

 1

EVOLVING STRATEGY FOR GAME PLAYING

Josef Hynek

University of Hradec Králové
Faculty of Informatics and Management

Department of Quantitative Methods and Informatics
Nejedlého 573, 500 03 Hradec Králové

Czech Republic
Josef.Hynek@uhk.cz

ABSTRACT

This paper examines genetic algorithm and
machine learning using the game of Nim. We have
studied various attempts to evolve a competitive or even
optimal strategy for this game that have been
undertaken before. Based on these findings we have
reviewed them and then we have designed a new
approach that has been tested on a particular version of
the game of Nim. Contrary to the evolving populations
of “hosts” and “parasites”, we have proposed a solution
that is based on a genetic algorithm utilizing single
population only. Moreover, we have exploited a kind of
macromutation operator previously utilized within the
field of genetic programming. The so called headless
chicken crossover helped us to significantly speed up
the evolutionary process. We have carried out series of
experiments and the analysis of these experiments is
presented here. We do believe that the approaches and
results described here can be useful when tackling other
problems where the suitable strategy goal is pursued.

INTRODUCTION

Game playing in general is very popular amongst
the artificial intelligence community and many search
methods have been studied and designed in this
particular field. Numerous games have been thoroughly
studied, tested and tackled by the variety of methods
since the very beginning of this scientific field. These
methods range from the simplest brutal force search
strategies to miscellaneous sophisticated heuristic
techniques.

Our aim here is to examine utilization of genetic
algorithms to evolve game playing strategy. Genetic
algorithms make use of a “survival of the fittest” rule
that gives them enough power to eliminate poor
strategies, make it more advantageous for better ones,
and utilizing suitable genetic operators and basic
principles of inheritance to create a new offspring.
Repeating this “naturally inspired life cycle” many
times we usually obtain a very good or even optimal
strategy for a given task.

To demonstrate the power of genetic algorithms we
have decided to employ the game of Nim. There are
several different versions of this game and because of
its simple laws the game is frequently used to present
various techniques of artificial intelligence. Moreover,
for certain instances of the game we are going to
describe and to exploit it for testing purposes here, the
optimal (winning) strategy is known. It gives us a
unique opportunity to measure the outcomes of our
algorithm and to compare them with the known optimal
strategy.

There are many books and papers on game playing
and genetic algorithms and that is why we will try to
narrow our focus here on those directly related to our
paper only (for a broader overview see for example [1]).
When searching for the former attempts to utilize
genetic algorithms to develop a strategy for the game of
Nim, we have found especially two important papers of
Rosin and Belew [8, 9]. They have considered such a
version of the game of Nim where the initial
configration consists of four piles containing 3, 4, 5, and
4 stones. Players alternate removing an arbitrary number
of stones from a single pile and the player to take the
last stones wins. This configuration allows the first
player to force a win with optimal play [8]. They have
described their experiments when exploring various
sampling methods there. Their results are quite
impressive and so it stimulated our interest to run our
own experiments on a different version of the game of
Nim. Moreover, we have utilized one population of
individuals only instead of two distinctive populations
of “hosts” and “parasites”.

PROBLEM DESCRIPTION
There are several versions of the game of Nim. We

have decided to experiment with the form where N
(N>0) stones are placed on the table and two players
alternate to remove m (m>0) stones in each step. There
is a given number k>0 that restricts the maximal number
of stones to be removed in one turn by each player and
thus 0<m≤k. The player who takes the last stone from
the table looses the game.

 2

The good feature of this game (from the point of a
researcher) is that there is a known wining strategy that
depending on the initial number of stones on the table
assures secure win to the relevant player.

The strategy can be easily derived from the
definition of the game. To become a winner, our aim is
to leave only one last stone for our opponent on the
table at the final stage of the game. It is clear that our
opponent can take at least 1 and at maximum m stones
in one turn, which means that we can easily guarantee
that m+1 stones can be taken off the table in each run.
Consequently, if there are (m+1)*x+1 stones on the
table where x is arbitrary positive natural number and
our opponent is going to take his move, we can see that
it is rather straightforward to achieve in x rounds the
position that there will be the only one stone on the
table left for our opponent. This strategy can be
formulated in three rules:

1. If there is only one stone on the table you have to
take it and it means that this game is lost.

2. If there are n (n>1) stones on the table it is an
optimal decision to take y stones where

y=(n-1) mod (k+1)
providing that y > 0.

3. If y computed using the previous rule is equal to
zero, it is impossible to keep the winning
strategy and you can take any feasible number of
stones z ∈ {1,2,..,min(k,n)}

It is clear that the rule number two defines the
optimal strategy while the rule number three describes
the stage when we are just waiting for a possible
mistake of our opponent and the opportunity to follow
the rule number two later on. The strategy for N=26 and
k=4 is simply illustrated on the figure number 1. We
have deliberately emphasized the groups of five stones
that should be taken in one round to guarantee victory
for the second player. We can see there that by assuring
that k+1=5 stones are removed in each run there will be
only one stone left for our opponent in the end of the
game.

Having analyzed our version of the game of Nim it
is perhaps the right time to determine its complexity and
namely the size of the search space. Our version of the
game of Nim specified by the total number of stones N
and the upper bound k generates N different positions
where it is possible to make exactly m = min(k,n)
decisions, where n is the current number of stones on
the table. Table number 1 gives a clear idea on how
many different strategies are there for the different
values of N and k. Although we could see above that
this problem can be easily solved by rather simple
mathematical deduction, this particular form of it is
quite difficult for genetic algorithm because it has no
such knowledge about the game. Its search is based on
sampling of the relevant search space and from here it is
obvious that this game poses a substantial challenge for
genetic algorithms.

Figure No. 1. Game of Nim (N=31, k = 4)

GENETIC ALGORITHM
IMPLEMENTATION

To represent the problem, we have used the
straightforward representation, where individuals are
directly encoded as eligible strategies. There are N
different positions and that is why the relevant
chromosome consists of N genes. The value of the i-th
gene (or more precisely its allele) represents in a
straight line the decision of the player that should be
taken when this particular position within the game has
been achieved. To illustrate this encoding easily on a
specific example, let us assume that there are 21 stones
on the table (N=21) and it is possible to take up to 4
stones at once (k=4). The chromosome

[1, 1, 2, 3, 2, 4, 2, 1, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1]
represents the strategy where the player takes one stone
if there is one stone on the table only, he takes one stone
if there are two stones there, then two stones providing
that there are three stones on the table etc.

We have deliberately chosen the instance of the
game where the optimal strategy exists and so it might
be worthwhile to show it to supplement the theoretical
explanations given above. In this particular case the

 3

optimal strategies for the second player are encoded by
the scheme
[1, 1, 2, 3, 4, #, 1, 2, 3, 4, #, 1, 2, 3, 4, #, 1, 2, 3, 4, #].

We can see that the player follows the rule number 2 as
we defined it above. The symbols of # stand for
arbitrary eligible number of stones, because these four
positions within the game relate to the rule number 3. It
means that in these cases it is impossible to keep the
winning strategy and any decision can be taken. Of
course, we can see that if our opponent starts and we
play according to this strategy, there is no chance for
him to force us to fail.

Table No. 1. Search space sizes for different values of
parameters N and k

Number of
stones (N)

Number of
strategies

(k=4)

Number of
strategies

(k=5)

Number of
strategies

(k=6)

1 1 1 1
5 96 120 120

10 98304 375000 933120
15 1,01E+08 1,17E+09 7,26E+09
20 1,03E+11 3,66E+12 5,64E+13
30 1,08E+17 3,58E+19 3,41E+21
40 1,13E+23 3,49E+26 2,06E+29
50 1,19E+29 3,41E+33 1,25E+37

This kind of encoding is a one-to-one encoding,

which means that there is only one chromosome for a
particular strategy and vice versa. We can also easily
see from here that there are 4,123E+11 different
strategies in our particular example (N=21, k = 4) and
there are only 256 optimal strategies within them, which
poses a reasonable difficulty for any algorithm to be
used to discover it.

The fitness of each individual depends on its ability
to compete with other strategies and so we have to
design a way to measure it. The simplest way to
measure this ability is to organize a kind of tournament
where winner gets one point while the beaten strategy
earns nothing. And now we can see another advantage
of the representation we have chosen, because it is very
easy to organize a duel between two strategies.
A relevant piece of the code written in Prolog is as
simple as:

duel(Strategy1, Strategy2, Winner) :-
 length_of_chromosome(N),
 % Strategy1 starts
 play1(Strategy1,Strategy2,N,Winner).

play1(Strategy1, Strategy2, N, Winner) :-
 n_th(N, Strategy1, M),
 P is N - M,
 ((P < 1, % it was the last one
 Winner = 2, !) ;

 play2(Strategy1,Strategy2,P,Winner)).

play2(Strategy1,Strategy2,N,Winner) :-

 n_th(N, Strategy2, M),
 P is N - M,
 ((P < 1, % it was the last one
 Winner = 1, !) ;
 play1(Strategy1,Strategy2,P,Winner)).

n_th(1, [H|_], H) :- !.
n_th(N, [_|T], X) :- N > 1,

N1 is N - 1,
n_th(N1, T, X).

While it is quite simple to solve this problem, we

have to cope with the more difficult questions as how
many duels should be organized for each individual, and
moreover, which individuals should be chosen as its
opponents etc. We did some tests based on idea of using
random opponents only as in [10] but our results were
not satisfactory. That is why we have dwelled on the
selection strategies devised in [8] where they examined
various approaches in order to speed up the process of
evolution. There have been three basic strategies
considered in [8]:

1. Entire population is used to evaluate an
individual.
2. Random sample of in advance specified
number of individuals is used.
3. So called “hall of fame” approach that allows
to save specific individuals for testing purposes.

We tested all of them and finally we have employed
a kind of hall of fame approach where the best
individuals from the former generations are used to
evaluate new individuals. The number of individuals in
hall of fame clearly depends on the size of population
and we managed to get very good results when the size
of hall of fame was approximately about one third of the
size of the whole population. As the size of our
population was kept constant at 400 individuals for all
tests reported here we have employed 150 opponents to
evaluate each new individual. The size of elite was kept
constant and equal to 20 individuals.

We have employed a single population only instead
of two populations of “hosts” and “parasites” and that is
why we had to create the hall of fame from the same
population. This problem can be solved realizing a
simple fact that we are looking for strategy for the
second player and when evaluating it the opponent
strategies are used as the first player strategies. Each
second player strategy can be gradually (if it is good
enough) exploited to challenge the newly created
strategies and that is why this model can rely on a single
population.

Another important problem that comes forward
when evaluating individuals and that must be solved is
caused by mutual interactions and continuing co-
evolution of the individuals. To explain this issue let us
suppose that each individual is assessed in such a way
that it plays the game with 150 opponent strategies and

 4

it gets one point for each victory. It is clear that at the
beginning of the evolution process when the individuals
are generated randomly the population is full of poor
strategies and it is rather easy for a mediocre strategy to
win many duels and to acquire lot of points. On the
other hand, situation gets tougher later on when better
and better strategies are present within the population
and it is not as easy for them to beat their opponents. It
is a kind of well known “red queen syndrome” that
implies that each individual within the population
should be improved in order to be evaluated at least as it
was evaluated earlier. Of course, these findings are
irrelevant for the optimal strategy as it beats the others
by definition.

This issue creates some problems especially when
we want to preserve a part of former population
(exploiting either elitism or a steady-state model of
reproduction). We have experimented with two different
ideas to cope with the above-mentioned problem.

Our first and very straightforward solution was
based on the re-evaluation of the survived part of the old
population. This approach is indisputable but it is time
consuming. The second solution to the problem utilizes
a kind of depreciation of the evaluation of the surviving
members of population. We tested several schemes
involving various factors as for example the number of
generation etc. and we have achieved some very
interesting results. On the other hand, it is clear that the
set up of the relevant parameters is a purely empirical
effort. That is why we have returned to the first
approach and the “elite individuals” are re-evaluated by
the current set of opponents before being incorporated
within a newly created population.

It was alluring to measure the fitness of our
individuals more exactly and easily by computing the
difference between evaluated strategy and the optimal
one, which is well-known in this particular case.
Because it would be too easy then and rather unfair we
did not use it for this purpose. On the other hand it was
interesting to measure it and to monitor the progress of
the algorithm using this measure and that is why you
can see the number of wrong decisions on the figures 2
and 3 where performance of our algorithm is depicted.

Regarding the genetic operators, the chosen
representation scheme allowed us to utilize a traditional
two-point crossover that is applied with probability
pc=0.75. We have also employed a mutation operator
that changes the value of the relevant gene at random
with probability pm=0.005.

All testing reported within this work was done with
GAP, a LPA WIN-PROLOG implementation of genetic
algorithms package that we developed earlier and it is
fully described in [5]. It facilitates manipulation of
binary, integer, floating-point, as well as tree structures
representations. The package offers a whole range of
selection and reproduction schemes, as well as various
genetic operators. Moreover, GAP facilitates quick
implementation of the custom-tailored genetic operators

and evaluation functions that is very important for
experimentation.

MACROMUTATION OPERATOR
Our early experiments made us aware of an

important recognition that because of the particular
encoding we have chosen and the fact that amongst
mediocre strategies the better ones are those where
end-game is more developed it might be possible to
speed up the process of the optimal strategy evolution.
Here we have recalled the genetic programming study
of Lang [6] who argued that crossover in a population
did not perform nearly as well as macromutation
operator that was whimsically nicknamed headless
chicken crossover. In headless chicken crossover, only
one parent is selected from the current population and
an entirely new individual is created randomly. The
selected parent is then crossed over with this randomly
created individual and the offspring is kept only if it is
better than or equal to the parent in fitness. Otherwise, it
is discarded. Therefore headless chicken crossover is a
form of hill climbing.

Lang claimed that headless chicken crossover was
much better than crossover but his study was based on
one small problem (the Boolean 3-multiplexer
problem). That is why some others (see e.g. [2])
disputed his results maintaining that every machine
learning technique has a bias – a tendency to perform
better on certain types of problems than on others.
While Lang picked only one test problem to show some
features of this particular macromutation operator and to
overgeneralize them, we did it other way round – we
employed the headless chicken operator to improve the
genetic algorithm performance on our problem. Because
of the appropriate encoding our problem is particularly
well suited for such an approach.

We have used it in the stage when the members of
elite are incorporated within the newly created
population. Each member of this elite is challenged by
its offspring created by the headless chicken operator
and the better of these two is inserted into the new
population. Taking into account the size of elite it is not
a time consuming operation. We have not studied the
effects of this operator when utilized more widely
within the population yet. We do believe that it might be
an interesting issue for further research.

RESULTS ACHIEVED
The results of our experiments are summarized in

the tables number 2 and 3. We have run series of
experiments for N = 11, 21, and 31 stones respectively,
while the upper limit on the maximal number of stones
to be taken in one move has been kept constant (k=4).
We have run the algorithm 100 times for each game
configuration and the minimum, maximum, and average
number of generations needed to find an optimal
strategy is reported there.

 5

From these two tables we can clearly see that the
utilization of the headless chicken operator remarkably
facilitates the search for the optimal strategy. The
figures number 2 and 3 illustrate this positive change
and on the figure number 3 we can see the percentage of
the headless chicken operator utilization during the
evolution process itself. It is clear that its influence is
higher in the earlier stages of the evolution process
when the population is full of poor and mediocre
strategies and it is also the main reason for the
acceleration of the process as a whole.

Another issue that is clearly visible from these
figures is the problem that from the very beginning
there are highly evaluated individuals within each
population. As we have discussed above it is caused by
poor quality of their opponents.

Table No. 2. The number of generations needed to find
optimal strategy (100 test runs – GA without
macromutation operator)

Number of stones (N) 11 21 31
Min 4 33 76
Max 25 376 592
Average 13,3 91,0 194,1

Table No. 3. The number of generations needed to find
optimal strategy (100 test runs - GA empowered by the
macromutation operator)

Number of stones (N) 11 21 31
Min 2 33 79
Max 21 69 184
Average 12,6 54,1 126,6

CONCLUSION
The game of Nim is a simple game that is well

suited to the research in this field. It has several useful
properties including the clearly defined and easily
understood optimal strategy. Our experiments reported
here show that genetic algorithms represent a suitable
tool to tackle it.

We have proposed and tested a new approach
utilizing a single population only. Moreover we have
shown that by utilizing the headless chicken
macromutation operator we can significantly speed up
the evolutionary process and the optimal solution is
discovered much earlier. While Jones has been
criticized [2] for exaggerating his results on one
particular example, we have employed this operator
deliberately to the problem where we could see that it is
likely to perform efficiently. It is clear that the synergy
of the suitable encoding and the exploitation of the

fitting macromutation delivers encouraging results. We
do believe that our approaches described here can be
useful when tackling other problems where the suitable
strategy goal is pursued and we are going to explore
them further.

Figure No. 2. Performance curves (N=31, k = 4; GA
without utilisation of the macromutation operator)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100

Generation No

Fi
tn

es
s

Fitness of the best
individual

Percentage of w rong
decisions

Figure No. 3. Performance curves (N=31, k = 4; GA
empowered by the macromutation operator)

0,0

0,2

0,4

0,6

0,8

1,0

0 10 20 30 40 50 60 70 80 90 100
Generation No

Fi
tn

es
s

Fitness of the best individual

% of w rong decisions

% of macromutation utilisation

ACKNOWLEDGMENTS
This research has been partially supported by the

Grant Agency of the Czech Republic project No.

 6

406/03/0115 and the Czech Ministry of Education
project No. MSM 184500001.

REFERENCES
[1] Baba, N., Jain, L. (Eds.): Computational

Intelligence in Games. Studies in Fuzziness and
Soft Computing, Vol. 62, Springer-Verlag,
Heidelberg, 2001.

[2] Banzhaf, W., Nordin, P., Keller, R.E., Francone,
F.D.: Genetic Programming. An Introduction. On
the Automatic Evolution of Computer Programs
and Its Applications. Morgan Kaufmann, San
Francisco, 1998.

[3] Eiben, A.E., Raué,P.E., Ruttkay, Z.: How to Apply
Genetic Algorithms to Constrained Problems. In:
Chambers, L. (Ed.): Practical Handbook of Genetic
Algorithms. Vol. 1, 1995, pp. 307-353.

[4] Goldberg, D.E.: Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[5] Hynek, J.: A Prolog Implementation of Genetic
Algorithms. Ph.D. Thesis, Charles University,
Prague 1998.

[6] Lang, K.J.: Hill climbing beats genetic search on a
boolean circuit sznthesis of Koza’s. In Proceedings
of the Twelfth International Conference on
Machine Learning. Tahoe City, CA. Morgan
Kaufmann, San Francisco, 1995.

[7] Michalewicz, Z.: Genetic Algorithms + Data
Structures = Evolution Programs (3rd ed.).
Springer-Verlag, Berlin 1996.

[8] Rossin, C. D., Belew, R. K.: New Methods for
Competitive Coevolution. University of California,
San Diego, Department of Computer Science and
Engineering, Technical Report #CS96-491, La Jolla
1996.

[9] Rossin, C. D., Belew, R. K.: A Competitive
Approach to Game Learning. Proceedings of the
Ninth Annual ACM Workshop on Computational
Learning Theory, ACM 1996.

[10] Shi, J.: Genetic Algorithms for Game Playing. In:
Karr, C. L., Freeman, L. M. (Eds): Industrial
Applications of Genetic Algorithms. CRC Press,
Boca Raton, 1999, pp. 321-338.

