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Abstract 
 
Resistance spot welding is used to join two or more metal 
objects together, and the technique is in widespread use in, 
for example, the automotive and electrical industries. The 
quality of the welding joint is estimated by destructive or 
non-destructive tests. In this work, a method was 
developed that can be used to study the quality of a 
welding spot without destroying the joint. In this paper, 
the quality of the welding spot is analysed by using the 
diameter as a measure of quality. The relations between 
the diameter of the welding spot and certain features 
extracted from the welding signal curves are studied by 
dividing the signal curves into ten parts of equal length 
and using their averages as training parameters. Self-
organising maps are also trained by using the most 
dissimilar features of the feature set. The relations 
between the diameter and the other features can be easily 
seen from the respective maps. According to the results, 
compression force has a notable influence on the size of 
the diameter. Two general rules of spot welding were 
confirmed by our study, which indicates that large values 
of diameter co-occur with small values of compression 
force and vice versa. Also, small values of current and 
small values of some features of voltage correlate with 
small values of diameter. This dependency naturally only 
holds true within reasonable limits of maximum current 
(to prevent splashing) and minimum force. The results 
also show that the quality of the welding spots can be 
inferred from data on other welds. 
 
Keywords: resistance spot welding, self-organising maps, 
quality assurance. 

 

Introduction 
 
Resistance spot welding is used to join metal objects. It is 
widely used in, for example, the electrical and automotive 
industries, where more than 100 million spot welding 
joints are produced daily in the European vehicle industry 
only [TWI]. The quality of welding spots is controlled by 
destructive or non-destructive methods. In destructive 
testing, the joint is torn apart, and the diameter of the 
welding spot is measured. An example of non-destructive 
methods is ultrasonic testing, where a high-frequency 
wave is transmitted into the joint, and the quality of the 
welding spot is interpreted based on the reflections of this 
wave. This kind of a test, however, needs specially trained 
staff, and the welding spots to be controlled must be 
checked in a special testing facility. Also, there is no 
suitable online quality assurance system on the market.  
 
This study explains how self-organising maps have been 
used to interpret the quality of welding spots. The method 
is based on the interpretation of data available from 
welding experiments. In this study, only standard 
measuring equipment was used, but compression force 
meters may not be available for all welding machines. 
Therefore, in the future studies, compression force will not 
be used, because the aim is to develop a quality control 
method that will not require any extra equipment.  
 
The relations between the quality of the welding spot and 
certain features extracted from the signal curves measured 
during the welding were studied for a set of 192 
observations with quality reference data from destructive  
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Figure 1: a) metal objects are joined using resistance spot welding, b) the welding joint is torn apart in a destructive test, 
c) quality is estimated from the diameter of the welding joint. 

 
testing. After determination of the relationship between 
the quality parameters and the signal curves by using this 
data set, the results can be applied to new welds of 
similar process type, and their quality can be estimated 
from the signal curves. This will reduce the cost of 
destructive testing and eliminate the need for hardware-
oriented quality control methods. 
 
The research on computational quality assessment 
techniques in the field has concentrated on estimating the 
quality of welding by using neural networks, regression 
analysis and mathematical methods. The studies have 
utilised different features extracted from data. The 
variation of resistance over time (dynamic resistance 
pattern) has been an important explanatory variable in 
many of the studies. Artificial neural network and 
regression models have been generated based on the 
dynamic resistance pattern by, for example, [Aravinthan] 
and [Cho]. Cho compared regression analysis with neural 
networks, which demonstrated the superior accuracy of 
the neural network estimator. Unfortunately, the sample 
consisted of only 60 measurements, and the leave-one-
out method was used to measure the estimator 
performance, which limits the significance of the 
conclusions. Studies using other input variables include 
approaches involving neural networks with tip force, the 
number of weld cycles, the weld current and the upslope 
current [Ivezic].  
 
All the methods used so far produce an abstract mapping 
function between the feature profiles and the quality 
measures optimised to reflect the corresponding relation 
of the sample data set. In contrast, SOMs perform 
clustering of feature patterns, where similar patterns form 
a cluster characterised by a representative pattern. The 
clusters are presented as a two-dimensional map, with the 
map location distances reflecting the similarity of the 
clusters. The map arrangement allows direct 
interpretation and understanding of the interrelations 

between the features and their relations with the quality 
of geometric considerations. 
  
Data description and pre-processing 
 
The data used in this study comprise measurements from 
welding tests done at Voest-Alpine Transport Montage 
Systeme GmbH, Austria. The data set contains 
observations from 192 experiments where two metal 
sheets were welded together using a resistance spot 
welding machine, (Figure 1 a) ). The sheets were then 
torn apart in a destructive test (Figure 1 b) ), and the 
quality of the welding spot was defined based on the 
diameter of the welding spot (Figure 1 c) ). 

 
Each of the observation sets contains measurements of 
current, compression force and voltage signals recorded 
during the welding and the size of the diameter measured 
after the welding. The signals were measured at intervals 
of 0.04 milliseconds.  
 
Each of the current, compression force and voltage 
signals is composed of about 7000 values. It is not 
reasonable to train a self-organising map with so many 
data points - rather, suitable features must be extracted 
from the signal curves. In this study, every signal was 
divided into ten parts of equal length, and their means 
were chosen as features. This is shown in Figure 2, where 
the original data points have been connected to a polygon 
with black lines, while the while curve plateaus represent 
the means. 
 
In this work, the quality criterion is given as the diameter 
of the welding spot, which must exceed 4 mm to 
represent a good joint. It is important to develop methods 
for discriminating between these low-quality joints and 
good ones. A histogram of welding spot diameters is 
shown in Figure 2. 
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Figure 2: Division into means of ten equal lengthy parts. The black curve stands for the original data and the white curve 
shows the means. a) voltage signal, b) current signal, c) compression force signal, d) histogram of welding spot diameters.  

Method 
 
Self-organising maps were used to interpret the quality of 
resistance spot welding joints. The self-organising map 
(SOM) is a neural network method that visualises high-
dimensional data in a two-dimensional space. The SOM 
presents the statistical dependencies of high-dimensional 
data in the form of geometrical figures. This is done by 
keeping the topologic and metric relations of the two-
dimensional space as close as possible to the relations of 
the initial high-dimensional space. 
 
The SOM is usually formed of neurons on a regular low-
dimensional grid, which lattice is hexagonal or 
rectangular. The neurons are model vectors mi=[mi1, mi2, 
… , min], where n is the dimension of the input space. The 
training is done by choosing a data sample x and finding 
the closest model vector mc  (the best-matching unit).  
 
 

 
When the best-matching unit is found, it and its closest 
neighbours are updated with the equation 
 
    mi (t+1) =  mi (t) + α(t)hci(t)(x(t) - mi(t)), 
 
where α(t) is the learning rate factor and hci(t) is the 
neighbourhood kernel centred on the winner unit c.  The 
training continues by choosing a new data sample and by 
iterating the updating equation.  
 
For more information on self-organising maps, [Kohonen] 
is recommended. 
 

Results  
 
The study was mainly based on the means of ten equally 
long parts of the continuously measured signals. The 
legends used in this study are: c = current, f = force and v 
= voltage and the numbers 1,…,10 mark the means of the 



respective tenths of the signal divided into ten parts of 
equal length. The data are described in the chapter “Data 
description and pre-processing”. In the study, the 
magnitudes of the signal curve means are compared 
between the means of equal parts of different signal 
curves.  
 
The training of SOMs was done in three ways: (1) with a 
feature set that contained all the means of ten equally long 
parts of the continuously measured signals, (2) with a 
reduced feature set that contained only the means with the 
lowest cross-correlations and the diameter of the welding 
spot and (3) with a reduced feature set that did not contain 
the diameter and included only 80 percent of the data. 
 
SOM with all the features 
 
The feature set was compiled by dividing the signals into 
ten parts of equal length, and the means of these parts 

were chosen as features. Also, the size of the diameter was 
used to train the map. The trained map is shown in Figure 
3. The first map in the figure is a u-matrix. The u-matrix 
displays the distances between the nodes of the map. The 
nodes, marked with white circles, are the data nodes, and 
the nodes between them show the distances.  
 
A comparison of the feature maps in Figure 3 shows that 
different features have similar effects on the diameter of 
the welding spot. For example, the maps for c_1, c_2 and 
c_3 are organised similarly. For current and compression 
force, it seems valid to assume that, if the first feature 
value (the mean value at the beginning of the signal curve 
c_1 and f_1) is large, the other feature values (the mean 
values of the other curve parts) are also large. Because of 
the mutual correlations, the number of features is reduced. 
The remaining features with the lowest correlations are: 
v_2, v_3, v_4, v_5, v_8, c_2, c_7, f_2 and f_9. 

 

 
 
Figure 3: The trained map when the means of ten equally long parts and the diameter were used as features. The 
following abbreviations are used: c = current, f = force and v = voltage. The numbers 1,…,10 mark the means of the 
respective tenths of the signal divided into ten parts of equal length. 

SOM with reduced feature set 
 
The map in Figure 4 was trained with the remaining 
features having lowest cross-correlations. A comparison 
of the last feature map of diameter to the other maps 
shows that small values of compression force have a 
positive effect on diameter. Large values of diameter and 
small values of force occur in the bottom right corner. All 
the largest values of voltage v_3 also occur in that corner.  

 
The small values of diameter appear at the top of the 
feature map. The features that affect the diameters in that 
corner are the smallest values of voltage, v_4 and v_5. 
The smallest values of current in the upper right corner 
and the largest values of force in the upper left corner 
also contribute to small values of diameter. 



 

 
Figure 4: The trained map when the most different features of signals and diameter are used as the training parameters.  

SOM for classification 
 
The map in Figure 5 was trained with the same 
parameters to test the assumption formed on the basis of 
Figure 4, but using only 80 percent of the data for 
training the SOM and 20 percent for testing. The 
difference with training parameters was that diameter was 
not used as a training parameter. If the size of the 
diameter is one of the training parameters, it is natural 
that it affects the formation of the map. To prevent 
skewing of the map by the size of the diameter, the map 
is trained without the diameter. In this way, the relation 
between the diameter of the welding spot and the features 
extracted from the welding signal curves can be tested 
without skewing. When training the map without the 
diameter as a training parameter, the diameter labels are 
assigned afterwards to the map element representative of 
the curves that belong to the corresponding cluster. The 
added labels can be seen in Figure 6 in the appendix. 
 
In Figure 5, the smallest values of force are placed in the 
upper left corner. When the corresponding labels of the 
diameters are checked from Figure 6, it can be seen that 
the largest diameters are also placed in the upper left 
corner.   
 
Figure 4 also showed that the smallest values of voltage, 
v_4 and v_5, interact with the small values of diameter. 
In Figure 5, these values are in the upper right corner. 
The smallest values of current occur slightly left of the 
corner, while the highest values of compression force 
occur further down. When considering the diameter 
labels 6, it can be seen that almost all of the unsuccessful 
welds are in that corner. The assumptions of interaction 

between the diameter and the other features made on the 
grounds of Figure 4 are valid. 
 
In order to obtain more significant results, the data were 
divided into two parts: training and testing data. The 
training data consisted of 80 percent of the original data, 
and they were used to train the map. Figure 6 in the 
appendix shows the diameter labels, and the grey area 
contains all the unsuccessful welds. The area was chosen 
on the basis of the third SOM, and the labels of the 
training data and the area were used to determine the 
quality of the welding spots on the basis of the testing 
data. The white boxes were drawn to point out the 
successful welds, which are also in the grey area.  
 
Figure 7 in the appendix shows the diameter labels of the 
testing data. The welds were arranged separately by 
finding the best-matching unit from the map and adding 
the diameter label afterwards. Figure 7 shows that all the 
unsuccessful welds are placed in the grey area derived 
from Figure 6. Only three successful welding spots were 
misinterpreted, but they lie at the same nodes as the 
successful welds in Figure 6. 
 
Depending on the area of application, the division into 
successful and unsuccessful welds can be changed. If it is 
important that all the unsuccessful welding spots are 
found, the division shown in Figure 6 can be used, but if 
some of the unsuccessful spots can be misinterpreted, the 
grey area can be smaller. Also, it may be useful to divide 
the map into three categories: successful spots, 
unsuccessful spots and spots that need to be tested in 
more detail.    
 



 
 

 

 
Figure 5: The trained map when the most different features of signals are used as the training parameters. 

Conclusions 
 
The quality of welding spots was interpreted using self-
organising maps. The data contained measured signals of 
current, compression force and voltage recorded during 
the welding process and the size of the diameter measured 
after the welding. The approach clearly revealed a 
correlation between the features extracted from these 
variables and the quality measure. The results of this study 
can be considered to suggest new approaches to the study 
of quality, but the adoption of the results into industrial 
use requires additional tests. 
 
The SOMs were trained with a feature set that contained 
the means of the signal curves divided into ten parts of 
equal length and a feature set with the most similar 
features removed. The observed relations between quality 
and the features were that the small values of compression 
force affected positively and the small values of voltage, 
v_4 and v_5, negatively the size of the diameter. Small 
values of current and large values of compression force 
were also related to small values of diameter. 
Furthermore, the quality of welding spots can be inferred 
on the basis of SOMs trained with other welds, as shown 
by our decision to divide the data into training and testing 
data. 
 
The analysis of welding curves with SOMs, as proposed in 
this paper, has proven its analytical power by revealing the 
dependency of weld quality on welding current and 
electrode force without any a priori process knowledge. In 
further investigations, more detailed relations within the 
welding process can be found by SOM analysis of more 
respectively sampled data. 
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Figure 6: The labels for the map seen in Figure 5. 

 
 
 

 
Figure 7: The labels for the testing data. 
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