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Abstract 

 
Different topologies for the life space of an artificial 

life environment facing continuous optimization problems 
are explored. Starting from a lattice we tested the 
efficiency of the algorithm when the physical space in 
which the agents evolve is represented first by a higher 
degree lattice, then by a small world network, next by a 
random graph and last by a scale-free network. Interesting 
results are obtained about efficiency improvement with 
respect to the lattice in all cases, but the most relevant are 
those ones connected to the scale-free topology. Even if 
obtained on a particular implementation of an evolutionary 
algorithm, results shown are supposed to hold for a larger 
class of artificial environment and/or evolutionary 
contexts implemented in literature. First empirical 
explanations of the observed phenomena are given. 
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1. Introduction 

 
Much effort has been devoted during recent years to 

developing evolutionary algorithms (EAs) with a physical 
space for individuals  [1].  

Artificial evolution within a physical space has been 
studied mainly theoretically for hard optimization 
problems, with the goal of creating a spatial structure in 
the population of solutions so to allow the formation of 
certain topologies for different groups of individuals. 
Structuring the population in space has been empirically 
shown to often improve the numerical and runtime 
behavior of the algorithm. In the past there have been 
some attempts to relate the physical space in which the 
individuals evolve (see for example  [3]) with the 
efficiency of the global optimum reaching. 

Moreover it is worth mentioning that the introduction 
of space in an evolutionary algorithm helps to create the 
so-called evolutionary niches. Those can be regarded as 
isolated regions, which preserve some currently bad 
solution that could be useful in the future, for it could be 
the ancestor of the global optimum both in static and 
dynamic fitness landscape. This allows to avoid a 
premature convergence toward a local minimum, which is 
one possible drawback of the genetic algorithms approach, 

and also maintains diversity in the population, which is a 
relevant issue in case of dynamically changing fitness 
landscapes.  

Introducing the physical space in evolutionary 
computation leads to the simulation of contexts which are 
similar to the real interactions between living agents. All 
those are usually studied in the field of artificial life. 

Recently the artificial life environments have began to 
be used in real world applications, with the hope to exploit 
both their adaptivity to environmental changes and their 
ability to reach the optimum (see for example  [8]). In 
particular, optimal control and management of complex 
systems, such as industrial manufacturing processes (for a 
review see  [6]) or resources allocation seem to be a very 
promising field. 

In this paper we want to analyze the effect of the 
topology of the physical space in which the agents live in 
the effectiveness of the optimization process. A first 
attempt to study a different space topology in artificial life 
contexts has been recently made in  [7], who studied the 
evolution of the Game of Life on a small world network 
instead of the regular lattice. In this work, building upon 
the last achievements in the field of complex networks, we 
consider an artificial life environment, which is meant to 
be as general as possible and we let the individuals move 
in a random way on different kinds of networks. 
Individuals evolve on four types of networks: the regular 
lattice, the random graph, the small world and the scale-
free network.  

In particular we mainly focused our attention on this 
last, which outperformed all the others. These types of 
networks are receiving great attention in the physical 
community, because many networks have been reported 
recently to follow a scale free degree distribution. Just as 
examples we can cite the Internet, the WWW, the e-mail 
network, metabolic networks, trust network and many 
more [5]. Their inspiring philosophy could be synthesized 
in the sentence ‘the rich gets richer’, because each node 
has a probability to get a new link that is proportional to 
the number of its current link. Our experimentation 
pointed out some interesting remarks about the 
improvement in efficiency of global optimum reaching, 
which could be considered of general relevance. 

In the next paragraph we will briefly review the main 
aspects of the artificial life environment implemented and 
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we will present the different topologies used. In the 
following we will show and discuss the main simulation 
results and at last we will give a glance to possible future 
developments of this research. 
 
2. Model and method 
  

The Artificial Life environment we study in this paper 
is the one introduced in  [2], with some minor 
modifications (fig.1). This environment has been 
successfully used in a good deal of real world online 
optimization applications involving non-stationary 
dynamical systems. As a consequence, it has not been 
refined to tackle static optimization problems like the ones 
we are going to face here and its overall performance 
doesn’t reach the state of the art of this field. Nevertheless 
it is good for our aim, because we are interested in a 
general feature whose impact holds for several other types 
of artificial life and/or evolutionary optimization 
environments.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – The Artificial Life environment 
 
The original artificial environment is a two-

dimensional lattice, in which a randomly generated initial 
population of potential solutions to the problem is 
randomly distributed. In the following we will address 
with the term fitness the value of the cost function 
calculated for the current solution. During each iteration 
(a-life cycle), every individual moves around and can meet 
some other individual, reproduce, or die. 

In our implementation each individual is 
characterized by its state, its genotype and the information 
about the solution it carries. The state takes into account 
all those characteristics that change during its life, such as 
for example the position in the 2D space. The genotype 
stores all the characteristics that do not change during the 
evolution, such as the mutation rate or the probability to 
reproduce. About the solution, it doesn’t change during 
the individual life and is stored as a real vector in the 
genotype. 

In order to manage the interactions between them we 
introduced a level of energy, which varies during the life 
of the individuals according to the following two simple 
rules. When there is a meeting between two individuals, 
the one with higher fitness gets a fixed amount of energy 
from the one with the lower. In such a way the low energy 

individuals are supposed to be the one corresponding to 
the worse current solutions. When there is a birth, a fixed 
amount of energy is given from the father to its son, so 
that only the individuals with energy higher then this 
threshold can reproduce, and this creates selection in the 
population. The son is added to the population and it is 
randomly located in a cell of the life space connected to 
the father’s one. This is the only genetic operator we chose 
to implement and corresponds to a sort of ( ) ES−+ λµ . 

In their random motion in the space, the individuals 
are not permitted to collide in the same cell. During each 
cycle, a cell is chosen randomly among the neighbors of 
the current individual’s location and if it is empty the 
individual is moved there; if in that location there is 
another individual, a meeting occurs, but neither the 
former nor the latter agent move.  

The reproduction mechanism has been chosen as 
simple as possible, in order to get some general result not 
too connected with our specific implementation. It is 
haploid, so that with a fixed probability at each cycle just 
one individual is needed to generate another. The mutation 
mechanism is fixed during the evolution and does not 
adapt to the decreasing distance from the optimum. As a 
consequence, mutation amplitude is randomly chosen in 
an evenly distributed fixed interval around the solution 
that the father points to. Only one mutation per generation 
in the genotype of the parents is allowed. The newborn 
individuals are added to the previous population and do 
not replace their parents.  

When an individual reaches null energy, this means 
that it lost several meeting, so it dies and is removed from 
the environment, freeing the cell where it was located in. 

These simple rules, together with an opportune 
adjustment of the interaction parameters between the 
agents, have been empirically proven to generate 
equilibrium in the evolution, since the population reaches 
a dimension which fluctuates around a constant value, 
never going to saturation (life space full) or to extinction 
(empty space). This last issue allows the environment to 
always present a good diversity, i.e. several individuals 
different from the current optimal one, which is a 
characteristic that is useful in case of dynamic fitness 
landscapes. 

As we said, we focus our attention on different 
topologies for the space in which the individuals evolve. 
We suppose that each agent performs a random walk in 
the space, and when considering different topologies, we 
just let the same rules explained above for birth, 
interaction, reproduction and death. As we will show in 
the next section, the topology of the space influences the 
meeting policy, and this suffices to produce different 
regimes in the environment and different efficiencies. 

We start our analysis from the lattice, which is by far 
the most widely used structure for artificial environments 
implemented in literature, principally because of its 
similarity with the physical space. In a lattice each cell is 
linked with the surrounding cells up to a fixed scope. If we 
consider a physical 2D space of dimension nm× , we can 
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map it on a network with nm ×  nodes, one for each 
different cell. In the case of the lattice, this network is 
regular, its degree k (that is the number of links for each 
node) is equal to the number of the cells surrounding the 
one we consider up to the fixed scope and its adjacency 
matrix is k-diagonal. For each individual, at each time 
step, we know the position ( )yx,  in the space, and so the 
node of the network and the line in the adjacency matrix 
which it points to. Hence we can compute its next location 
on the lattice by randomly choosing among the connected 
cells, i.e. among the ones on that line of the adjacency 
matrix. In particular, we considered two regular square 
lattices, with periodic boundary conditions, such that each 
site is linked to its 4 nearest neighbor for the first (up, 
down, left and right) and to its 8 nearest and corner-
nearest neighbors for the second (fig. 2). 

 
 
 
 
 
 

(a)                               (b) 
 

Figure 2 – Neighbors in the two considered lattices 
 
For the second lattice structure (fig. 2(b)), with degree 
8=k , following a common approach, we built a small 

world network. To do that, we rewired at random each 
link in the original lattice, with probability p, to another 
site of the network. Of course, with probability ( )p−1  the 
original link is preserved. Multiple connections are not 
allowed as well as self-connections. A small world 
topology corresponds to small p ( )001.0=p . For 1=p  
we get a quasi-random graph. As we will show, when 
considering a random graph instead of a lattice, a higher 
performance of the algorithm is achieved. The small world 
topology produces intermediate results and we will not 
focus our attention on it. 

Last, we built the space in the form of a network with 
a scale-free degree distribution, i.e. such that the fraction 
of sites having k connections follows a power law 

( ) λ−= ckkP (for a review of scale- free networks see  [4]).  
To obtain a scale-free network we started with a small 

number of nodes (0.1% of the total), randomly chosen 
among the available ones and randomly connected among 
each other. We then took the remaining nodes sequentially 
and created 8 links for each of those (to have the same 
connectivity degree with respect to the previous three 
networks) in such a way that the probability for node m to 
be linked to node n is proportional to the degree of n 
(preferential attachment). With such a procedure we 
obtained 3=λ , as can be seen in fig. 3, where we plot the 
log-log graph of the degree distribution. This case brought 
a remarkable improvement in the algorithm efficiency. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Degree distribution of the free-scale network 
 
 

3. Results and Discussion 
 
In order to test the optimization efficiency and the 

algorithm behavior, in different topologies of the life 
space, we considered two benchmark problems widely 
used in evolutionary optimization: the Rastrigin’s function 
(R) and the Ackley’s function (A)  [9]. Both are 
multimodal functions with a lot of local minima, which 
are likely to result in premature convergence. Their setups 
are the following: 
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for the minimization of the Ackley’s function. For each of 
them the optimal value of the cost function is 0 and 
corresponds to nix o

i ,,1,0 �== . 
We considered in our experimentation 30=n  for (R) 

and 15=n  for (A). The size of the network that represents 
the life space was set to 2500, which corresponded to a 

5050× square grid. The initial population size was set to 
100, but this value is not controlled during the evolution 
by any external rule and the regime population size is an 
emergent characteristic of the environment. The only 
parameters we fixed for the individuals are the ones 
regulating their reproduction. In particular we chose for 
the maximum mutation amplitude as percentage of the 
search interval for each variable %10=µ  for (R) and 

%15=µ  for (A). We considered different realizations of 

k = 4 k = 8
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each topology and for each network we averaged the 
results of the algorithm over 10 runs with different random 
initial conditions, in order to have smooth curves. 

To quantify the efficiency of the algorithm for the 
different topologies we considered the mean slope of the 
logarithm of the cost function when this is approaching 0, 
with respect to the number of function evaluations (table 
1). In figures 4 and 5 the convergence of the algorithm 
over different topologies is plotted for (R) and (A) 
respectively.  

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – Cost function convergence for (R) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5 – Cost function convergence for (A) 
 

For each of the functions we minimized, a remarkable 
improvement in optimum reaching is achieved for the 
considered alternative topologies. The most impressive 
results are achieved for the scale free space. This topology 
is very effective in exploiting the communication between 
the agents and, as we are going to show, it allows more 
interactions among them. As a consequence, the 

optimization is faster than for the other topologies and the 
environment results also in a higher mobility as can be 
seen by the shorter time to get out of a local minimum 
encountered in the minimization of the Ackley’s function 
(see fig. 5). Both in (R) and in (A), we achieve for this 
topology an overall improvement that almost doubles the 
performance of the original algorithm (degree 4 lattice). 
The minor efficiency in (A) is due to a higher level of 
complexity in the fitness landscape than (R). 
 

Average Slope 
(decades/(f_eval *106)) 

(R) (A) 

Lattice (k = 4, p = 0) 3.37 1.25 
Lattice (k = 8, p = 0) 3.50 1.22 

Small World (p = 0.001) 3.51 1.18 
Random Graph (p = 1) 4.27 2.51 

Scale-Free (λ = 3) 5.79 2.95 
 

Table 1 – Efficiency over different topologies 
 

As we said, using different topologies leads to 
different ‘social policies’ (interactions, reproductions and 
deaths) for the artificial life environment. In fig. 6 we 
compare the time series of the number of individuals for 
the degree 8 lattice, the random graph and the scale-free 
network for (R). As we mentioned above, the population 
size emerges as a property of the particular setup of the 
algorithm and the number of individuals oscillates around 
a constant value. One can notice the drastic reduction in 
this number in the scale-free topology. This reduces the 
computational cost per cycle and speeds up the 
optimization process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Population fluctuations 
 

The empirical explanation of this fact can be given 
considering another important issue, which we plot for (R) 
in fig. 7: the number of meetings as a percentage of the 
number of individuals. In a scale-free network there are 
cells more attractive than others are, because of their high 
degree (see fig. 3). In such a way several individuals are 

local 
minimum 
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likely to try to go in that site and in doing that they happen 
to meet other agents. As we see from this comparison, the 
percentage of meeting is not lowered by the minor number 
of individuals moving on a network with the same 
dimension of the other topologies and on the contrary it 
happens to be even higher than the others. These meetings 
create selection in the environment and many low-fit 
individuals are eliminated. The number of meetings, then, 
gives us also information about the density of population 
over the network. A large number of meetings means that 
a large number of individuals are visiting the same zone of 
the network. This reduces the probability to find an empty 
cell where to place one’s son. In such a way the number of 
births, which is plotted in fig. 8 for the three representative 
networks, is reduced as well and as a consequence we 
have to do a smaller number of function evaluations. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Number of meetings 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Number of births 
 
 

4. Conclusions 
 

Different topologies for the life space of an artificial 
life environment have been studied. We tested the 
behavior of the algorithm in two well-known hard 
continuous optimization problems, when substituting the 
original lattice with other kinds of networks. In particular 
we began with the degree 4 lattice which was considered 

in the original implementation of the algorithm and first 
introduced a higher degree lattice, then a small world 
topology, a random graph and finally a scale-free network. 
Remarkable improvements in global optimum 
approaching are obtained in all of these cases but the best 
result is by far the one obtained considering the scale-free, 
which performed an overall efficiency more than the 
double with respect to the original lattice. Discussions and 
empirical observations about these first results are given.  

Our choices in the implementation of the algorithm 
(in particular the ones regarding the mutation) led to 
optimization processes not as efficient as the state of the 
art, even if they are comparable, but our interest in this 
paper lied in a comparative study between different 
realizations of the same algorithm. Further efforts will be 
devoted in future to exploit these first achievements for 
more competitive implementations. In particular, in order 
to obtain results similar to the state of the art, we will 
probably have to consider a hybrid realization of our 
evolutionary algorithm to speed up the local search 
process, which now is performed with the same rules of 
the initial global one.  

A better understanding of our results could come out 
from a deeper description of the individuals’ dynamics in 
the environment. In particular we could examine the 
artificial life itself as an evolving complex network of 
interactions and study some statistical descriptors of such 
a network. Finally, a formal theoretical approach to this 
problem is also needed, in order to explain the 
improvement achieved.  
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