
An Evolutionary Algorithm for Manipulator Path Planning

Ralf Corsépius

Research Institute for Applied Knowledge Processing (FAW)
Helmholtzstr. 16

89081 Ulm, Germany

corsepiu@faw.uni-ulm.de

Abstract

In this paper, a versatile and scalable manipulator path
planning algorithm based on an evolutionary algorithm
will be described. The evolutionary algorithm realizes
path planning by probabilistically searching feasible so-
lutions in configuration space, with evolutionary rating
taking place both in configuration space and work spaces
simultaneously. This algorithm is intentionally kept sim-
ple and avoids inverse kinematics, which allows it to be
applied for path planning of high-dimensional and redun-
dant manipulators.

1 Motivation

Applications of manipulator on mobile robots (mobile
manipulators) differ basically from conventional appli-
cations of stationary manipulators as they can be met,
for instance in industrial applications. While path plan-
ing of manipulators there often is restricted to typically
few, pre-programmed, highly accurate paths in a single,
well known, often static environment, mobile manipula-
tors impose demands to act in different, changing, and
sensorially perceived work spaces under near real-time
conditions.

Nowadays, such kind of systems are hardly imple-
mentable, because the necessary technical pre-requisites
can only be partially met, resp. because necessary al-
gorithms are not (yet) available. For practical appli-
cations of mobile manipulators, therefore, manipulation
processes often are restricted to simple operations, for
instance to parameterized paths, in more or less struc-
tured environments, as well as to simple manipulators
with very much restricted manipulation possibilities and
low numbers of degrees of freedom.

One possibility to realize more complex manipulation op-
erations, is to apply manipulators with higher degrees of

freedom. This implies the necessity to be able to perform
actorical and planning tasks on-line and near real-time,
i.e. from within a few seconds up to a couple of minutes.
This work tries to contribute its share towards this direc-
tion in front of the background of mobile manipulators.

2 Introduction/Considerations

Path planning has been a central topic to robotics for
many years. For an overview of common algorithms
please refer to Latombe [1] and other works referring to
it, such as [2],[3], [4] and [5], only to mention a few.

2.1 Configuration Space- / Work Space
Planner

First of all, one can distinguish between configuration
space and work space based path planners. While the for-
mer perform their underlying computations in joint space
(or configuration space), the latter are based on computa-
tions in work space (Transformation of the configuration
space into Cartesian space) of the robot. The transforma-
tion from configuration space into work space is called
direct kinematics, their inverse is the so-called inverse
kinematics.

While the direct kinematics of a manipulator typically is
solvable by simple and analytical means, the solution of
the inverse kinematics is much more complex, because it
is not always possible to find a closed-form solution, mul-
tiple solutions may exist, infinite solutions or no admissi-
ble solutions may exist [6]. For commonly used manip-
ulator kinematics with less than six degrees of freedom
corresponding solutions can be found in literature [7, 6],
kinematic systems with more than six degrees of freedom
(redundant kinematics) no general closed-form solution
of the inverse kinematics is known.

As configuration space planners in principle do not need
the inverse kinematics, they are basically better suited for
large numbers of degrees of freedom than work space
planners. On the other hand, specifying goals in config-
uration space is much more difficult than in work space,
and is the reason why configuration space based planners
in practical applications often additionally require the in-
verse kinematics (e.g. our planner in [4] and [8]).

2.2 Global / Local Planner

Basically, two types of path planning algorithms can be
distinguished: Global planners and local planners.

Global planners are typically complete in the sense of
being able to find a solution if one exists. Their disad-
vantage is that the required effort in general grows ex-
ponentially with the number of degrees of freedom taken
into account for planning. Therefore, such kind of algo-
rithms often can only be applied off-line for systems with
a higher number of degrees of freedom.

Local planners restrict their scope of planning to a local
neighborhood and therefore in many cases are faster than
global planners. However, they return locally valid solu-
tions, only, which not necessarily are identical to global
solutions.

It’s also characteristic for local planners to get stuck in
local solutions, instead of finding the desired (global) so-
lution. I.e. in terms of optimization theory, to return
a local minimum instead of the actually desired global
minimum. One possibility to approach this problem is
to insert solutions found by local planners as support
points into graphs and let this graph be evaluated by
searching algorithms (z.B. Dijkstra, A∗). Examples for
planners applying of such algorithms can be found in
Kavraki ([2], road maps), Ahuacztin ([9], Expore-Task)
or Braun/Corsépius ([4]).

2.3 Optimization Problem

The path planning problem can also be regarded as the
solution of a high-dimensional pareto-optimization prob-
lem. Therefore, basically, all known techniques to solve
this class of problems can be considered potential candi-
dates to approach the path planning problem.

However, many classic optimization techniques, such as
dynamic programming, fail to be applicable for prac-
tical applications, in particular to on-line path planing
of robotic systems, due to their high complexity (often
> O(mn), with m number of discretization steps per de-
gree of freedom and n number of degrees of freedom) and

0

3

0

1

2

0
1

4

1
3

2

1

1

0

0

4
32

���������	��

������ ��� ������

����������

�����

�

Figure 1: Life cycle of the population of an evolutionary
algorithm

their resulting high demands on memory and/or compu-
tational power.

If interpreting path planning as a high-dimensional search
problem, evolutionary algorithms [10] are a natural can-
didate, because, due to their probabilistic character, they
promise to have the ability to quickly find solutions in a
large number of high-dimensional problems.

3 Evolutionary Algorithms

The term evolutionary algorithms has been introduced in
newer literature [11, Baeck96]as a generic term to denote
a family of popular algorithms, which have been devel-
oped independently since the beginning of the 1960s.

Essentially these are:

• Genetic Algorithms (Fraser, Holland [12], Gold-
berg)

• Evolutionary Programming (L.J. Fogel, D.B. Fogel)

• Evolutionary Strategies (Bienert, Rechenberg,
Schwefel)

All of them share the same basic structure depicted in
algorithm 1 and figure 1, however differ in details and
especially in their history of development [10].

Common to all is a population P (t) of individuals ~ai

which is subject to a cycle that is modeled after evolu-
tion of biological populations:

Algorithm 1 General evolutionary algorithm
(BÃd’ck[10])

t := 0
initialize P (0) := {~a1(0), ...,~aµ(0)} ∈ Iµ;
evaluate P (0) : {Φ(~a1(0)), ..., Φ(~aµ(0))};
while ι (P (t)) 6=true do

recombine:P ′(t) := rΘr
(P (t));

mutate:P ′′(t) := mΘm
(P ′(t));

evaluate P ′′(t) : {Φ(~a′′

1(t)), ..., Φ(~a′′

λ(t))};
select: P (t + 1) := sΘs

(P ′′(t) ∪ Q);
t := t + 1;

end while

Throughout this cycle, from an existing population P (t)
a new population P ′′(t) is generated by means of recom-
bination rΘr

and mutation mΘm
. Individuals of this new

population then are undertaken an evaluation Φ. Unified
with a set Q of spontaneously and randomly added in-
dividuals, a selection algorithm sΘs

selects a new initial
population P (t + 1) of individuals for a new evolution
cycle. The algorithm terminates if one or several individ-
uals met a certain termination criterion ι.

4 Approach

The basic idea of this approach is to treat the posture of a
manipulator in its configuration space as an individual of
an evolutionary population, which is subject to an evolu-
tionary process and gets evaluated with respect to fitness-
criteria from both work- and configuration space (section
3).

4.1 Problem

Given:

1. The momentary posture of a manipulator in config-
uration space:

−→ϕ = (ϕ1...ϕn)

2. The forward kinematics of a manipulator, given as
kinematic chain, denoted as chain of homogeneous
transformations (Denavit-Hartenberg transforma-
tions [13])

0Tn(−→ϕ) =0 T1(ϕ1) ∗
1 T2(ϕ2) ∗ ... ∗n−1 Tn(ϕn)

3. Posture of a goal object in workspace coordinates,
denoted as homogeneous transformation:
0Tgoal =0 Tgoal(−→x) =
0Tgoal(xgoal, ygoal, zgoal,αgoal,βgoal, γgoal)

� �

�"!

Figure 2: Local search scope of an individual in configu-
ration space.

Wanted is the posture −→ϕ in configuration space of
the manipulator, which minimizes a fitness function
f(−→ϕ,0Tn(−→ϕ),0 Tgoal) .

4.2 Evolution Strategy

The evolution strategy having been developed is a spe-
cialization of the algorithm depicted in figure 3.

As initial population P (0) the momentary posture −→ϕ of
the manipulator in configuration space will be used (i.e.
population size µ = 1). Starting with this single individ-
ual, in an initialization phase, a new population P ′′(1) is
generated by random local variations of the components
of the posture vector −→ϕ (typical population size µ = 50).

Each single individual from population P ′′(t) then will
be evaluated by fitness functions, which perform a com-
bined rating of an individual’s posture, applying different
configuration and work space criteria, simultaneously.

Subsequently, in a selection step, a subset of individuals
(typical size 5), carrying best fitness values (rating) of the
population, will be chosen as new initial population for
the next evolutionary cycle.

The algorithm terminates if an individual of the evolu-
tionary population matches a given success criterion (e.g.
sufficiently small distance between end-effector 0Tn and
goal 0Tgoal) or if no improvement of the fitness of the

population’s best individual could be achieved within a
given number of cycles (aborting planning).

The desired path results from the accumulated history

−→ϕ (t = 0), ..,−→ϕ (t = tend)

of the winning individual.

4.3 Fitness Functions

To evaluate a single individual, almost arbitrary
configuration- and/or work-space fitness functions and
combinations of them can be applied. By combining dif-
ferent fitness functions and in combination with different
termination criteria, different elementary behavioral pat-
terns/manoeuvres of the manipulator, such as ”approach-
ing”, ”detaching” and can be implemented.

4.3.1 Fitness Functions in Configuration Space

Fitness functions in configuration space solely rate the
current values of the manipulator’s posture −→ϕ in config-
uration space. They can be applied to include joint angle
limitations into planning.

Proven to be useful for this purpose have binary ratings
(”Angle is within bounds”) and rating the minimal dis-
tance of the current joint angle value to its bounds.

4.3.2 Fitness Functions in Work Space

1. Comparison of the end-effector posture 0Tn against
the posture of the goal object 0Tgoal : Here, the ba-
sic idea is to have specific ratings attached to goal-
objects, which can be applied to realize different ma-
noeuvres for specific types of goal objects. For ex-
ample:

• A general, universally applicable approach
manoeuvre can be realized by rating the Eu-
clidian distance between goal objects and the
end-effector.

• For cylindrical goal objects, axial approach
manoeuvres can be realized by rating the dif-
ference between a vector perpendicular to the
end-effector’s main grasping direction and the
main axis of the cylinder.

2. Rating the end-effector posture 0Tn: These can be
applied to let the end-effector prefer certain regions
of the work space during planning. For example, one

can implement a rating of the rotation sub-matrix of
0Tn to restrict motion of the end-effector (e.g. par-
allel to the ground plane)

3. Distances between objects in workspace: In first
place, they serve collision avoidance between ob-
jects in workspace, comprising collisions between
the links of the manipulator and against the environ-
ment and between individual links of the manipu-
lator. In second place, ratings based on distances
in work space can be applied to let the manipula-
tor prefer free regions of the work space instead of
”scratching along surfaces” (”Free-space/obstacle-
avoidance” behavior).

4.3.3 Combined Fitness Functions

Basically, it is possible to set up arbitrary computation
recipes for combined fitness functions. As they depend
upon the desired manoeuvre and because each of the fit-
ness functions involved comes with a variety of possi-
ble choices of parameters, setting up combined fitness
functions is not an easy task. Here, we have restricted
ourselves to implementing a few elementary manoeuvres
which are useful in our applications.

For example, a simple form of approaching an object can
be implemented this way:

• Minimizing the distance of the end-effector to the
goal object by rating the Cartesian distance from
end-effector to goal object surface,

• Obstacle avoidance by applying a binary rating of
distances between all manipulator links to the envi-
ronment.

• For joints with bounds, additionally add a rating for
nearness to the boundaries, favoring maximal dis-
tance to the bounds.

5 Results

The approach described herein is work in progress. It
currently is subject to simulation studies covering dif-
ferent manipulator kinematics (cf. figure 3) in differ-
ent workspaces with and without obstacles. Typical test-
ing scenarios comprise ”pick-and-place” service-robotics
tasks in artificial, semi-structured, prototypical service
robots environments, for example, ”picking up a bottle
from a table with a MANUS manipulator”

For these simulations, a software system, based on hier-
archical, object-oriented, three-dimensional, geometric-
topological, kinematic world models [14, 15] has been

Figure 3: Examples for simulation models: Left in-
dustrial manipulator, right ”snake-like” manipulator (16
DOF)

developed that allows simulation of manipulators and
their environment, comprising 3D-animation (Open-
Inventor) and collision-detection/distance-computation
([16, 8]) under near real-time conditions on standard
(Pentium III class) PC-hardware.

Figure 4: Model of a MANUS manipulator (left: Geo-
metric Model, right: internal model applied for collision-
/distance computation).

The simulation models internally consist of a topological
tree of attributed real world objects (e.g. bottle, ball, spe-
cialized robot links etc.). For collision detection/distance,
each of these objects, is transformed into a set of geomet-
rical primitives (cube, cylinder etc.) and, in a subsequent
step, into sets of spheres (cf. figure 4), representing an ap-
proximation of the surface of the real world object (Typ-
ical number of spheres:105-106; Fig. 4 consists of ca.
30000spheres).

The typical size of the evolutionary population having
shown to be reasonable is 100 individuals. Simulations
indicate that using larger population sizes don’t neces-
sarily improve planning speed (Sparse search, ”needle in
the haystack”). Using smaller sizes overproportionally
increase planning times and reduce convergence.

Due to the probabilistic nature of the approach, deter-
ministically reproduceable planning times can hardly be
specified. For simple tasks/scenarios, such as approach-
ing a ball with the 6-DOF MANUS manipulator in free
work space, planning times can range from a couple sec-
onds up to a few minutes.

The computational effort, and therefore the required plan-
ning time is higher than that of recent fast path planning
algorithms, such as[5] and [4]. For practical applications
however this disadvantage can be at least partially com-
pensated by the scalability of the algorithm (Number of
individuals in a population µ, size of the local search
scope during generation of an individual).

6 Conclusion

A simple path planning algorithm for manipulators has
been developed, which on one hand is based on combina-
tion and extension of known algorithms [3, 1, Baeck96],
and their directed adaptation to a specific application, on
the other hand hereby avoids typical problems of conven-
tional path planning algorithms.

Worth emphasizing seems to be the fact that inverse kine-
matics can be avoided, because the actual planning takes
place in configuration space, while rating of reachable in-
termediate goal can take place in work space as well as in
configuration space (solving the inverse kinematics im-
plicitly and iteratively).

This also allows to take numerous constraints into con-
sideration for planning (e.g. grasped object may not be
tilted), which are hardly integrable into other path plan-
ning algorithms, especially to pure configuration or work
space based planners.

Furthermore, this allows us to apply this approach to
highly-redundant manipulator kinematics, and enables us
to realize more complex manipulation manoeuvres.

Like other local path planners, this algorithm shows has
the characteristic of potentially ”getting stuck” in local
minima, i.e. convergence against a global solution of the
path planning problem can not be guaranteed. Here, com-
binations with other global path planning algorithms, in
particular graph based algorithms, seem to offer potential
enhancement opportunities [2, 17, 4].

The presented algorithm is a first realization of this ap-
proach and leaves open a number of possibilities for fur-
ther development and improvement. The evolutionary al-
gorithm has been kept simple on purpose, and we there-
fore refrained from applying further standard methods
of evolutionary algorithms, such as Cross-Over, Gaus-
sian distributed selection of individuals from their parent
population when generating a generation, Gaussian dis-
tributed mutation rates around a parent individual etc.

Furthermore, developing a generally applicable, com-
bined fitness function to implement generally applicable,
reasonable behavioral patterns has proven to be difficult.

Acknowledgements

Parts of the work described herein are based on work
from project AMOS (granted by BMBF), which had
been continued and developed further in the Special Re-
search Area (SFB) 527 ”Integration of symbolic and sub-
symbolic information processing in adaptive sensomo-
toric systems” (granted by the Deutsche Forschungsge-
meinschaft, DFG).

References

[1] J.-C. Latombe, Robot Motion Planning. Kluwer
Academic Press, 1991.

[2] L. E. Kavraki, “Random networks in con-
figuration space for fast path planning,”
Ph.D. dissertation, Stanford University, 1994,
ftp://flamingo.stanford.edu/pub/kavraki/thesis1.ps.

[3] S. Quinlan, “Real-time modification of collision-
free paths,” Ph.D. dissertation, Stanford University,
1994.

[4] B. Braun and R. Corsépius, “Amos: Schnelle
manipulator-bewegungsplanung durch integration
potentialfeldbasierter lokaler und probabilistischer
algorithmen,” in Autonome Mobile Systeme, 12.
Fachgespräch. München: Springer, 1996.

[5] B. Baginski, “Motion planning for manipulators
with many degrees of freedom – the bb-method,”
Ph.D. dissertation, Fakultät für Informatik, TU
München, 1998.

[6] L. Sciavicco and B. Siciliano, Modeling And Con-
trol Of Robot Manipulators. McGraw-Hill Inter-
national Editions, 1996.

[7] C. Canudas de Wit, B. Siciliano, and G. Bastin, The-
ory of Robot Control. Springer, 1996.

[8] R. Corsépius and B. Braun, “Amos: Fast manipu-
lator path planning by integrating potential based
local methods and probabilistic global planning,”
in MCPA ’97, 2nd Int. Workshop on Mechatroni-
cal Computer Systems For Perception And Action,
G. Buttazzo and E. Ricciardi, Eds. Pisa/It: Scuola
Superiore di Studi Universitari S.Anna, 1997.

[9] J.-M. Ahuactzin Larios, “Le fil d’ariadne: Une
méthode de planification générale. application à
la planification automatique de trajectoires,” Ph.D.
dissertation, LIFIA, Genoble, 1994.

[10] T. Bäck, Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1996.

[11] J. Heitkötter and D. Beasley, “The hitch-hiker’s
guide to evolutionary computation: A list of
frequently asked questions (faq),” ftp://rtfm.mit.
edu/pub/usenet/news.answers/ai-faq/genetic/, p. ca.
110, 2000.

[12] J. H. Holland, Adaptation in Natural and Artificial
Systems, 2nd ed. MIT Press, 1975.

[13] J. Denavit and R. S. Hartenberg, “A kinematic nota-
tion for lower-pair mechanisms based on matrices,”
Journal of Applied Mechanics, June 1955.

[14] R. Corsépius, “Amos: World modelling for au-
tonomous mobile manipulators,” in 7th ANS Topi-
cal Meeting on Robotics and Remote Systems. Au-
gusta/GA: ANS, 1997.

[15] ——, “Computation of spatial relations for interac-
tion of symbolic and subsymbolic information pro-
cessing,” in 8th ANS International Topical Meeting
on Robotics and Remote Systems. Pittsburgh/PA:
ANS, 1999.

[16] S. Quinlan, “Efficient distance computation be-
tween non-convex objects,” in Proc. IEEE Int. Conf.
on Robotics and Automation, 1994, pp. 3324–3329.

[17] P. Bessière, J.-M. Ahuactzin, E.-G. Talbi, and
E. Mazer, “The ariadne’s clew algorithm: Global
planning with local methods,” in Proc. IEEE Con-
ference On Intelligent Robots and Systems (IROS).
Yokohama, Japan: IEEE/RSJ, 1993.

