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Abstract 

A new evolutionary algorithm for evolving generalized recurrent neural networks was developed. It has many 
advanced features, such as forking, exchanging mutation probability distributions and learning, which enable it 
to find optimal neural network topologies and weights for given problems. We also defined a new parameter, 
neural network processing speed, which enables us to use networks with one layer of neurons instead of those 
with many layers.  It was proved that the new evolutionary algorithm always finds an optimal solution in a finite 
number of generations. The proposed algorithm  was tested on different problem domains and the results 
obtained are very promising. 
 

1 Introduction 
 
Evolutionary algorithms are the most popular of non-
gradient search methods and they are often used in a 
simultaneous search for neural network topology and 
weights. Simple evolutionary algorithms have many 
difficulties in finding optimal solutions and the 
population often diverges to local optima. The majority 
of existing algorithms for evolutionary design of neural 
networks rely on different types of mutations and 
different codings of neural networks to chromosomes. 
We developed a new Advanced Evolutionary Algorithm 
(AEA) that differs from other evolutionary algorithms 
with regard to the following built-in features: forking, 
automatic exchanging of mutation probability 
distributions, learning and automatic determination of 
optimal neural network processing speed. The 
advantages of our new evolutionary algorithm AEA 
were examined with three groups of experiments: 
identification of adapted Tomita automata, identification 
of finite automata with temporal exclusive or functions 
(TXOR), and robot (ant) control problems. The results 
obtained were  compared with the results published by 
other authors. 
 
The second chapter outlines the basic structure of an 
artificial neural network with arbitrary connections and 
describes a general  approaches to neural network 
design using evolutionary algorithms. The next chapter 
gives an overview of some advanced features that were 
used in the construction of our new evolutionary 

algorithm. In the fourth chapter we describe the 
convergence features of the AEA and in the last chapter 
we give an overview of our experimental work. We 
conclude with some comments and ideas for our future 
work. 
 
2 Evolving neural networks  
 
2.1. Neural networks 
 
Artificial neural networks are composed of artificial 
neurons that are based on mathematical models of 
natural neurons [Haykin, 1998]. An artificial neuron is a 
nonlinear element with some weighted input 
connections, an output connection and a transfer 
function f. If yi(u) depicts an output value of i-th neuron 
in the neural network at time u, and vij(u) depict the 
neuron’s input values and the weight values are given 
by wij(u) then the next output value of the neuron is: 
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where Ni gives the number of inputs to the i-th neuron. 
The bias of the i-th neuron is determined by the weight 
wiNi, and the input value to this weight is preset to one. 
The transfer function is a sigmoidal function, for 
example: 
 
f(x) = 1 / (1 + e-x)     (2) 
 
Neurons are randomly interconnected. A neural network 
layer is composed of neurons that process information at 

 



the same time. Processing of layers is ordered so that 
the first layer processes the information first and the last 
layer processes the information last.  

Neural networks can also be divided according to the 
direction of signal propagation and neuron 
interconnections. A feedforward neural networks 
processes information from inputs to the outputs only. A 
recurrent neural network can also processes information 
in the opposite direction. This enables a recurrent neural 
network to approximate temporal dependencies between 
input and output samples. 

2.2. Evolutionary approach to neural network 
construction 

The basic outline of an evolutionary algorithm is the 
following [Dobnikar, 1995; Bäck, 2000]. Population 
P(t) consists of S individuals (solutions). Each 
individual is a realization of its chromosome (heredity 
material). In each time step (generation), all individuals 
in the population are evaluated and a new population is 
assembled based on genetic operators. The procedure is 
repeated until a stop condition is met.  

A chromosome is an element of a solution space R. The 
evaluation function tests each individual in the 
population and estimates its performance according to 
given criteria. Solutions are divided to optimal, sub-
optimal and non-optimal. The optimal solutions are 
those that fully satisfy given criteria. Sub-optimal 
solutions partially satisfy most of the given criteria and 
non-optimal solutions do not satisfy most of the criteria. 

3 Advanced Evolutionary Algorithm 
(AEA) features 

Evolutionary algorithms are stochastic search methods 
based on knowledge about natural evolution. There are 
many ongoing researches that try to improve their 
efficiency in terms of evaluations needed to find an 
optimal or sub-optimal solution. In the rest of the 
chapter we shall introduce some of the basic concepts, 
that  increase their efficiency in terms of  speed and 
accuracy. 

3.1 Forking 

The idea of forking was first perused in 1993 by Tsutsui 
and Fujimoto [Tsutsui & Fujimoto, 1993]. Forking 
enables division of the search space to multiple 
subspaces. Independent evolutionary processes then 
investigate the subspaces to find a neural network with 
suitable topology and weights. Each solution subspace 

consists of neural networks with arbitrary weight values 
and equal number of neurons. The solution subspaces 
are investigated systematically from the subspace with 
the smallest neural networks to the subspace with the 
biggest neural networks. Only a subset of solution 
spaces is searched instantaneously. A special 
evolutionary strategy determines when a new solution 
subspace replaces an old one, which is then discarded. 
The search is stopped when a neural network is found in 
one of the solution subspaces that solves the desired 
problem and has the smallest number of neurons. An 
evolutionary algorithm with forking runs two or more 
evolutionary processes. First a coarse grain evolutionary 
process is started over a global solution space R. It has a 
population P(t) of S individuals. When the coarse grain 
evolutionary process finds a local solution space Ri 
around an optimal or a suboptimal solution, this solution 
space is excluded from the global solution space R. At 
the same time all individuals from population P(t) that 
belong to the local solution space Ri are transferred to 
the local population Pi(t). Some new randomly 
generated individuals are added to the populations P(t) 
and Pi(t) so that each of them contains S individuals. 
The coarse grain evolutionary process is continued over 
the reduced global solution space and a new 
independent fine grain evolutionary process is started 
over the local solution space Ri. This local evolutionary 
process runs independently until it finds an optimal or a 
sub-optimal solution in the solution space Ri or the 
coarse grain evolutionary process terminates it. The 
number of concurrent local evolutionary processes is 
limited by the processing capabilities of the computer. 

3.2 Adjusting parameters of mutation 
probability distribution 
 
The evolutionary algorithm AEA has a built-in 
evolutionary strategy for exchanging probability 
distributions of mutation. Different studies show that a 
chosen probability distribution of mutation substantially 
influences the convergence of the evolutionary process 
to the optimal solution [Rudolph, 1997]. The current 
evolutionary algorithms are based on evolutionary 
strategies that change parameters of mutation 
probability distribution. It is proven that convergence 
can be assured to an optimal solution only if parameter 
changes are very small. Therefore, we avoid changing 
the parameters of mutation probability distribution. 
Instead, we use a set of predetermined mutation 
probability distributions. We developed a new 
evolutionary strategy that exchanges probability 
distribution of mutation during the evolutionary process. 
It assures that the best probability distribution is used 
during each stage of a neural network evolution. The 
mutation probability distribution set that we used in our 

 



The cyclic sequential exchange of probability 
distributions starts with one of the probability 
distribution densities from the set Ξ = {ξ1, … , ξ9}. If 
the best individual in the population remains the same 
for a certain predefined number of generations, the 
density ξi is exchanged with the density ξi+1- AEA uses 
automatic exchange of probability distribution densities 
in all the evolutionary processes. 

experiments has the following probability distribution 
densities: 
 
ξ1(x,ω ) = E(x, 0, ω )  
ξ2(x,ω )= Λ(x, 0, ω , 1, -8, 0, 10, E )  
ξ3(x, κ, ω )= N(x, κ, ω , 1) 
ξ4(x,ω )= Λ(x, 0, ω , 1, -8, 0, 10, N) 
ξ5(x, κ,ω )= Λ(x, κ, ω , 1, -8, 0, 10, E)   (3)  
ξ6(x, κ, ω )= N(x, κ, 1, 1)  AEA has a special mutation operator that combines 

properties of the normal mutation [Bäck, 2000] and the 
differential mutation [Corne et al, 1999]. The 
differential mutation does not rely on the random 
generator and a probability distribution. Instead it 
combines genes in chromosomes of three individuals to 
produce a chromosome for a new individual. The 
differential mutation can significantly speedup the 
evolution for some problems, and is applied with 
probability of 0.25. When the normal mutation is used 
the crossover operator is applied to a pair of  parents 
with probability of 0.75 to  get two offspring. The 
normal mutation has a built-in algorithm for exchanging 
mutation probability distributions. The ordered set of 
probability distributions is final. The distributions are 
used in a sequence, so that the first distribution is used 
as long as it provides convergence. Then it is exchanged 
with the next distribution from the set in a cyclic 
manner. 

ξ7(x)= H(x, -8, 0, 10)  
ξ8(x)= δ(x) 
ξ9(x, κ,ω ) = E(x, κ, ω ) 

We used the continuous uniform distribution from an 
interval [-ω  +  κ , ω  +  κ ] of length 2ω  and the 
middle of κ  with the densities: 
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      (5)  
3.3 Learning and evolution where the parameter σ is standard deviation. The 

discrete distribution was defined over the following set 
of values: Hx={B-a , B-a+1 , … , 1 , … , Bb}. It has three 
parameters. The parameter a defines the smallest 
possible exponent, parameter b defines the highest 
possible exponent and parameter B is the basis. The 
distribution density H(x,a,b,B) is defined on the basis of 
the uniform distribution, so that probability of choice of 
any of the values in the set Hx is the same. 

 
Learning can speedup the evolution. An evolutionary 
algorithm is used to find a solution in the neighborhood 
of an optimal solution, then a gradient-based learning 
method is applied to find the optimal solution. Gradient-
based learning algorithms are only used to find exact 
weight values, but there is no gradient-based method 
that could determine a neural network topology. 
Evolutionary algorithm AEA has a built-in learning 
procedure. Real Time Recurrent  Learning (RTRL) 
algorithm [Gabrijel & Dobnikar, 2003] was integrated 
in AEA according to the Lamarckian principle of 
evolution [Bäck et al, 2000]. We chose the Lamarckian 
principle over the Darwinian principle because we used 
AEA to design neural networks for static environments. 
AEA tries to improve the weight values of the best 
neural networks in the population P(t) by applying a 
certain predetermined number of learning steps to each 
of them. If a trained neural network performs better than 
an untrained one, then the trained neural network 
replaces the latter. 

 
We treat deletion of neural network connection as a 
special probability distribution δ(x) that with probability 
1 sets a value of a gene to 0. We also defined a hybrid 
probability distribution with density Λ that is based on a 
discrete distribution with the following set of values:  

{B-a  Z, B-a+1 Z , … , Z , … , Bb Z},    (6) 
 
where Z is a continuous random variable distributed 
with a continuous probability distribution with density 

),,,( σωκψ iBx ⋅ . The probability distribution ψ has 
the middle κ, the length of interval ω Bi and standard 
deviation σ. We used uniform  and Gaussian  
probability distribution densities for ψ . 
 

 



3.4 Processing speed 

Neural network processing speed determines how many 
times a neural network repeatedly processes the same 
input sample before processing the next input sample. 
The present studies neglect the importance of the 
processing speed, but we show that a single layer neural 
network with processing speed 1 cannot emulate certain 
(sequential) logic functions. Multilayer neural networks 
are used to solve such problems in present studies. 
Evolutionary algorithm AEA  is looking for a solution 
within a single layer network and uses forking to 
determine the optimal processing speed. 

4 Convergence properties of  AEA 

The global convergence of evolutionary algorithms was 
theoretically analyzed with Markov chains in many 
studies, but Rudolph [Rudolph, 1997] proved that an 
evolutionary algorithm always finds an optimal solution 
in a finite number of steps if it satisfies the next four 
conditions: 1) An arbitrary individual in a population 
can be selected as a parent for a new population. 2) It 
must be possible to mutate any solution (this also 
applies to individuals in a population) in the solution 
space to any other solution in the solution space by 
applying a finite number of mutations. 3) The 
probability of selecting any individual in the current 
population for  the new population must be higher than 
0 (zero). 4) The best individual in the current population 
is always included in the new population. The first, 
second and third condition can be replaced by a 
modified second condition: 2*) The mutation operator 
must be able to mutate each solution in the solution 
space to any other solution in the solution space in just 
one mutation. The conditions hold for the evolutionary 
algorithms that perform searches in finite solution 
spaces and have discrete time steps [Rudolph, 1997]. 

The global convergence of evolutionary algorithm AEA 
is assured if at least one of the probability distributions 
satisfies the second modified condition. First we have to 
show that the behavior of the evolutionary algorithm 
AEA in a solution subspace Rij is the same as the 
behavior of evolutionary algorithms that operate over 
finite solution spaces with discrete time steps. The 
evolutionary algorithm AEA starts an independent 
evolutionary process EPRij over each simultaneously 
searched solution subspace Rij. The solution subspaces 
are final, because the mutation operator selects values 
from a finite real number interval [-ω, ω]. Each finite 
real number interval is represented as a finite integer 
number interval in a digital computer. Each solution 
subspace Rij is a hypercube [-ω, ω]i+I, where i is the 
number of neurons in the neural networks in the 

solution subspace and I is the number of external inputs 
to the neural networks. Therefore, the length of 
chromosomes in each population Pij(t) is equal to  i(i+I) 
genes and every evolutionary process EPRij that satisfy 
the four conditions can find an optimal solution in its 
solution space Rij in finite number of steps. Each 
individual in a population Pij(t) can join to a new 
population Pij(t + 1) unchanged, since AEA does not 
apply crossover to 25% of parents and the probability 
that the mutation does not change an individual is 
greater than 0. This satisfies the first condition and 
assures that the solution space is finite. 

The second condition is satisfied with the uniform 
probability distribution ξ1, which enables the mutation 
to reach an arbitrary solution in the solution subspace Rij 
from an arbitrary solution in the same solution 
subspace. The exchange of probability distributions 
does not influence the second condition validity, 
because the probability of each individual in population 
Pij(t) being preserved in the new population Pij(t + ∆) is 
greater than 0, regardless of the current mutation 
probability distribution ξi. The rotation of probability 
distributions ξi is cyclic, therefore the probability 
distribution ξ1 is reused in a certain number of 
generations if the convergence halts. The described 
mutation exchange procedure is repeated S/4-times in 
each evolutionary step, where S is the size of population 
Pij. The reason for repeating the procedure S/4-times is 
that we want half of the individuals in the population to 
be parents of a new population, each producing one 
offspring. New and preserved individuals are then 
selected to the new population Pij(t + 1). The selection is 
based on the uniform probability distribution. The 
probability of an arbitrary individual from the 
population Pij(t) being preserved in the population Pij(t 
+ 1) is greater than 0. This satisfies the third condition. 

The new individuals compete with their parents. The 
better performing of the two is then included in the new 
population Pij(t + 1). This satisfies the fourth condition. 

The second part of the proof is based on the operation of 
forking. The neural networks with more neurons have 
more free parameters than the neural networks with less 
neurons. Non-existing connections are treated as 
connections with a weight value of 0. The solution 
space of neural networks with the greater number of 
neurons is larger than the solution space of the neural 
networks with less neurons. Therefore, the evolution of 
the neural network with more neurons lasts longer and 
the evolutionary algorithm AEA will always find a 
neural network with optimal or close to the optimal 
number of neurons in forward search. When a neural 
network with a suboptimal number of neurons is found, 

 



AEA will continue to search backwards and will look 
for the solutions with the lower number of neurons. 
Therefore, an optimal solution would always be found. 
This phenomenon was experimentally examined and 
proved. Figure 1 illustrates it on a problem of automaton 
identification. The results are given in the number of 
evaluations that equals the number of generations 
multiplied by the size of population. 
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Figure 1: Comparison of the number of the necessary 
evaluations to find optimal weight values for the neural 
networks with different numbers of neurons that 
identify Tomita automaton 6. (see details in Chapter 5) 

AEA is more complex compared to the other 
evolutionary algorithms that simultaneously search for 
optimal topology and optimal weight values of neural 
networks. Nevertheless, it is for the simple tasks on 
average approximately as fast as simple evolutionary 
algorithms, and is able to solve more complex tasks. It 
is also much faster in solving complex problems, 
because it uses forking,  exchanges mutation probability 
distributions,  learning and also automatically 
determines the necessary neural network processing 
speed. 

5 Experiments 

The evolutionary algorithm AEA was tested on two 
problem domains: finite automata identification and 
robot (ant) control. The results were compared with the 
results obtained by evolutionary algorithms GNARL 
[Angeline et al, 1994] and GA2DR [Pujol, 1999] and 
the results obtained by a gradient-based algorithm 
GARNN [Gabrijel & Dobnikar, 2003].  

The evolutionary algorithm AEA was tested from two 
points of view. First, we compared the statistically 
evaluated results to the results obtained by other 
algorithms that solved the same problems. All statistical 
evaluations are based on 10 independent evolutionary 
runs. They contain two measurements: the average 

neural network size and the average convergence speed. 
It is important to note that the neural networks obtained 
by AEA had the same size for a given problem in any of 
the evolutionary runs, because AEA was always able to 
find an optimal solution. Second, we measured the 
partial speedups of the advanced features of the AEA.  

The evolutionary algorithm AEA used forking in all of 
the experiments, because it is its key feature that enable 
it to determine the optimal neural network size and the 
optimal processing speed. The variable z indicating the 
number of neurons was set to the initial value of 2 
before each evolutionary search. The number of 
simultaneously searched solution subspaces L was set to 
10. The set of possible processing speeds was limited to 
1 and 2 to shorten the duration of the evolution. The 
population size in all experiments was 100 individuals. 
All the neural networks used in the automata 
identification problems had one input and one output. 
The input values were 0 and 1, but the output values 
were from the real valued interval between 0 and 1. The 
output values were converted to the discrete values of 0 
and 1. The values lower then 0.5 were discretized to 0 
and the rest were converted to 1. 

5.1 Finite automata identification 

The identification experiments were performed on four 
Tomita automata (4’, 5, 6, 7’), and four temporal XOR 
functions (with d = 0,1,2,3), where the desired value at 
time u is the XOR function of the inputs at times u – d  
and u – d – 1. There are seven Tomita automata 
alltogether that are used as acceptors for automata 
languages. Five of them are not strongly connected. 
Therefore, some internal states cannot be reached from 
an arbitrary internal state. The automata 4 and 7 were 
altered by [Gabrijel & Dobnikar, 2003] into 4’ and 7’ to 
allow online identification (Figure 2). We also used 
AEA to identify temporal XOR functions  (d = 0,1,2,3). 
The Ξ set (Eq. 3) of probability distributions was used 
in all of the experiments. The weight values for neural 
networks were chosen from the real valued interval [-
200, 200]. The evaluation function was based on the 
error function: 

Err(t) =| od(t) – o(t) | ,    (7) 

where od(t) was desired output value and o(t) was the 
discretized neural network output. The errors were 
summed over the test sample sequence of input and 
output value pairs. The best performing neural network 
in the population had the lowest total error. The test 
sequence had 125,000 samples. The first 1000 samples 
were used in evolution and the remaining 124,000 
samples were used for testing. An evolved neural 

 



network was considered as a sub-optimal solution if its 
total error on the testing sequence was 0. The additional 
condition for an optimal neural network was the lowest 
possible number of neurons. 
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Figure 4: The comparison of the number of necessary 
evaluations to identify Tomita automata 4’, 5, 6, and 7’. 

The experiments in the last two series were designed to 
measure the speedup of the evolution due to use of 
learning and due to the exchanging of mutation 
probability distributions. While learning was switched 
on, the RTRL learning algorithm was used to train 5% 
of the best performing individuals in the population. 
The average progress of evolution with learning over 
ten evolutionary runs was compared to the average 
progress of evolution without learning over ten 
evolutionary runs. The influence of learning was first 
measured for the identification problems of Tomita 
automata  4’, 5, 6, and 7’. The results are given in 
Figure 5. 

Figure 2: The Tomita automata state transition 
diagrams. The double circled states have the output 
letter 1 and the other states have the output letter 0. The 
altered Tomita automata are marked with ‘. 

Four series of experiments were performed. The first 
series compared the sizes of the resulting neural 
networks obtained by AEA, GNARL and GARNN on 
the problems of Tomita automata 4’, 5, 6, and 7’ and 
logical functions TXOR-0 through TXOR-3 . Figure 3 
shows the comparison of the different neural network 
sizes. The best results were obtained by AEA. 
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Fig
ure 3: Comparison of the neural network sizes. The 
evolutionary algorithm AEA clearly shows the best 

results. 

The next series compared the convergence speed of 
AEA and GNARL. GARNN was not included in the 
comparison because it is a gradient-based method and it 
is much faster than evolutionary algorithms. Figure 4 
compares the evolutionary algorithm AEA to the 
evolutionary algorithm GNARL. The convergence 
speed was measured for Tomita automata identification 
problems 4’, 5, 6, and 7’. 
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Tomita 6
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Figure 5: Average progress of evolution of optimal 
neural networks that solve Tomita automata 4’, 5, 6, and 
7’ identification problems. The dotted curves show 
average evolution with learning and the continuous 
curves  without learning. 
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In all the experiments except for the Tomita automaton 
4’ identification learning helped  evolution. Learning 
speeded up the evolution up to 30%, especially for the 
more difficult problems such as Tomita automaton 6 
identification.  

Next, the influence of learning was measured for the 
identification problems of temporal XOR functions with 
delays from 0 to 3.  Figure 6: Average progress of evolution of optimal 

neural networks that solve TXOR-0 through TXOR-3 
identification problems. The dotted curves show 
average evolution with learning and the continuous 
curves without learning. 
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The results are shown on Figure 6. The last set of 
experiments evaluated the performance of evolutionary 
algorithm AEA with and without exchanging 
probability distributions. A hundred evolutionary runs 
were performed for each of the Tomita automata 4’, 5, 
6, and 7’ and for each of the logical functions from 
TXOR-0 through TXOR-3. The first part of the test was 
designed to see how the evolutionary algorithm AEA 
performs  with fixed probability distributions. We made   
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Figure 7: Average evolution durations for fixed 
probability distributions and for the Ξ set of probability 
distributions for Tomita automata 4’, 5, 6, and 7’ 
identification problems. 

Figure 8: Average evolution durations for fixed 
probability distributions and for the Ξ set of probability 
distributions for TXOR-0 through TXOR-3 
identification problems. 

 
10 evolutionary runs for each probability distribution 
from the Ξ set. In the second part of the experiment, we 
made ten evolutionary runs with exchanging probability 
distributions. The results are shown in Figures 7 and 8. 

 
5.2 Ant problem 
 

 
One of the most popular robot control problems is the 
ant problem [Angeline et al, 1994]. We used the 
evolutionary algorithm AEA with all its advanced 
features turned on to solve this problem. An ant moved 
in a dicretized 2D space (Figure 9), which contained a 
food trace. The size of the ant and the size of a food 
particle is one field. Each field in the 2D space is 
assigned a value of 1 if it contains food and a value 0 if 
it does not contain food. If the ant moves into a field 

The results of the last set of experiments show that 
using the best single probability distribution provides on 
average, slightly faster evolution than the set of 
probability distributions, but for an unknown problem 
the exchanging of the mutation probability is the most 
suitable, because no single probability distribution is the 
best for all problems.  
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with food, it eats the food and resets the value of the 
field to 0. The ant is allowed 200 time steps to eat the 
whole food trace of 89 particles.  It has four control 
actions: move, turn 90 degrees left, turn 90 degrees right 
and stand still. One penalty point is collected for each 
action, except if it moves to a field with food. The 
neural network obtained with AEA is shown on figure 
10. There are four control outputs. The one with the 
highest value is always selected.  
 

 

 
Figure 10: A neural network controller with 4 neurons  
(outputs), evolved by AEA. 
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Figure 9: 2D space with a food trace for the ant problem 
 

The “standard” Ξ set of probability distributions is used 
with AEA. The weight values for neural networks are 
chosen from the real valued interval [-500, 500]. AEA 
evolved an optimal neural network controller with 4 
neurons on average in 5,033,130 evaluations. The 
average progress of ten AEA evolutionary runs is shown 
in the Figure 11. 

Figure 11: Average progress of the evolution over 10 
evolutionary runs 
  
neural networks had at most half as many neurons as the 
compared solutions [Angeline et al, 1994, Pujol, 1999, 
Gabriel & Dobnikar, 2003]. The AEA solutions have 
also better generalization capabilities, because they 
solve equally difficult problems with many less neurons, 
which have memory capabilities. Therefore, smaller 
neural networks must rely more on concepts and 
associations. A simulation of smaller neural networks in 
a digital computer also requires much less processor 
time. Its complexity enables the evolutionary algorithm 
AEA to solve hard problems faster then the compared 
evolutionary algorithms. On the other hand, AEA is not 
significantly slower on simple problems.  

 
The fastest of the ten evolutionary runs lasted only 
2,474,800 evaluations. The controller had four neurons 
and “ate” all the food particles in 198 time steps. On the 
other hand, the best GNARL neural network controller 
had 12 neurons and needed 319 time steps to eat all the 
food [Angeline et al, 1994]. Therefore, GNARL had 
only managed to find a partial solution. We also 
compared   the  AEA  result  to  the  result  obtained   by 
GA2DR [Pujol, 1999]. GA2DR needed 4,373,600 
evaluations to find an 8-neuron neural network 
controller that collected all the food particles in 200 
time steps. 

 
The evolutionary algorithm AEA develops recurrent 
neural networks with no limitations regarding the 
topology. It is suitable for searching neural network 
solutions of various complex problems. The only 
current limitation of the evolutionary algorithm AEA is 
the evolution of a single layer neural network. But this 
limitation is shared with most of the other evolutionary 
algorithms that evolve neural networks. On the other 
hand, single layer neural networks can solve the hardest 

6 Conclusion 
 
The evolutionary algorithm AEA found optimal 
solutions  for  all of  the given problems. The obtained 

 



 

problems, if they are able to operate at suitable 
processing speeds. 
 
The further development of our algorithm will be 
focused on upgrading the method for exchanging the 
mutation probability distributions based on past 
statistical evidences. We are also developing a model of 
a generalized multi-layer neural network and a method 
for optimal distribution of neurons to specific neural 
network layers.  
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