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Abstract

Within the Machine Learning field, the emergence
of ensembles, combinations of learning models, has
been boosting the performance of several algo-
rithms. Under this context, Artificial Neural Net-
works (ANNs) make a fruitful arena, once they
are inherently stochastic. In this work, ensem-
bles of ANNs are approached, being used several
output combination methods and two heuristic en-
semble construction strategies. These were applied
to real world classification and regression tasks.
The results reveal some improvements of ensem-
bles over single ANNs, favoring the combination
of ANNs with distinct complexity (topologies) and
the weighted averaging of the outputs as the com-
bination method. The proposed approach is also
able to perform automatic model selection.
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1 Introduction

With the advances in information technology, there
has been an ever-increasing load of data in organi-
zations, that can be used in order to enhance the
decision making process. Yet, most of this data
presents high complexity, while human experts are
limited and may overlook important and useful in-
formation. Therefore, an increasing attention has
been set over the Machine Learning (ML) field,
which aims at building automatic problem solving
models.

In particular, Artificial Neural Networks (ANNs)

are connectionist models that mimic the central
nervous system, that have been successfully applied
in the design of intelligent systems, over a broad set
of fields (e.g., Data Mining or Engineering). ANNs
are appealing due to their capability to model com-
plex and multi-dimensional data, even when noise
is present [1]. In fact, when compared to other
ML techniques, ANNs are known to behave well
in terms of predictive knowledge [9], and there has
also some been research in terms of explanatory
knowledge (e.g., by extracting rules from trained
ANN ) [4].

The interest in A NNs for supervised learning was
stimulated by the advent of the Backpropagation
algorithm and since then several fast variants have
been proposed (e.g., RPROP) [11]. These training
algorithms minimize an error function by tuning
the modifiable parameters (or connection weights)
of a fixed architecture (or topology), which needs to
be set a priori. On the other hand, the design of
ANNGs is a complex tagk; i.e., a small network will
provide limited learning capabilities, while a large
one will induce generalization loss (i.e., overfitting).

One emergent research area involves the use of
ensembles in supervised learning, where a set of
ML models are combined in some way to produce
an answer [3]. This interest arose due to the dis-
covery that ensembles are often more accurate than
individual models. Ensembles work if the errors
made by the models are uncorrelated and this con-
dition is easily met, specially when the algorithm
is stochastic in nature.

Following this trend, the present work aims at
adopting several ensemble combinations of ANNs
in classification and regression tasks, in order to



gain improved performances. Furthermore, a novel
heuristic method for ensemble construction will be
proposed, based in the use of heterogeneous topolo-
gies (i.e., the use of ANNs with different learning
complexities), which is expected to alleviate the
burden of ANN design.

The paper is organized as follows: first, a descrip-
tion of the ANNs and ensembles is given; next, a
set of experiments is conducted, being the results
analyzed and discussed; finally, closing conclusions
are drawn.

2 Artificial Neural Networks

In MultiLayer Perceptrons (MLPs), one of the most
popular ANN architectures, neurons are grouped
into layers and only forward connections exist [1].
The state of a neuron (s;) is given by:

s = f(wio+ Y wijs;)

jel

(1)

where I represents the set of nodes reaching node
i, f the activation function (possibly of nonlinear
nature), w; ; the weight of the connection between
nodes j and ¢ (when j = 0, it is called bias), and
S§1 = T1,-..,8, = Tp, being xi,...,T, the input
vector values for a network with n inputs.

In this study, output representation is ap-
proached by a single binary output, when two
classes are present, being used one boolean value
per each possible class, for the other classification
tasks. In regression problems, one real-valued out-
put encodes the dependent target variable.

For the classifications problems, the foretold
class (F;) for the i example, is given by the nearest
class value to the node’s output, if one single node
is used, otherwise the node with the highest output

value is considered:
F =
Cj : Sz',]' = mazzz({Sz-,l, ey Sz,M}) s else
(2)
where {C4,Cy,...,Cp} denotes the set of classes,
S;,; the j output node value for the ¢ input example,
and round(z) gives nearest integer to the z value.

Cround(Si,1)+1 ) Zf(M = 2)

It is also possible to compute the probability

(P;,c) associated to a given class c:

I—Si’l ; if(czCll\M=2)
P . = Si71 5 Zf(C = 02 AM = 2)
v Si:e=Ch else
Zj:l Sis ’

3)
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Figure 1: A fully connected MLP with 2 inputs, 2
hidden nodes , 1 output, bias and shortcut connec-
tions.

The MLPs used in this work make use of bi-
ases, sigmoid activation functions and fully con-
nected topologies, with one hidden layer, contain-
ing a variable number of nodes (H). Different ac-
tivation functions were adopted for the regression
problems, since outputs may range out of the co-
domain ([0, 1]). In this case, the logistic activation
function was applied on hidden nodes, while the
output ones used shortcut connections and linear
functions, to scale the range of the outputs (Figure
1). This solution avoids the need of filtering pro-
cedures, which may give rise to loose information
(e.g., rescaling).

The initial weights will be randomly set within
the range [—1,1]. Then, the RPROP algorithm [11]
is selected for training, due to its faster convergence
and stability, being stopped after a maximum of
500 epochs or when the error slope is approaching
zero (less than 0.01), using the criteria defined by
Prechelt [10].

For each MLP learning model, an accuracy esti-
mate was reached using K-fold cross-validation [5],
where each data set is randomly subdivided into K
disjoint subsets of equal cardinalities. Each subset
is, in turn, not used for training, but only for test-
ing being the overall estimate the average of the K
values. The K-fold cross validation process is re-
peated N times and averaged, using different parti-



tions of the initial data set. In this case, the values
of K =5 and N = 10 were used. For each trial,
20% of the available data will be used in the test
set. The remaining data will be used as training
(50%, to set up the MLP’s weights) and validation
(30%, to measure the MLP’s generalization capa-
bilities).

Two distinct accuracy measures were adopted:
the Percentage of Correctly Classified Ezamples
(PCCE) (also known as predictive accuracy), used
in classification tasks; and the Normalized Root
Mean Squared Error (NRMSE), applied in the re-
gression ones. These metrics are given by the equa-
tions:

N . =T
PCCE = Mmo (%)

RMSE = || 2 (L= Sia)? (4)

NRMSE = RMSE

where N denotes the number of examples and T;
the target value for the i example.

3 Ensembles

When approaching ensembles, two main issues need
to be contemplated: the method used to construct
the ensemble and the how to combine its outputs.

Within ensemble construction, there are meth-
ods based in manipulating the training set (e.g.,
bagging, cross wvalidation or boosting), while oth-
ers work by Injecting Randomness (IR) [3]. This
last approach is the most common with ANNs
and will be followed in this work, consisting of
training ANNs with distinct sets of random initial
weights. Since ANNs employ local search training
algorithms (e.g., Backpropagation), several uncor-
related local minima may be obtained, thus making
advisable the use of IR ensembles.

However, IR still requires a correct design of the
ANN topology. To solve this handicap, another
construction method will be proposed, which in-
volves the use of Heterogeneous Topologies (HT);
i.e, the ensemble population is made up of differ-
ent models, ranging from the simplest linear ANN,
with no hidden nodes (H = 0), to more complex
ones (H = L — 1, where L denotes denotes the size
of the ensemble ANNS).

There are several ways to combine multiple
ANNs. In this work, four possibilities will be con-
sidered (only the last two ones can be used in re-
gression tasks) [6][7]:

Voting. The output is given by the majority out-
put of the ANNs:

Vie =4y 1, if(c = Fig) 5)
E; = Cj:Vij = mazpeqr,.. .y (Vi)
where V; . denotes the number of votes for class
c and input ¢, {4y, ..., AL} the set of ANNs in
the ensemble, F;; the foretold class given by
Ay, for example i, and E; the final ensemble
output class for example 3.

Winner-takes-all. The output is decided by the
ANN whose output class has the highest prob-
ability:

Ei=c:Pickr =mazpeq,.... 0} (PiF g k)
(6)
where P; . denotes the probability of class ¢
for example 4, given by Ay.

Average. In this method, the ANN outputs are di-
rectly manipulated, being computed as a sim-
ple average over all ANNs in the ensemble, as
given by:

Eij = (et Sige) /T (7)

where S; jr denotes the j output node value
for the i example, given by Ay, E; ; is the fi-
nal ensemble output for the ¢ example and j
output node. For classification tasks, the in-
terpretation of the outputs is made over the
averaged values, being FE; given by replacing
S;,; with E; ; in equation 2.

Weighted average. Similar to the previous
method, although each model is weighted
(W) in proportion to its ranking (computed
by the error in the validation set):

_ L—Rip+1
O GRL ®
Eij = (k=1 WrSijn)/L

where Ry, denotes the ranking of Ay.



4 Experiments

4.1 Data Sets

The fifteen data sets used in the experiments were
selected from the UCI ML repository [2] and its
main features are listed in Table 1, namely the
number of numeric (Num), binary (Bin) and nom-
inal (Nom) input attributes, as well as the number
of examples and classes, being the regression tasks
identified by the symbol R in the last field. The at-
tributes labeled as nominal are discrete with three
or more distinct values.

4.2 Preliminary Experiments

All experiments were conducted using a MLP soft-
ware package developed in the Jave programming
language and were run on a Pentium IV 2.4 MHz
processor, under the Linuz operating system.

For the initial experiments, a single MLP was
tested, with the number of hidden nodes ranging
from 0 (simple perceptron) to a maximum of 20.
Tables 2 and 3 show the MLPs with the best gen-
eralization capabilities (measured by the valida-
tion error, which is computed during the training
phase). Then, the final accuracy error is calculated
over the test set (column Error).

In terms of the MLP complexity, it is interest-
ing to notice two distinct types of learning tasks:
the ones whose best predictive model is linear (e.g.,
Credit, Auto-horse) and those which require high
nonlinearity (e.g., Balance, Housing).

Table 2: Single ANN Classification Results.

Problem  Hidden Nodes Error
(PCCE)
Balance 20 94.8
Bupa 1 68.4
Car 16 974
Credit 0 84.9
Glass 0 63.4
Tonosphere 19 88.9
Pima, 0 771
Sonar 11 79.9
Yeast 3 58.2
Mean 79.2

Table 3: Single ANN Regression Results.

Problem Hidden Nodes FError
(NMSE)
Auto 11 0.070
Autos-horse 0 0.048
Cholesterol 1 0.096
Cpu 6 0.064
Housing 17 0.083
Servo 16 0.119
Mean 0.080

4.3 Injecting Randomness

In order to evaluate the prediction accuracy ob-
tained by considering ensembles of MLPs, a set of
experiments was conducted. For each task, the best
topology obtained in the previous experiments was
adopted, using an ensemble of L. MLPs, initialized
with different sets of random weights. The value
of L was set to 21, an odd number (prevents ties
in Voting) chosen to allow comparisons with other
approaches. All parameters related to the MLP’s
training are kept from the previous experiments.

The results are shown in Tables 4 and 5, in terms
of the accuracy measures for all data sets and out-
put combining methods. The last row averages the
results of the two types of problems.

First, the classification results will be analyzed.
Regarding the Voting method, the results are sim-
ilar to those obtained with a single MLP. This is
probably the result of the use of homogeneous mod-
els. The Winner-takes-all shows some improve-
ment, which makes clear the advantage of using
probabilistic information. However, the best re-
sults are obtained by the averaging methods, both
presenting similar performances. These methods
give an extra importance to higher output values,
thus implicitly manipulating the classes’ probabili-
ties.

In the regression tasks, only averaging methods
are applicable. As before, both behave similarly,
being the improvement over single MLPs quite vis-
ible.

4.4 Heterogeneous Topologies

A different strategy was followed in what concerns
the construction of the ensemble, considering Het-
erogeneous Topologies (HT). In this case, the num-



Table 1: A summary of the data sets used in the experiments.

Problem Input Attributes Examples Classes
Num Bin Nom Total (M)
Auto 5 0 2 7 398 R
Autos-horse (auto-mpg) 17 3 5 25 205 R
Balance scale 4 0 0 4 625 3
Bupa (liver-disorders) 6 0 0 6 345 2
Car 0 0 6 6 1728 4
Cholesterol (heart-disease) 6 3 4 13 303 R
Credit (crx) 6 4 5 15 690 2
Cpu (machine) 6 0 0 6 209 R
Glass 9 0 0 9 214 6
Housing 12 1 0 13 506 R
Ionosphere 34 0 0 34 351 2
Pima 8 0 0 8 768 2
Servo 2 0 2 4 167 R
Sonar 60 0 0 60 104 2
Yeast 7 1 0 8 1484 10

Table 4: IR Ensemble Classification Results (PCCE).

Problem  Voting Winner-takes-all Average Weighted Average
Balance 94.8 95.3 96.3 96.5
Bupa 68.4 70.5 70.6 70.2
Car 974 98.2 98.7 98.8
Credit 84.7 84.8 85.1 84.3
Glass 62.2 62.6 62.9 64.0
Tonosphere  89.8 90.8 92.3 92.3
Pima 76.8 77.0 77.0 76.7
Sonar 78.1 81.3 82.9 82.6
Yeast 59.0 59.2 59.7 59.5
Mean 79.0 80.0 80.6 80.5

Table 5: IR Ensemble

Regression Results

(NRMSE).
Problem Average Weighted Average
Auto 0.062 0.060
Autos-horse  0.046 0.049
Cholesterol 0.095 0.096
Cpu 0.049 0.051
Housing 0.073 0.073
Servo 0.095 0.090
Mean 0.070 0.070

ber of hidden nodes ranges from H = 0 to H = 20,
thus L = 21. The results are shown in Tables 6 and
7.

When comparing these results with the IR en-
sembles, the accuracy is quite similar. The ex-
ception is the voting scheme, where there is a de-
crease in the performance. This is specially true in
the problems where nonlinear models are necessary
(e.g., balance), being the votes coming from models
with insufficient complexity a source of noise.

The Weighted Average method presents, in this
case, some advantages over regular averaging,
which is natural since heterogeneous models, with
different complexities, are contemplated. The error
in the validation set provides a good basis for model



differentiation. Indeed, this alternative manages to
obtain the best overall results.

It must be noticed that the HT approach does
not require a previous model selection stage (which
occurs with the IR method), thus requiring less
computational effort.

An analysis of the individual accuracies, in each
data set, reveals that the problems, whose best
models are simpler, are the ones in which ensembles
are unable to improve significantly (e.g., Credit,
Cholesterol). In some cases (e.g., Pima), there is
even no ensemble strategy capable of outperform-
ing a single ANN.

Table 7: HT Ensemble Regression Results
(NRMSE).
Problem Average Weighted Average
Auto 0.060 0.061
Autos-horse  0.047 0.047
Cholesterol 0.097 0.098
Cpu 0.055 0.053
Housing 0.075 0.071
Servo 0.097 0.095
Mean 0.072 0.071

5 Conclusions

The surge of connectionist techniques, such as
MLPs, has created new exciting possibilities for the
field of Machine Learning. On the other hand, con-
sidering ensembles of learning models to improve
its accuracy has been a focus of attention by the
research community.

In this work, an evaluation of ensembles of ML Ps,
in supervised learning tasks (e.g., classification and
regression) is followed, being tested several com-
bination schemes, under quite simple construction
heuristics.

The results obtained show that even simple en-
sembles are able to gain improved performances
over the use of single ANNs. In terms of combina-
tion methods, the simple averaging of the ANN’s
outputs leads to the best results, being Voting, a
widely used approach, quite inadequate.

The proposed HT construction method, con-
sidering a set of models of distinct complex-
ity, together with a Weighted Average combina-

tion method, based on the accuracy measure over
a validation set, obtains the best overall per-
formance, Furthermore, considerable gains were
achieved when compared to the use of a single ANN
(specially for the tasks which require high nonlin-
ear models), even when the latter is optimized by
a model selection stage. The HT strategy does not
require this previous step, thus implying an equiv-
alent computational effort.

In future work, there are several promising di-
rections. First, distinct methods for ensemble con-
struction should be considered (e.g., bagging or
boosting). In what concerns combinations meth-
ods, more elaborate strategies should be attempted
(e.g., Weighted Voting, by disregarding A NNs with
low outputs).

Another interesting field is based in the use of
Evolutionary Algorithms [8]. These can be used
to evolve populations of MLPs, which constitute
the ensemble. By considering elaborated fitness
functions and combination methods, specialization
could be attained [7].
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