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ABSTRACT 

 
The paper presents an application of Adaptive 

Matrix Filter method [1] to the modeling of the 
mechanical systems utilizing a new algorithm [2] for 
solving any combination of linear-nonlinear systems of 
equations. This algothm is based on the separation of 
linear equations in terms of some selected variables from 
the nonlinear ones. The linear group is solved by means 
of any method suitable for the linear system. This 
operation needs no iteration. The nonlinear group, 
however, is solved by an iterative technique based on a 
new formula developed using the Taylor series expansion. 
The method has successfully been applied to several 
examples of analytical systems as well as in some 
engineering applications with very good results. The 
proposed method needs the initial guess for nonlinear 
variables only. This is far less than needed in Newton- 
Raphson method. The method also has a very good 
convergence rate and it is shown that the results are not 
sensitive to the selected initial guess. The proposed 
method is most beneficial for Adaptive Modeling 
problems that very often involve large number of linear 
equations with limited number of nonlinear equations. 
This approach makes the Adaptive Matrix Filter method 
an effective tool in engineering applications 

 
INTRODUCTION 

 
The most basic step in performing the computer 

simulation and filtering of the data obtained from physical 
experiments is the selection of the model itself.  Very 
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often the model is based on incomplete empirical data. 
Selection of an inadequate model and parameters, that 
characterize it, can be the most important cause of errors 
of the computer simulation. A systematic approach for 
selection of appropriate models from a well-defined class 
of models could be very beneficial for the process. Using 
this approach we can correct the model as well as 
eliminate the noise and systematic errors from the 
measurement data.  

Any data obtained from measurements as for 
example, displacements, strains or temperature carry 
some experimental errors due to inherent inaccuracies and 
deficiencies in the experimental techniques and measuring 
devices used. However, the quantities being measured 
must obey some laws of physic. In the cases involving 
Thermodynamics and Structural Analysis, these laws 
represent the equations of motion of thermo-elastic 
material and the equations of heat transfer. The quantities 
measured with errors do not satisfy the required model 
equations. However, this measured set of data may be 
enhanced substantially by determining a new set 
satisfying the model equations and be close as much as 
possible to the measured set. The transition from the 
measured set containing the experimental errors and 
noise, to the enhanced, corrected set is referred to as 
filtering. 

Filtering and enhancing techniques for the 
analysis of the results of the numerical calculations and 
experimental data often use a set of models The proposed 
techniques and filters are based on the deterministic 
approach called Adaptive Matrix Filter (AMF). The 
algorithm may be achieved using the mathematical 
optimization technique in which the distance norm 
between the measured and calculated experimental data is 
selected as the objective function and then minimized 
subject to the equality constrained to represent the state 
equations.  

The identification is performed on the basis of 
observations of the system response. An effective 
approach to detection of these parameters of structures 
which affect their thermal behavior can be described as 
follows: The change of the temperature, thermal strains 
and displacements are measured at the surface of the body 
in space and time. The recently developed photo-cameras 
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for infrared photography make possible very precise 
detection of the temperature changes. It is also possible to 
measure the fields of the displacement using laser 
devices. The direct response of the system is used as the 
source of information. The heat conduction equations, 
thermo-elasticity equations and equations of motion 
(elasto-dynamic equations) can be used as model 
equations.  

 
METHOD OF SOLUTION  

 
The Adaptive Filter Matrix Method was detailed 

described in [1,2]. Here some short introduction to the 
method is included in the Example 2 In general the 
problems in the area of Adaptive Modeling require the 
solution of large systems of linear and nonlinear 
equations.  Very often the solution that is based on the 
Finite Element Method is accompanied by a system of 
nonlinear equations.  In this case the whole system 
becomes nonlinear and is solved using methods for the 
solution of non-linear equations. The Newton-Raphson 
iterations [3,4,5] is the method most commonly used. This 
method needs the calculation of first derivatives and the 
Jacobian matrix for the system. The solution is obtained 
by means of consecutive iterations. If the functions are 
differentiable with respect to the variables and behave 
well it is possible to find the solution in reasonable 
number of iterations. However, this needs the initial guess 
for all the variables taken sufficiently close to the 
simultaneous roots of the nonlinear system. This approach 
is not effective if the number of equations is large. There 
are problems with the convergence to correct the solution 
and problems with the initial guesses for the variables 
[3,4,5]. 
This paper presents a new method for the solution of a 
system of m+n nonlinear equations when the system of 
equations can be presented as two groups of equations. 
The first group of m equations is linear with respect to the 
selected m variables; the second group of n equations is 
nonlinear. The solution for the first group does not require 
any iterative procedures and can be found by means of 
any method for the system of linear equations. The 
proposed method uses iterations only for the nonlinear 
part and needs therefore fewer number of initial guesses 
as compared to those needed in Newton-Raphson method. 
The general system of equations can be presented in the 
following form: 

,0),( =txf  
0),( =txφ ,    

where the system fi is linear with respect to the variables  
xi with the assumption that the values of the  variables ti  
are  known. Equations nϕ  are non-linear with respect to 

the variables xi and . Suppose that the vector t is the 
initial guess solution to the nonlinear variables of the 

system of the equations. Similarly, the vector x is the 
vector of initial solution for the linear part of the system 
equations based on using t. The vector x can be found by 
means of any method for the system of linear equations. 
Let x+

it

x∆ and t+ t∆  be a better approximate solution.  
Representing the functions f and  by Taylor expansion 
in vector notation, we have 
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Solving equations (1) and (2) with respect to x∆  and t∆  
gives: 
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The new values of t and x are calculated as 

ii1iii1i ttt     ,xxx ∆∆ +=+= ++  

Below the following simple example is presented to 

explain the new method. 

 
 
Example 1 
 
Let us consider the following system of equations. The 
variables to be found are x, y, z and t.  

212 =−+ zytx , 
032 =−+− zyx , 

2132 222 −=−+− tzyxytx .                                   
(4) 

2652 =+− zyx ,                                  
The first and last equations are clearly nonlinear. 
However, following the procedure explained in the 
previous section, if we consider t as the variable to be 
found by iterations, then the first three equations will be 
linear in terms of x, y and z and can be solved for any 
given t.  
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Table 1: The results for Example 1.  
Table 1 also provides the record of the number of 
iterations and corresponding residue of 1φ  for different 
initial guesses t1. The method found three independent 
solutions for x, y, z, and t. The most important fact is that 
it is almost independent on the initial value of the variable 

t and converges quickly to the solution.  The number of 
iterations was very low, between 1 and 8. 
The method was tested on many other examples with 
larger number of equations and nonlinear unknowns. It 
was found that the algorithm (3) was effective in all the 
cases, it converged fast and was able to find many 
solutions of for t. More detailed information about the 
method can be found in paper [3]. 
 
 
 
 
 

Initial guess 
for t 

x y z t No. of 
iteratio
ns 

1φ  (x,y,z,t) 
error 

0.5 
1 
1.5 
2 
5 
6 
7 
8 
9 
9.9 
10 
50 
100 
1000 
10000 

15.6300 
-10.6594 
2.0000 
2.0000 
2.0000 
2.0000 
2.0000 
2.0001 
2.0001 
2.0000 
2.0000 
2.0000 
2.0000 
2.0001 
2.0001 

10.7900 
-4.2339 
3.0000 
3.0000 
3.0000 
3.0000 
3.0000 
3.0001 
3.0001 
3.0000 
3.0000 
3.0000 
3.0000 
3.0000 
3.0000 

1.1036 
8.6170 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 
5.0000 

0.0331 
-3.5729 
9.9999 
10.0000 
10.0000 
10.0000 
10.0000 
9.9992 
9.9993 
10.0000 
10.0000 
9.9999 
9.9998 
9.9996 
9.9996 

6 
8 
5 
4 
3 
3 
3 
3 
2 
2 
1 
3 
3 
3 
3 

-0.00004 
-0.00013 
0.0017 
0.0035 
0.001 
0.00007 
0.000002 
0.0248 
0.0232 
0.0003 
0 
0.0034 
0.0068 
0.0117 
0.0124 

 
The solution of the system of equations only needs the 
initial guess of t . Table 1 presents the solutions obtained 
for x, y, z and t using equation (12). The results are based 
on using  δ = 0.1 The required derivatives of the equations 
can be calculated as follows: 
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Example 2 

 
In order to demonstrate the application of the proposed 
method in the field of adaptive modeling, let us consider 
the following case. A steel beam simply supported on two 
end bearings is under pure bending. The lateral deflection 

at 9 equally spaced nodes along the beam length has been 
measured. The Young’s modulus of the beam is to be 
found using these measurements. However, this measured 
set of data may be enhanced substantially by determining 
a new set satisfying the model equations and be close as 
much as possible to the measured set. The transition from 
the measured set containing the experimental to the 
enhanced and corrected  set is referred to as filtering. This 
technique has been fully explained in [1,2]. A Brief 
account of the method is given here. 

 
Let us assume that (x*

iu i) is the vector of measured 
lateral deflection of the beam at nine nodes that contain 
errors, i is the number of total measurements (i=9). The 
additional information about the system is presented in 
the form: 

002

2

=+≡ M
dx
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≡1P 01 =u                                               (8) 

≡2P =9u 0                                                           (9)   
 
 



  

E, I and are Young’s modulus, moment of inertia and 

applied bending moment respectively. Vector  

represents the corrected values of .  and  are 
corrected deflections at left and right bearings 
respectively. By using the method of least square with 
Lagrange multipliers, the global error R in the interval of 
interest can be defined.                      

0M

iu
*
iu 1u 9u

The derivatives of R with respect to , iu jη where kµ jη  

and kµ are the Lagrange multipliers must be zero.. The 
finite difference representation of the differential operator 
is used for seven internal nodes. It can be shown [6] that 
the set of derivative equations can be presented in the 
matrix form: 
 

0* =−+ UNλIU ,                                (10)    
0* =− FUNT                                               (11) 

 
where and  are the vectors of corrected and 
measured variables respectively. I is the unit, diagonal 
matrix with the order of 9. 

U *U

λ  is the vector of Lagrange 
multipliers, 
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                                                     (14) 
Considering this matter of fact that E is unknown, the 
derivative of R with respect to E should also be zero. This 
N is the system matrix and  represents the loads. 
Superscript 

*F
T denotes the transpose of matrix. In this case 

study, N is a constant matrix while is a nonlinear 
function of E, the Young’s modulus of the beam. 

*F

Equations (10) and (11) represent 18 linear equations in 
terms of 9 corrected node deflections,  (i=1-9) and 9 

Lagrange multipliers
iu

jλ (j=1-9).  These equations, 
however, are nonlinear in terms of the unknown E, the 
Young’s modulus of the beam.  
In order to follow the same procedure as explained in 
examples1 to 3, equations (10) and (11) can be written in 
the following form that is more similar to previously 
explained notations: 
 
f(u,λ , E)=A X – B = 0,                                            (12)
      
where: 
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The vector X represents the linear part of variables; the 
nonlinear part of variables consists only of E, the unknown 
Young’s modulus of the beam. 
For any given value of E, the matrix representation 
provides the unique solution for λ and U as: 
 
λ = ,    

,                             
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The matrix Filter = is referred to  )( T1T NN)N(NI −−
as the filter matrix [6]. Considering that E is also unknown 
the derivative of R with respect to E  should be  zero. This   
leads to a nonlinear equation in the following form: 
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The system of equations in this example consists of 19 
equations totally with 19 unknown (9 corrected 
deflections at 9 nodes, 9 Lagrange multipliers and 
Young’s modulus of the beam). The first 18 equations 
represented by equation (22) are linear in terms of  

(i=1-9) and 
iu

jλ (j=1-9) if the Young’s modulus is given a 
certain value. This set can be solved without any iteration. 
The only nonlinear equation is equation (15). The vector 
of nonlinear variables consists only of one variable, E that 
is to be found by iteration. Solution of the system of 
equations with the suggested method only needs the initial 
guess for E.  
 
 
 
 
 
 
 
 
 
Table 2: Calculated Young Modulus for the steel 
 beam under pure bending. 
 

 



  

 
Substituting the corresponding derivatives as follows in 
equation (3) gives the equations for E increment (for 

t=E). 
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A steel beam with a length of 600 mm, a width of 50 mm 
and a thickness of 5 mm has been considered. The pure 
applied bending moment was assumed as 10000 N mm. 
The theoretical lateral deflections at 9 equally spaced 
nodes along the beam length were used as measured 
values using a value of 200 GPA as Young Modulus with 
measurements error of the order of 5%. The expected 
value for E was 200GPa. 
Table 2 presents the calculated E for different initial guess 
when a value of 0.00001 is used for δ . The calculated 
values for corrected deflections are almost identical with 
the theoretical values. This is due to the fact that the 
filtering matrix is intelligent and recognizes correct data. 
Table 4 shows that regardless of the initial guess for E, 
the program converges with good accuracy to the 
expected value of 200 GPA. The number of iterations is 
very small which indicates good convergence rate of the 
method. The range of initial guess in which the program 
converges is also very wide. The small difference 
between the correct value  and the obtained results can be 
attributed to the application of only 9 elements to the 
solution of the problem.  
 
Example 3 

Rod pumping is the oldest and still the most common 
method of artificial lift used extensively in the oil well 
industry [8]. In this example an adaptive filter method has 
been used to model the dynamic behavior of the sucker 
rod string. The main concept was to replace the solution 

of the exact mathematical model of the pumping system 
by a simple model resulting in matrix operation in which 
the bottom-hole values are obtained as the product of the 
vector of the data at the top of the well and by a matrix of 
the system. Using this technique, the calculations of the 
bottom-hole values can be performed very fast and in a 
very simple way. These calculations would be easy to 
implement in one microprocessor of the computer.  In the 
example presented here we found that to create the system 
matrix it is enough to replace the real system by a two-
segment rod with appropriate dimensions. The simplified 
model was solved using D’Alembert’s method [8]. The 
suggested technique uses the field dynamometer data at 
the polished rod and the calculated force and 
displacement at the plunger end from the analysis of the 
actual model for the same data. Then, it found the 
parameters of the equivalent two-segment rod solving the 
set of linear-nonlinear set of equations. Using the 
equivalent model the system matrix was created.  The 
equivalent model was a very simple one, however it could 
replace the actual multi-segment actual rod.  

Initial 
guess 
for E 
(GPA) 

Calculated 
E 
(GPA) 

No. of  
Iteration 

Residue 
of 1φ  
( ) 710−

0.001 
1 
5 
10 
100 
195 
200 
330 

201.24 
201.23 
201.31 
201.35 
201.45 
201.27 
201.26 
201.28 

65 
34 
27 
24 
13 
8 
5 
18 

-9.5 
-9.8 
-8.3 
-7.4 
-5.5 
-9.1 
-9.2 
-8.4 

 

 
 
Fig. 1 A typical telescopic sucker rod string  
with 6 segments. 
 
The data at the top of the sucker rod string were collected. 
The force and displacement at the polished rod were 
measured using a dynamometer.  Then these data were 
used as the boundary conditions for the calculation of 
forces and displacements at the bottom of the rod of the 
well  to define the conditions of the pump, effectiveness 
of pumping, production rate, etc. 
 The governing equation (1), for one dimensional motion 
of i’th segment of the rod, (x,t), is iu
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 E and ρ  are Young’s Modulus and density of the rod 

material respectively.  is the cross section of i’th 
segment of the rod and 

iA
η  is the damping per unit length.  

The Adaptive Matrix Filter method was able to find   
successfully the geometric parameters of a simple        
equivalent model of 2-segment rod that has the same 
displacement and force distribution at the plunger as those 
of the actual six-segment rod when same input data at the    
polished rod are applied to both systems. The equivalent 
model, can be used to estimate the load and displacement 
at the plunger rod for any other dynamometer readings. 
This leads to shorter and efficient calculations of the 
bottom-hole values without loosing accuracy from the 
point of engineering applications. The more complete 
description of the problem and its solution can be found in 
[8]. 
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Fig. 2 Comparison between exact dynamic force at 
the plunger for the 6-segment rod (+) and its 2-
segment equivalent model. 
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Fig. 3 Comparison between the exact dynamic force at the 
plunger and the force from the equivalent model for  another  
set of dynamometer data.  
 
CONCLUSIONS  
 
The method of Adaptive Matrix Filter [1] cooperating 
together with the new method of the solution of equations of 
modeling and filtering problems consisting of a combination 
of the linear and nonlinear systems proved to be effective 
tool in the modeling the mechanical systems.  The method 
has been successfully used in solving several different 
examples and other problems that are not presented here due 
to the lack of space. It has been shown that the method of 
the solution of linear – nonlinear equations is very effective. 
It converges fast and needs smaller number of initial guess 
values as compared with those needed in Newton-Raphson 
method. The method is most useful for solving engineering 
problems in which a large numbers of linear equations are 
coupled with a limited number of nonlinear equations.  
Application of Finite Element Method to the solution of the 
modeling problems results in large system of linear 
equations. Additional nonlinear constraints from the 
adaptive modeling provide  the set of nonlinear equations.   
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