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ABSTRACT 

This paper examines genetic algorithm and 
machine learning using the game of Nim. We have 
studied various attempts to evolve a competitive or even 
optimal strategy for this game that have been 
undertaken before. Based on these findings we have 
reviewed them and then we have designed a new 
approach that has been tested on a particular version of 
the game of Nim. Contrary to the evolving populations 
of “hosts” and “parasites”, we have proposed a solution 
that is based on a genetic algorithm utilizing single 
population only. Moreover, we have exploited a kind of 
macromutation operator previously utilized within the 
field of genetic programming. The so called headless 
chicken crossover helped us to significantly speed up 
the evolutionary process. We have carried out series of 
experiments and the analysis of these experiments is 
presented here. We do believe that the approaches and 
results described here can be useful when tackling other 
problems where the suitable strategy goal is pursued. 

 
INTRODUCTION 

Game playing in general is very popular amongst 
the artificial intelligence community and many search 
methods have been studied and designed in this 
particular field. Numerous games have been thoroughly 
studied, tested and tackled by the variety of methods 
since the very beginning of this scientific field. These 
methods range from the simplest brutal force search 
strategies to miscellaneous sophisticated heuristic 
techniques.  

Our aim here is to examine utilization of genetic 
algorithms to evolve game playing strategy. Genetic 
algorithms make use of a “survival of the fittest” rule 
that gives them enough power to eliminate poor 
strategies, make it more advantageous for better ones, 
and utilizing suitable genetic operators and basic 
principles of inheritance to create a new offspring. 
Repeating this “naturally inspired life cycle” many 
times we usually obtain a very good or even optimal 
strategy for a given task. 

To demonstrate the power of genetic algorithms we 
have decided to employ the game of Nim. There are 
several different versions of this game and because of 
its simple laws the game is frequently used to present 
various techniques of artificial intelligence. Moreover, 
for certain instances of the game we are going to 
describe and to exploit it for testing purposes here, the 
optimal (winning) strategy is known. It gives us a 
unique opportunity to measure the outcomes of our 
algorithm and to compare them with the known optimal 
strategy. 

There are many books and papers on game playing 
and genetic algorithms and that is why we will try to 
narrow our focus here on those directly related to our 
paper only (for a broader overview see for example [1]). 
When searching for the former attempts to utilize 
genetic algorithms to develop a strategy for the game of 
Nim, we have found especially two important papers of 
Rosin and Belew [8, 9]. They have considered such a 
version of the game of Nim where the initial 
configration consists of four piles containing 3, 4, 5, and 
4 stones. Players alternate removing an arbitrary number 
of stones from a single pile and the player to take the 
last stones wins. This configuration allows the first 
player to force a win with optimal play [8]. They have 
described their experiments when exploring various 
sampling methods there. Their results are quite 
impressive and so it stimulated our interest to run our 
own experiments on a different version of the game of 
Nim. Moreover, we have utilized one population of 
individuals only instead of two distinctive populations 
of “hosts” and “parasites”. 

PROBLEM DESCRIPTION 
There are several versions of the game of Nim. We 

have decided to experiment with the form where N 
(N>0) stones are placed on the table and two players 
alternate to remove m (m>0) stones in each step. There 
is a given number k>0 that restricts the maximal number 
of stones to be removed in one turn by each player and 
thus 0<m≤k. The player who takes the last stone from 
the table looses the game. 



 

 2

The good feature of this game (from the point of a 
researcher) is that there is a known wining strategy that 
depending on the initial number of stones on the table 
assures secure win to the relevant player.  

The strategy can be easily derived from the 
definition of the game. To become a winner, our aim is 
to leave only one last stone for our opponent on the 
table at the final stage of the game. It is clear that our 
opponent can take at least 1 and at maximum m stones 
in one turn, which means that we can easily guarantee 
that m+1 stones can be taken off the table in each run. 
Consequently, if there are (m+1)*x+1 stones on the 
table where x is arbitrary positive natural number and 
our opponent is going to take his move, we can see that 
it is rather straightforward to achieve in x rounds the 
position that there will be the only one stone on the 
table left for our opponent. This strategy can be 
formulated in three rules: 

1. If there is only one stone on the table you have to 
take it and it means that this game is lost. 

2. If there are n (n>1) stones on the table it is an 
optimal decision to take y stones where  

y=(n-1) mod  (k+1) 
providing that y > 0. 

3. If y computed using the previous rule is equal to 
zero, it is impossible to keep the winning 
strategy and you can take any feasible number of 
stones z ∈  {1,2,..,min(k,n)} 

It is clear that the rule number two defines the 
optimal strategy while the rule number three describes 
the stage when we are just waiting for a possible 
mistake of our opponent and the opportunity to follow 
the rule number two later on. The strategy for N=26 and 
k=4 is simply illustrated on the figure number 1. We 
have deliberately emphasized the groups of five stones 
that should be taken in one round to guarantee victory 
for the second player. We can see there that by assuring 
that k+1=5 stones are removed in each run there will be 
only one stone left for our opponent in the end of the 
game.  

Having analyzed our version of the game of Nim it 
is perhaps the right time to determine its complexity and 
namely the size of the search space. Our version of the 
game of Nim specified by the total number of stones N 
and the upper bound k generates N different positions 
where it is possible to make exactly m = min(k,n) 
decisions, where n is the current number of stones on 
the table. Table number 1 gives a clear idea on how 
many different strategies are there for the different 
values of N and k. Although we could see above that 
this problem can be easily solved by rather simple 
mathematical deduction, this particular form of it is 
quite difficult for genetic algorithm because it has no 
such knowledge about the game. Its search is based on 
sampling of the relevant search space and from here it is 
obvious that this game poses a substantial challenge for 
genetic algorithms. 

 

Figure No. 1. Game of Nim (N=31, k = 4) 

 
 

GENETIC ALGORITHM 
IMPLEMENTATION 

To represent the problem, we have used the 
straightforward representation, where individuals are 
directly encoded as eligible strategies. There are N 
different positions and that is why the relevant 
chromosome consists of N genes. The value of the i-th 
gene (or more precisely its allele) represents in a 
straight line the decision of the player that should be 
taken when this particular position within the game has 
been achieved. To illustrate this encoding easily on a 
specific example, let us assume that there are 21 stones 
on the table (N=21) and it is possible to take up to 4 
stones at once (k=4). The chromosome 

[ 1, 1, 2, 3, 2, 4, 2, 1, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1] 
represents the strategy where the player takes one stone 
if there is one stone on the table only, he takes one stone 
if there are two stones there, then two stones providing 
that there are three stones on the table etc.  

We have deliberately chosen the instance of the 
game where the optimal strategy exists and so it might 
be worthwhile to show it to supplement the theoretical 
explanations given above. In this particular case the 
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optimal strategies for the second player are encoded by 
the scheme  
[ 1, 1, 2, 3, 4, #, 1, 2, 3, 4, #, 1, 2, 3, 4, #, 1, 2, 3, 4, #]. 

We can see that the player follows the rule number 2 as 
we defined it above. The symbols of # stand for 
arbitrary eligible number of stones, because these four 
positions within the game relate to the rule number 3. It 
means that in these cases it is impossible to keep the 
winning strategy and any decision can be taken. Of 
course, we can see that if our opponent starts and we 
play according to this strategy, there is no chance for 
him to force us to fail.  

 
Table No. 1. Search space sizes for different values of 
parameters N and k 
 

Number of 
stones (N) 

Number of 
strategies 

(k=4) 

Number of 
strategies 

(k=5) 

Number of 
strategies 

(k=6) 

1 1 1 1
5 96 120 120

10 98304 375000 933120
15 1,01E+08 1,17E+09 7,26E+09
20 1,03E+11 3,66E+12 5,64E+13
30 1,08E+17 3,58E+19 3,41E+21
40 1,13E+23 3,49E+26 2,06E+29
50 1,19E+29 3,41E+33 1,25E+37

 
 
This kind of encoding is a one-to-one encoding, 

which means that there is only one chromosome for a 
particular strategy and vice versa. We can also easily 
see from here that there are 4,123E+11 different 
strategies in our particular example (N=21, k = 4) and 
there are only 256 optimal strategies within them, which 
poses a reasonable difficulty for any algorithm to be 
used to discover it. 

The fitness of each individual depends on its ability 
to compete with other strategies and so we have to 
design a way to measure it. The simplest way to 
measure this ability is to organize a kind of tournament 
where winner gets one point while the beaten strategy 
earns nothing. And now we can see another advantage 
of the representation we have chosen, because it is very 
easy to organize a duel between two strategies. 
A relevant piece of the code written in Prolog is as 
simple as:  

 
duel(Strategy1, Strategy2, Winner) :-  
 length_of_chromosome(N), 
 % Strategy1 starts 
 play1(Strategy1,Strategy2,N,Winner).  
 
play1(Strategy1, Strategy2, N, Winner) :-  
 n_th( N, Strategy1, M),  
 P is N - M,  
 ((P < 1, % it was the last one 
   Winner = 2, ! ) ;  

     play2(Strategy1,Strategy2,P,Winner)). 
 
play2(Strategy1,Strategy2,N,Winner) :-  

 n_th( N, Strategy2, M),  
 P is N - M,  
 ((P < 1, % it was the last one 
   Winner = 1, ! ) ;  
    play1(Strategy1,Strategy2,P,Winner)). 
 
n_th(1, [H|_], H) :- !. 
n_th(N, [_|T], X) :- N > 1,  

N1 is N - 1,  
n_th(N1, T, X). 

 
While it is quite simple to solve this problem, we 

have to cope with the more difficult questions as how 
many duels should be organized for each individual, and 
moreover, which individuals should be chosen as its 
opponents etc. We did some tests based on idea of using 
random opponents only as in [10] but our results were 
not satisfactory. That is why we have dwelled on the 
selection strategies devised in [8] where they examined 
various approaches in order to speed up the process of 
evolution. There have been three basic strategies 
considered in [8]: 

1. Entire population is used to evaluate an 
individual. 
2. Random sample of in advance specified 
number of individuals is used. 
3. So called “hall of fame” approach that allows 
to save specific individuals for testing purposes. 

We tested all of them and finally we have employed 
a kind of hall of fame approach where the best 
individuals from the former generations are used to 
evaluate new individuals. The number of individuals in 
hall of fame clearly depends on the size of population 
and we managed to get very good results when the size 
of hall of fame was approximately about one third of the 
size of the whole population. As the size of our 
population was kept constant at 400 individuals for all 
tests reported here we have employed 150 opponents to 
evaluate each new individual. The size of elite was kept 
constant and equal to 20 individuals. 

We have employed a single population only instead 
of two populations of “hosts” and “parasites” and that is 
why we had to create the hall of fame from the same 
population. This problem can be solved realizing a 
simple fact that we are looking for strategy for the 
second player and when evaluating it the opponent 
strategies are used as the first player strategies. Each 
second player strategy can be gradually (if it is good 
enough) exploited to challenge the newly created 
strategies and that is why this model can rely on a single 
population. 

Another important problem that comes forward 
when evaluating individuals and that must be solved is 
caused by mutual interactions and continuing co-
evolution of the individuals. To explain this issue let us 
suppose that each individual is assessed in such a way 
that it plays the game with 150 opponent strategies and 
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it gets one point for each victory. It is clear that at the 
beginning of the evolution process when the individuals 
are generated randomly the population is full of poor 
strategies and it is rather easy for a mediocre strategy to 
win many duels and to acquire lot of points. On the 
other hand, situation gets tougher later on when better 
and better strategies are present within the population 
and it is not as easy for them to beat their opponents.  It 
is a kind of well known “red queen syndrome” that 
implies that each individual within the population 
should be improved in order to be evaluated at least as it 
was evaluated earlier. Of course, these findings are 
irrelevant for the optimal strategy as it beats the others 
by definition. 

This issue creates some problems especially when 
we want to preserve a part of former population 
(exploiting either elitism or a steady-state model of 
reproduction). We have experimented with two different 
ideas to cope with the above-mentioned problem.  

Our first and very straightforward solution was 
based on the re-evaluation of the survived part of the old 
population. This approach is indisputable but it is time 
consuming. The second solution to the problem utilizes 
a kind of depreciation of the evaluation of the surviving 
members of population. We tested several schemes 
involving various factors as for example the number of 
generation etc. and we have achieved some very 
interesting results. On the other hand, it is clear that the 
set up of the relevant parameters is a purely empirical 
effort. That is why we have returned to the first 
approach and the “elite individuals” are re-evaluated by 
the current set of opponents before being incorporated 
within a newly created population. 

It was alluring to measure the fitness of our 
individuals more exactly and easily by computing the 
difference between evaluated strategy and the optimal 
one, which is well-known in this particular case. 
Because it would be too easy then and rather unfair we 
did not use it for this purpose. On the other hand it was 
interesting to measure it and to monitor the progress of 
the algorithm using this measure and that is why you 
can see the number of wrong decisions on the figures 2 
and 3 where performance of our algorithm is depicted. 

Regarding the genetic operators, the chosen 
representation scheme allowed us to utilize a traditional 
two-point crossover that is applied with probability 
pc=0.75. We have also employed a mutation operator 
that changes the value of the relevant gene at random 
with probability pm=0.005. 

All testing reported within this work was done with 
GAP, a LPA WIN-PROLOG implementation of genetic 
algorithms package that we developed earlier and it is 
fully described in [5]. It facilitates manipulation of 
binary, integer, floating-point, as well as tree structures 
representations. The package offers a whole range of 
selection and reproduction schemes, as well as various 
genetic operators. Moreover, GAP facilitates quick 
implementation of the custom-tailored genetic operators 

and evaluation functions that is very important for 
experimentation. 

MACROMUTATION OPERATOR 
Our early experiments made us aware of an 

important recognition that because of the particular 
encoding we have chosen and the fact that amongst 
mediocre strategies the better ones are those where 
end-game is more developed it might be possible to 
speed up the process of the optimal strategy evolution. 
Here we have recalled the genetic programming study 
of Lang [6] who argued that crossover in a population 
did not perform nearly as well as macromutation 
operator that was whimsically nicknamed headless 
chicken crossover. In headless chicken crossover, only 
one parent is selected from the current population and 
an entirely new individual is created randomly. The 
selected parent is then crossed over with this randomly 
created individual and the offspring is kept only if it is 
better than or equal to the parent in fitness. Otherwise, it 
is discarded. Therefore headless chicken crossover is a 
form of hill climbing.  

Lang claimed that headless chicken crossover was 
much better than crossover but his study was based on 
one small problem (the Boolean 3-multiplexer 
problem). That is why some others (see e.g. [2]) 
disputed his results maintaining that every machine 
learning technique has a bias – a tendency to perform 
better on certain types of problems than on others. 
While Lang picked only one test problem to show some 
features of this particular macromutation operator and to 
overgeneralize them, we did it other way round – we 
employed the headless chicken operator to improve the 
genetic algorithm performance on our problem. Because 
of the appropriate encoding our problem is particularly 
well suited for such an approach. 

We have used it in the stage when the members of 
elite are incorporated within the newly created 
population. Each member of this elite is challenged by 
its offspring created by the headless chicken operator 
and the better of these two is inserted into the new 
population. Taking into account the size of elite it is not 
a time consuming operation. We have not studied the 
effects of this operator when utilized more widely 
within the population yet. We do believe that it might be 
an interesting issue for further research.  

RESULTS ACHIEVED 
The results of our experiments are summarized in 

the tables number 2 and 3. We have run series of 
experiments for N = 11, 21, and 31 stones respectively, 
while the upper limit on the maximal number of stones 
to be taken in one move has been kept constant (k=4). 
We have run the algorithm 100 times for each game 
configuration and the minimum, maximum, and average 
number of generations needed to find an optimal 
strategy is reported there. 
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From these two tables we can clearly see that the 
utilization of the headless chicken operator remarkably 
facilitates the search for the optimal strategy. The 
figures number 2 and 3 illustrate this positive change 
and on the figure number 3 we can see the percentage of 
the headless chicken operator utilization during the 
evolution process itself. It is clear that its influence is 
higher in the earlier stages of the evolution process 
when the population is full of poor and mediocre 
strategies and it is also the main reason for the 
acceleration of the process as a whole.  

Another issue that is clearly visible from these 
figures is the problem that from the very beginning 
there are highly evaluated individuals within each 
population. As we have discussed above it is caused by 
poor quality of their opponents. 

 
Table No. 2. The number of generations needed to find 
optimal strategy (100 test runs – GA without 
macromutation operator)  

 
Number of stones (N) 11 21 31
Min 4 33 76
Max 25 376 592
Average 13,3 91,0 194,1

 
 

Table No. 3. The number of generations needed to find 
optimal strategy (100 test runs - GA empowered by the 
macromutation operator)  

 
Number of stones (N) 11 21 31
Min 2 33 79
Max 21 69 184
Average 12,6 54,1 126,6

 
 

CONCLUSION 
The game of Nim is a simple game that is well 

suited to the research in this field. It has several useful 
properties including the clearly defined and easily 
understood optimal strategy. Our experiments reported 
here show that genetic algorithms represent a suitable 
tool to tackle it.  

We have proposed and tested a new approach 
utilizing a single population only. Moreover we have 
shown that by utilizing the headless chicken 
macromutation operator we can significantly speed up 
the evolutionary process and the optimal solution is 
discovered much earlier. While Jones has been 
criticized [2] for exaggerating his results on one 
particular example, we have employed this operator 
deliberately to the problem where we could see that it is 
likely to perform efficiently. It is clear that the synergy 
of the suitable encoding and the exploitation of the 

fitting macromutation delivers encouraging results.  We 
do believe that our approaches described here can be 
useful when tackling other problems where the suitable 
strategy goal is pursued and we are going to explore 
them further. 

 
 

Figure No. 2. Performance curves (N=31, k = 4; GA 
without utilisation of the macromutation operator) 
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Figure No. 3. Performance curves (N=31, k = 4; GA 
empowered by the macromutation operator) 
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