RMI facility extensively to access remote objects. To
create a uniform structure, the components of the system
are designed to be accessed over well-defined interfaces
and, naturally, they are expected to implement the
methods included in those interfaces. Figure 3 depicts the
general architecture of RUBDES. The system consists of
three main components: Subscribers, Publishers and Event
Servers.

SUBSCRIBER: Subscribers of events determine what

types of information they are interested in and describe
them in a rule form usable by the Event Service. A
subscriber has to know the address of the Event Server to
which it should register. Subscribers have to implement
the Subscriber interface, which consists of a single
method, “notify”, as depicted in Figure 4. An event server
issues a remote call to the notify method of the subscriber
to deliver an event. The subscriber is expected to process
the event in the context of this method.

import java.rmi.*;

public interface SubscriberInterface extends Remote
{
 public void notify(XMLMessage[] data) throws RemoteException;
}

Figure 4. Interface of the Subscriber Agent

PUBLISHER: Publishers of information decide on

what events are observable, how to name or describe those
events, how to actually observe the event, and then how to
represent the event as a discrete entity. A publisher
process is required to implement a particular interface
which is shown in Figure 5. The Event Server’s address
has to be known by the publisher so that it can issue a
remote call to its “publish” method.

import java.rmi.*;

public interface PublisherInterface extends Remote
{
public Download_class get_class(XMLMessage s1)

throws RemoteException;
}

Figure 5. Interface of the Publisher Agent

EVENT SERVER: The main function of the Event

Server is to dispatch incoming event notifications from
publishers to (possibly multiple) subscribers. The event
server implements the EventServer interface, which
consists of the following four methods, as depicted in
Figure 6:

• subscribe: A client (a subscriber or an event server)
registers interest in a particular event by invoking the
subscribe method of the event server. It supplies its
RMI contact address and a rule that describes the
events it is interested in as parameters to the call.

• unsubscribe: A client can cancel its registration by
calling the unsubscribe method, supplying
parameters needed to identify the subscription
previously made.

Subscriber
Agent

Publisher
Agent

EVENT SERVICE
Event
Server

Event
Server

Event
Server Event

Server Subscriber
Agent Publisher

Agent

Subscriber
Agent

Subscriber
Agent

XML
Message

XML
Message

Figure 3. General Architecture of RUBDES

Inter-Server Message

• publish: A dispatcher (a publisher or an event server)
calls the publish method to announce an event.

• serverreceive: This method is used in
communication between Event Servers. Because
Event Servers are static entities there is no need to
use XML between their communication.

import java.rmi.*;

public interface EventServerInterface extends Remote
{
public void publish(XMLMessage pubs) throws RemoteException;

public void subscribe(XMLMessage subs) throws RemoteException;

public void unsubscribe(XMLMessage unsub) throws RemoteException;

public void serverreceive(Server_Data s) throws RemoteException;
}

Figure 6. Interface of the Event Server

By using these interface objects, an application that

generates data does not need to know anything about an
application that will accept and use the data. The
generating application only needs to know about the
properties of the interface object. As it can be seen easily
the message transfers between agents if performed via
XML coded FIPA ACL messages, except inter server
messages.

3.1 Serializing FIPA ACL with Extensible

Markup Language

An event message can be formed in a FIPA ACL message
as shown in Figure 7.

(inform

 : sender agent1@ozgur.hho.edu.tr
 : receiver server@erdogan@itu.edu.tr
 : content (heat 27)
 : in-reply-to round-04
 : reply-with event04
 : language sl
 : ontology hpl-event
)

Figure 7. FIPA ACL sample

A sender can encode easily a FIPA ACL message in a
String and send it to a receiver by using StringTokenizer
and RMI facilities of Java. Ig You want to send this ACL
message to the receiver as an object then you can compose
an object as shown in Figure 8 and then send this object to
the receiver via RMI facilities. For sending an
ACLMessage object, that is a serializable object, you set
the instance variables of it and send it by calling remote
method of the receiver with this object as a parameter.

The receiver must have the ACLMessage interface or
necesary classes to interpret or use this message. We want

to develop a more scalable event system and thereore we
use easily understandable and interpretable message by
XML.

ACLMessage incoming;
ServiceAgent me;

// suppose that agent me has received an incoming event about
// heat value from the thermometer. Here is an example of how to
// formulate reply using a FIPA like platform:

ACLMessage reply = new ACLMessage(”inform");
reply.setDest(msg.getSource());
reply.setSource(me.getName());
reply.setContent("true");
reply.setReplyTo(msg.getReplyWith());
reply.setProtocol("fipa-inform");
reply.setOntology(Constants.ONTOLOGY);
reply.setLanguage(Constants.LANGUAGE);
me.send(reply);

Figure 8. Java Program Code Sample

EXtensible Markup Language (XML) [11] is a simplified
meta-language, derived from SGML, emerging as the
standard for self-describing data exchange in Internet
applications. XML was developed by the World-Wide
Web Consortium in 1997 and is being implemented
rapidly by such major platform vendors as IBM,
Microsoft, Netscape, and Sun Microsystems. XML’s
power derives from its extensibility and ubiquity. Anyone
can invent new tags for particular subject areas, defining
what they mean in document type definitions (DTDs).
Content-oriented tagging enables a computer to
understand the meaning of data, including, say, whether a
number represents a price, a date, or a quantity.

Using XML for the representation of data would be a
good basis for retrieving data by the agents and also for
the provider of it: An agent can easily extract information
from XML as it includes the concept of an explicit
definition of the data structure. Therefore, no additional
transformation before extraction of information is
required.

Encoding ACL messages in XML offers some advantages
that we believe are potentially quite significant.

• The XML-encoding is easier to develop parsers for
than the Lisp-like encoding.

• The XML markup provides parsing information
more directly. One can use the off-the-shelf tools
for parsing XML, instead of writing customized
parsers to parse the ACL messages.

• A change or an enhancement of the ACL syntax
does not have to result to a re-writing of the parser.
As long as such changes are reflected in the ACL
DTD, the XML parser will still be able to handle
the XML-encoded ACL message.

• In short, a significant advantage is that the process
of developing or maintaining a parser is much
simplified.

• More generally, XML-ifying makes ACL more
WWW-friendly, which facilitates Software
Engineering of agents.

<?xml encoding="UTF-8"?>

<!ENTITY % communicative-acts "accept-

proposal | agree | cancel | cfp |
confirm | disconfirm | failure | inform
|inform-if | inform-ref | not-
understood | propose | query-if |
query-ref | refuse | reject-proposal |
request | request-when | request-
whenever | subscribe | unsubscribe ">

<!ELEMENT message (messagetype,

messageparameter*) >
<!ELEMENT fipa-message (%communicative-

acts;)>
<!ELEMENT messageparameter (sender |

receiver | content | reply-with |
reply-by | in-reply-to | envelope |
language | ontology | protocol |
conversation-id)>

<!ELEMENT sender (agentname)>

<!ELEMENT receiver (#PCDATA)>

<!ELEMENT content (#PCDATA)>

<!ELEMENT reply-with (#PCDATA)>

<!ELEMENT reply-by (#PCDATA)>

<!ELEMENT in-reply-to (#PCDATA)>

<!ELEMENT language (#PCDATA)>

<!ELEMENT ontology (#PCDATA)>

<!ELEMENT protocol (#PCDATA)>

<!ELEMENT conversation-id (#PCDATA)>

<!ELEMENT agentname (#PCDATA)>

Figure 8. FIPA ACL’s Document Type Definition (DTD)

Anyone can invent new tags for particular subject

areas, defining what they mean in document type
definitions (DTDs). Therefore for using a general
communication language we develop a “fipa.dtd”, as
shown in Figure 8, compatible with FIPA ACL Message
Representation [12]

There are three main primitives (publish, subscribe

and unsubscribe) in an event based system. In our

“fipa.dtd” we use (inform, subscribe and unsubscribe)
communicative acts respectively. A publisher creates an
XML message of the FIPA ACL sample (defined above)
by constructing a message as shown in Figure 9.

 <?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE fipa SYSTEM "fipa.dtd">
 <message>
 <fipa-message>inform</fipa-message>
 <messageparameter>
 <sender>
 agent1@ozgur.hho.edu.tr
 </sender>
 </messageparameter>
 <messageparameter>
 <receiver>
 server@erdogan@itu.edu.tr
 </receiver>
 </messageparameter>
 <messageparameter>
 <content>
 (heat 27)
 </content>
 </messageparameter>
 <messageparameter>
 <in-reply-to>
 round-04
 </in-reply-to>
 </messageparameter>
 <messageparameter>
 <reply-with>
 event04
 </reply-with>
 </messageparameter>
 <messageparameter>
 <language>
 sl
 </language>
 </messageparameter>
 <messageparameter>
 <ontology>
 hpl-event
 </ontology>
 </messageparameter>
 </message>

Figure 9. A sample of XML encoded FIPA ACL message

The receiver (Event Server or Subscriber Agent) receives
this XML message, decodes and use in its internal
operations.

3.2 Rule Definition Language (RDL)

A rule is an expression or function that is evaluated or

executed depending on the occurrence of events. We have
developed a language, Rule Definition Language (RDL),
to state rules to aid the specification of a single or a
pattern of events in distributed systems. The grammar of
the language is presented in Figure 10, in BNF notation,
with highlighted keywords.

<Rule_def> ::= <Rule>| <Rule> where <Condition>

<Rule> ::= rule identifier
 onEvent <Events>
 getData <Attributes>

<Events> ::= class/interface_type identifier |
 class/interface_type identifier, <Events>

<Condition>::=Condition <Boolean_Operator> Condition
 | (Condition) |! Condition
 | <Exp> <Relation_Operator> <Exp>
 | true | false

<Attributes>::= event_attribute identifier |
 event_attribute identifier, <Attributes>

<Exp> ::= (<Exp>) | identifier
 | <Exp> Arith_Operator <Exp>

<Arith_Operator> ::= + | - | * | /

<Relation_Operator>::= > | < | >= | <= | == |!=

<Boolean_Operator>::= and | or

Figure 10. The grammar of RDL in BNF notation

Various programming examples of rules are given in

RUBCES [1], which is a centralized (with a single Event
Server) version of RUBDES. A subscription rule can be
created by the Graphical User Interface (GUI) at the
subscriber site. This GUI can be specific to subscription
event type and specific types of rules can be produced.
Otherwise, a rule can be written manually in a text area
component of a general GUI. Of course, this rule must
conform to the RDL’s grammar.

A rule definition is composed of four parts, each

introduced by the keywords rule, onEvent, getData

and where, respectively, as shown in Figure 11. The first
part sets a unique identifier for the rule, the second part
specifies the type of the target event, the third part
specifies the specific information data about the event that
subscriber wants to be notified with, and the last part
describes the conditions on which a filtered or a
composite event should be caught.

In RUBDES, it is possible to define rules for three

different event types: simple events, events with
filtering and composite events. Simple events, shown in
Fig. 10.a, are used when subscribers are interested in only
one event type. An event-based system may include a
multiple number of publishers. Thus, the number of events
propagated in an event-based system may be quite large.
However, a particular consumer is usually interested in
only a subset of the events propagated in the system.
Event filters are a means to control the propagation of
events. Filters enable a particular consumer to subscribe to
the exact range of events it is interested in receiving. An
event that is delivered uses network bandwidth and CPU
processing power on the consumer side. It is therefore
desirable to prevent the delivery of unwanted events.
RUBDES allows for event filtering as shown in Figure
10.b.

Clients may require to be notified on events from

multiple sources and may want to detect a specific pattern
of event occurrences from these different publishers. Such
a combination of event occurrences, where a client is
interested in a sequence of event occurrences but not in
any of the events alone, is called an event composition.
Intuitively, while a filter selects one event notification at a
time, a pattern can select several notifications that
together match an algebraic combination of filters. An
advanced feature of RUBDES is that it allows subscribers
to specify composite events, as shown in Figure 10.c.

4. CONCLUSION
In this paper, we investigate how agent technologies and
Agent Communication Languages can be integrated with
XML in a rule based event system. Our event system
consists of agents, which are implemented using open
source, standards-based software including Java, Java
RMI, and W3C XML DOM. I have also used IBM's de
facto standard XML parser utility for Java, XML for Java
(XML4J), since it is very well known. (Several other
parsers are also available, such as those from Microsoft,
Oracle, and Sun.)

Although by wrapping data in XML, the total
quantity of data can grow by orders of magnitude

rule rule_1
onEvent HeatEvent h1
getData h1.value

a. Simple Event

rule rule_2
onEvent HeatEvent h1
getData h1.value
where (h1.value > 25 and
 h1.value < 37)

b. Filtered Event

rule rule_3
onEvent Temperature t1,
 Humidity h1
getData h1.value,t1.value
where (t1.value < 27 and

 h1.value < 70)

c. Composite Event

Figure 11. Sample Rules in Rule Definition Language (RDL)

estimated at two to 10 times the original quantity of data,
depending on the amount of data and the amount of XML
information with which the data is tagged, the scalability
of the system is increased and entrance of different
application is enabled.

As future work, we plan to apply the system in

different application domains and focus on new design
decisions to improve its performance and scalability. We
want to add features for mobile subscribers that can
connect from different locations to different Event Servers
and test the entire system in a large scale platform.

REFERENCES

[1] O. K. Sahingoz, N. Erdogan, “RUBCES: Rule
Based Composite Event System”, accepted for
publication in XII. Turkish Artificial Intelligence and
Neural Network Symposium (TAINN), Turkey, July
(2003)

[2] O. K. Sahingoz, N. Erdogan, “RUBDES: Rule
Based Distaributed Event System”, accepted for
publication in Springer-Verlag LNCS, ISCIS XVIII -
Eighteenth International Symposium on Computer and
Information Sciences, Turkey, Nov. (2003)

[3] N. R. Jennings (1999) "Agent-Oriented Software
Engineering" Proc. 12th Int Conf on Industrial and
Engineering Applications of AI, Cairo, Egypt, 4-10.
(Invited paper) [Also appearing in Proc. 9th European
Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-99), Valencia, Spain
1-7

[4] M. Wooldridge and N. R. Jennings. Intelligent
agents: Theory and practice. The Knowledge
Engineering Review, 10(2):115–152, 1995.

[5] M. R. Genesereth and S. P. Ketchpel. Software
agents. Communications of the ACM, 37(7):48–53, July
1994.

[6] R Neches, R Fikes, T Finin, T Gruber, R Patil, T
Senatir and W R Swartout. "Enabling Technology for
Knowledge Sharing". AI Magazine, 12(3), pp 36-56,
Fall 1991.

[7] Ramesh S. Patil, Richard E. Fikes, Peter F. Patel-
Schneider, Don McKay, Tim Finin, Thomas Gruber and
Robert Neches. “The DARPA Knowledge Sharing
Effort: Progress Report”, in Proceedings of the Third
International Conference on Principles of Knowledge
Representation and Reasoning, ed. B. Nabel, C.Rich,
and W. Swartout, Cambridge, MA. Oct 25-29, 1992.
[8] T. Finin, R. Fritzson, D. McKay, R. McEntire
"KQML as an Agent Communication Language ", 3rd
International Conference on Information and Knowledge
Management (CIKM94), ACM Press, December 1994

[9] Foundation for Intelligent Physical Agents.
http://www.fipa.org.

[10] A. Carzaniga, “Architectures for an Event
Notification Service Scalable to Wide-area Networks”,
PhD Thesis, Politecnico di Milano, Italy, December
(1998).

[11] Extensible Markup Language (XML).
http://www.w3.org/XML

[12] FIPA ACL Message Representation in XML
Specification. http://www.fipa.org/specs/fipa00071/XC0

-0071C .html

