
A LAMARCKIAN MODEL COMBINING LEVENBERG-MARQUARDT
ALGORITHM AND A GENETIC ALGORITHM

Paulo Pires – paulo.pires@upt.pt
Universidade Portucalense – Departamento de Gestão

Rua Dr. António Bernardino de Almeida, 541
4200-072 Porto – Portugal

Pedro Castro – pmc@estg.ipvc.pt
Escola Superior de Tecnologia e Gestão do Instituto

Politécnico de Viana do Castelo – Dep. de Informática
Av. do Atlântico – 4900-348 Viana do Castelo – Portugal

ABSTRACT

We review the integration between the genetic and
evolutionary techniques with artificial neural networks. A
Lamarckian model is proposed based on genetic
algorithms and artificial neural networks. The genetic
algorithm evolves the population while the artificial neural
network performs the learning process. The direct
encoding scheme was used. This model was submitted to
several data sets and provided good results, exhibiting
superior robustness when compared with the Levenberg-
Marquardt and the Scaled Conjugate Gradient algorithms.
It also achieved the best solutions in the regression
problems.

1. Introduction

The genetic and evolutionary computation comprises
a group of techniques of which is part the genetic
algorithms, the evolutionary strategies, the genetic
programming and the evolutionary programming (Cortez
et. al, 2002). As the author states, there isn’t a clear
division and exists an overlap of those techniques. Of the
above referred techniques the genetic algorithms (GA)
have been proving that they are robust and efficient
methods in the resolution of optimization problems. The
GA, such as artificial neural networks (ANN), had been
also inspired by biological phenomena, being in this case
an analogy to the mechanisms of the evolution and the
natural selection. The application of GA as an
optimization technique of an ANN has been very
promising. The literature review reveals that the
optimization of an ANN with GA produces good results
comparatively with other algorithms, such as the
Backpropagation (BP) algorithm and their variants. In this
paper we review the possible interactions between GA and
ANN, and further investigate the Lamarckian approach
using the Levenberg-Marquardt algorithm with a variation
of the GA that uses a best individuals’ strategy.

According to Gruau (1994) the interaction between
GA and ANN can be reduced to the resolution of the right
codification of the ANN’s architecture in chromosomes
able to be manipulated by the GA. The author groups the
alternatives in three schemes: direct encoding; parametric
encoding; indirect encoding. In direct encoding the
weights matrices are encoded directly in the chromosomes.

In the parametric encoding a set of parameters is encoded
in the chromosome, such as the number of layers, the
number of neurons of each layer and the type of
connections among each layer. In the indirect encoding the
chromosome holds a grammar with a certain definition,
which allows the generation of families of ANN.

This classification differs considerably from (Whitley,
1995), where the GA have been applied to ANN following
three strategies. The first strategy is equivalent to direct
encoding, but allows the learning rate inclusion in the
chromosome. The second strategy includes the parametric
and grammatical encode and it is designated by
evolutionary strategy of ANN’s architectures. The third
strategy applies the GA in the selection of the learning
vectors and in the interpretation of the output variables.

For Grönroos (1998) and Koehn (1994) GA is applied
following direct or indirect encoding strategies. But Yao
(1995) divides the strategies in weights adjustment,
architecture evolution and evolution of learning rules. The
first two strategies are associated respectively to direct and
indirect encoding.

Another classification made by Curran and O'Riordan
(2002) identifies five possible strategies of integrating GA
and ANN: weights adjustment of the connections
maintaining a fixed architecture; architecture evolution
and weights adjustment with a learning algorithm;
identification of transfer functions; evolution of learning
rules; combination of several strategies. The author also
makes the explicit division between direct and indirect
encoding.

From the literature review one can group the
codification in direct, indirect or in a combination of the
two. In direct encoding a GA chromosome is composed by
genes, which represents the ANN weights. Other
parameters, such as the learning rate or momentum
coefficient may also be included. With the direct encoding
scheme the algorithm that minimizes the error function is
replaced by the GA. The GA maintains a population of
chromosomes, where each chromosome contains all the
ANN parameters. Usually the ANN architecture remains
fixed during the learning phase and the chromosome can
use binary or real coding of the genotype. Therefore it is
feasible to use the conventional genetic operators. With

the indirect encoding scheme the ANN architecture is
encoded in the chromosome. In fact it is not the
architecture itself that is encoded, but the production rules
that produce an outcome that originate it. The consecutive
application of the genetic operators evolves the ANN’s
architecture. Generally, in indirect encoding the weights
are not encoded in the chromosome. If the problem
requires variables that have real domains, then it is
necessary to apply a learning algorithm, which can be one
of the fastest variants of the BP algorithm. When we
combine the direct and indirect encoding schemes the
ANN's architecture doesn't remain fixed during the
learning phase. The weights are also adjusted using GA,
genetic programming or other techniques. The
chromosome has to include the information about the
architecture and the weights.

According to Whitley (1995) there are two main
factors for the avoidance of direct encoding: first, the BP
algorithm variants are very efficient in supervised learning
of ANN; second, the learning process of an ANN
represents a problem that is not well suited for the
standard GA, since it is a multimodal optimization
problem, usually named Permutations Problem or
Competing Conventions Problem.

In spite of being controversial, the direct encoding
scheme continues to be applied with success. Example of
that is the study of Seiffert (2001) and Falco et al. (1997),
where the authors state that GA are more effective in the
search of the global optimum than the BP algorithm. In
fact GA are global search methods, while the BP algorithm
and its variants are local search methods.

Another perspective in GA and ANN integration is
described by Sasaki and Tokoro (1997, 1999) and Rocha
et al. (2003). In this approach, illustrated in figure 1, the
concept of learning, which occurs in each individual –
ANN – and the concept of evolution, which takes place in
consecutive generations – GA – are combined, resulting in
what is called the Lamarckian evolution. In Lamarckian
evolution a GA and a learning algorithm are iteratively
applied. The chromosomes resulting from the GA
population evolution are decoded and submitted to a
learning algorithm and then the improved results are
encoded back into GA individuals. Lamarckian evolution
remains as a main research subject in the field of neural
networks.

According to Ku and Mak (1997, 1998) and Ku et al.
(2000) there are two alternatives to embedding learning in
the evolutionary search: Baldwin and Lamarckian.
Although the Baldwin effect is more biological plausible,
they achieved better and faster results with Lamarckian
evolution in weights optimization of recurrent ANN. The
Lamarckian approach was compared with the gradient
descent and Baldwinian learning achieving a better
convergence. Lamarckian evolution can also be
implemented in Hopfield networks (Imada and Araki

1996). The method iteratively applies the Hebbian
learning and the genetic operators to optimize the weights.
The results prove that Lamarckian evolution can improve
pattern storage capacity of the network.

Mating Pool

GA
Mutation

Crossover

Selection

Fitness
Fitness

Fitness
Fitness

Backpropagation

Training Patterns Test Patterns

Training TestingNetwork Generator

Fitness
Evaluation
and Scaling

Figure 1 – Integration of GA and ANN (adapted from
(Mandischer, 1993)).

In (Hakkarainen et al. 1996) and (Kyngäs and
Hakkarainen 1996) is explained a Lamarckian approach
that evolves a set of randomly initialized ANN. Those
ANN are trained with a BP algorithm during a number of
epochs and thereafter the worst ANN are removed. The
genetic operators are then applied and training proceeds
with the new ANN. This method was used in the sunspot
prediction problem and though it got good results, the
authors state that the method is computationally intensive.

In (Cortez et al. 2001) is described an evolutionary
approach that evolves a set of neural networks. Each
individual in the population encodes an ANN topology and
training is done with the RPROP algorithm. The genetic
operators recombine the individuals producing new
topologies, allowing the system to find the best topology
for a given problem. In the evaluation forecasting
problems, the model gave good results.

Rocha et al. (2003) have evaluated the performance of
Lamarckian and Baldwinian models and have concluded
that Lamarckian is superior in static environments while
the Baldwinian is superior in dynamic environments.
Those finds do confirm the ones obtained by Sasaki and
Tokoro (1997) that Lamarckian is efficient in static
environments, performing poorly and being unstable in
dynamic environments.

More studies with Lamarckian models can be found in
(Cortez et al., 2002, Rocha et al., 2000) where Lamarckian
achieved good results in machine learning benchmarks.

2. Conceptual model

Based on previous good results shown by Lamarckian
evolution we propose a model using a faster version of the
BP algorithm, the Levenberg-Maquardt algorithm and a
version of GA that uses a best individuals’ strategy.

The LM algorithm (Levenberg-Marquardt), described
in (Hagan and Menhaj, 1994) is a variant of Newton's
method. Although Newton's method requires the
calculation of the Hessian matrix, the LM algorithm is
based in the Gauss-Newton method, avoiding that
calculation. The LM algorithm approximates the Hessian
matrix through the Jacobian matrix. The LM algorithm can
only be applied with the mean square error function
(Bishop, 1995). The values of the connections are adjusted
following the equation:

          ()    
1

1
t tW k W k J k J k k I J k e k

-
+ = - +

Where  W k is the weights matrix in epoch k ,  J k

is the Jacobian matrix in epoch k and  e k is the error in

epoch k .

In the proposed model, the GA uses a strategy that
guarantees best individuals found so far over generations
are never lost. This is achieved by selecting the best
solutions from parents and offspring populations to create
a new population for the next generation. This scheme
guarantees best solutions are never lost and a faster
convergence of the GA. Also, repeated individuals are not
allowed during the creation of offspring to maintain
population diversity.

The conceptual model of the GA and ANN integration
is formalized in figure 2. In the presented model, the GA
starts with a population of 50 individuals, each
representing a feedforward architecture. The population
evolves during 100 generations. The GA use stochastic
universal sampling selection to select the individuals that
participate in the creation of new solutions (Baker, 1987),
uniform crossover and mutation is implemented by
flipping each chromosome bit with a probability equals to
the inverse of the chromosome length. The direct encoding
scheme was used, meaning that a chromosome holds a
sequence of genes, each representing a weight value. Each
connection was encoded using 29 bits. The Gray code was
employed.

After the evolution phase, the chromosomes are
decoded into feedforward architectures with the respective
weights. Then the model enters in a cycle. The learning
phase is accomplished with the LM algorithm and is
divided in two stages. The first stage comprises the
training of all the 50 networks during 2 epochs and
thereafter the best network is chosen. The best network is
then trained until it reaches convergence or it reaches a
predefined number of epochs. If the network does not

converge, then all the trained networks and their weights
are encoded back and the GA evolves the population once
more. In this phase, the GA evolves the population during
50 generations. This cycle is repeated until a solution is
obtained or the number of cycles is exhausted.

LM Algorithm

2 epochs

Decode

N - Networks N - Networks 1 - Network

Evalute

1 - Network

LM Algorithm

GA

Population Encoding

Figure 2 – Lamarckian evolution proposed model.

3. Benchmarking setup

To evaluate the proposed model we selected four well
known data sets. These data sets can further be divided in
two classification and two regression problems. All the
algorithms were tested in the MathWorks Matlab version
6.5 release 13 with Neural Network Toolbox 4.0.1 and the
Genetic Algorithm toolbox was implemented in Delphi
5.0.

In all the experiments the data was pre-processed,
with the inputs and targets normalized so that they have
zero mean and unit standard deviation. Each data set was
divided in two parts: the training set (75% of training
pairs) and the test set (25% of training pairs). All the
algorithms performed 30 runs and the number of epochs
was restricted to a maximum of 1000. The parameters of
each algorithm were properly tuned. The weights
initialization in the BP algorithms and its variants followed
the Nguyen-Widrow initialization algorithm (Nguyen and
Widrow, 1989).

The choice for the number of neurons is a
cumbersome task. There are some heuristics that provide
an approximate value, but in fact they don’t work in many
problems. It should be noted that an ANN with fewer
neurons than necessary will lead to underfitting and an
ANN with more neurons than necessary will lead to
overfitting. To avoid overfitting, one can use statistics
methods and heuristics such as early stopping,
regularization, weight decay, cross validation and
Bayesian regularization and model selection (Precheltz,
1997, Bishop, 1995, Sarle, 1995, Sigurdsson et al., 2000,
Larsen and Hansen, 1995, Goutte and Larsen, 1998,

Larsen et al., 1998). In this study, we use cross-validation,
regularization and model selection.

To evaluate the efficiency of the algorithms in
regression problems the following measure was
established: RTest – R regression value of the test data set.
The R-values are obtained from a linear regression
between the network outputs and the targets,
corresponding to the correlation coefficient between two
vectors. The RTest gives the ANN ability to predict values
when facing new data. From the RTest different values, the
most interesting is the RTest max, which is the maximum R
value obtained from a linear regression between the
network outputs and the corresponding targets in the 30
runs. A perfect fit would have a value of 100%.

 In the classification problems the following measure
was established: Pct – percentage of test pairs classified
correctly. The classification matrix was also useful to
evaluate the performance of the algorithms. We also used
the RTest to assess the classification performance of the
algorithms.

The test data set is never used during training. This
part of the data set is only used when the learning process
has finished.

In order to assess the Lamarckian Approach– LA –
performance the same problems were applied with Scaled
Conjugate Gradient backpropagation – SCG, (Möller,
1990) and the LM backpropagation.

The first data set is the two spiral problem –
classification problem – with 768 training pairs and was
applied in a 2-15-10-5-1 architecture (figure 3). The
second data set, provided by Marko Bohanec, is known as
the Car Evaluation Database and it is also a classification
problem. Is has 1728 training pairs and was applied in a
network with a 6-15-1 architecture. The third and fourth
data sets were provided by Frank Smieja from the
Adaptive Systems Research Group of the GMD and
according to the author these approximation tasks are very
difficult to solve for neural networks with no-local
activation functions. The third data set is a regression
problem with 400 training pairs which was tested in a 2-
15-1 architecture. The fourth data set is also a regression
problem and was applied in a 2-15-1 architecture. This
data set has also 400 training pairs.

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

Figure 3 – The two spiral representation.

5. Benchmarking results

The following tables contain the results of the
evaluations performed in the several problems.

Table 1 – Evaluating the test set in the two spiral problems
Pct RTest

Algorithm aver max min aver max min
SCG 98.4% 100% 97.3% 97.4% 97.8% 97.1%

LM 98.8% 100% 96.8% 97.9% 98.6% 97.1%

LA 99.8% 100% 99.7% 98.0% 98.9% 97.2%

Table 2 – Evaluating the test set in the car evaluation
database

Pct RTest

Algorithm aver max min aver max min
SCG 92.0% 95.4% 88.0% 93.0% 94.0% 91.2%

LM 92.1% 96.5% 83.8% 93.0% 95.5% 88.2%

LA 92.1% 93.5% 90.3% 93.0% 93.9% 91.4%

The best classification matrix achieved by the
algorithms is presented in table 3.

Table 3 – Best classification matrix.
LA LM SCG

292 12 0 0 294 6 0 0 298 7 0 0
8 80 4 0 6 81 3 0 2 76 3 0
0 7 13 5 0 12 14 3 0 16 12 4
0 0 1 10 0 0 1 12 0 0 3 11

Table 4 – Evaluating the test set in the Smieja functions
RTest – Smieja 1 RTest – Smieja 2

Algorithm aver max min aver max min
SCG 93.9% 94.0% 93.7% 94.9% 96.0% 93.5%

LM 94.4% 96.8% 90.0% 94.7% 96.9% 89.9%

LA 96.6% 97.7% 94.9% 97.7% 98.8% 97.0%

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

A

R = 0.977

Data Points
Best Linear Fit
A = T

Figure 4 – R-test for Smieja 1 best LA solution.

In all the tests performed Lamarckian evolution was
always much slower than the BP variants. This confirms
the findings in literature review. The LM was always the
fastest algorithm followed by the SCG. Nevertheless, the
LM requires more computation resources, specially in
terms of memory capacity.

In the two spiral problem all the algorithms behave
similarly. They were able to classify correctly the input
vectors of the test set at least once. The calculated average
was almost 100%, proving that all the algorithms
performed well. In spite of that Lamarckian evolution
results were slightly better, with a higher average and a
narrower interval, exhibiting a more robust behaviour.

Before analysing the results in the second data set we
have to remark that this classification data set is not
balanced. This means that there are more training pairs
belonging to some classes than others. As we know this
imposes some problems to the algorithms, since they will
try to better fit the classes with more training pairs. In the
car evaluation database the average classification was
almost identical and the R average was equal to all the
algorithms. In this test we have to stand out that both the
LM and SCG reached higher results. They were able to
classify more training pairs correctly than the LA. But the
LA achieved a narrower interval, followed by the SCG and
then by the LM. In fact, the LM gave the best and the
worst results. In this data set it is also important to analyse
the classification matrix. It is clear that all the algorithms
favoured the classes with more training pairs and gave
poorer results in the classes with lesser training pairs. It
deserves also a remark that the run with the best Pct isn’t
always the run which gives the best classification matrix. It
may classify correctly more training pairs but it can

introduce bias in some classes or as in this data set the
classes with more training pairs are classified more
accurately.

Results from the regression problems are presented in
table 4. As an example, the linear regression between the
network outputs and the targets and the correlation
coefficient are presented in figure 4 for the best LA
solution of Smieja 1 function.

In both regression problems, the LA was superior to
LM and SCG. It achieved a higher average and a
maximum RTest and simultaneously a narrower interval.

An aggregate analysis of the four data sets results
allows us to conclude the LA is a viable alternative to the
backpropagation variants, namely the LM and SCG,
although in the second data set it lacked the ability to
obtain the maximum correct classification and the best
classification matrix as was the LM. Nevertheless, the LA
was more robust, producing a narrower interval. In the
regression problems LA was always superior, providing a
greater average compared with the others and, at least
once, a run achieved a better maximum R. The LA gave
once more a narrower interval.

Therefore, the results from the four data sets
consistently demonstrated that LA is more robust than the
LM and SCG. In practice, this means one can apply the
LA once with a greater probability to obtain a good
solution. Unfortunately, we cannot extrapolate the same
findings to the achievement of the best solution, because it
fails to do so in the second data set.

This finding raises an interesting question. LA is
considerably slower than LM and SCG, but it probably
requires a single run. On the contrary, it is well known
from the literature that BP algorithms and its variants are
dependable on the initial weight values. Therefore it would
be interesting to evaluate only one execution of the slower
LA vs. several executions of faster variations of BP
algorithm.

4. Conclusions and future work

We proposed a Lamarckian model combining a GA
based on a best individuals’ strategy for the evolution
process and a two phase Levenberg-Marquardt algorithm
that performs the learning process. The GA addresses the
global search and keeps the best individuals, but still
maintains diversity. The proposed model is based on a
direct encoding scheme.

This Lamarckian model was compared with the
Levenberg-Marquardt backpropagation algorithm and with
the Scaled Conjugate Gradient backpropagation algorithm.
The Lamarckian model proved to be the most robust in all
the tests and provided the best solutions in the regression
problems.

As a result of this study some further research should
be made. First, the LA effectiveness in one run should be
measured in CPU time against the effectiveness of several
runs of BP variants. This research will give new insights
regarding the robustness of the algorithms and the required
corresponding computer resources. Second, the
Lamarckian model should be evaluated and extended to
other data sets to verify the results obtained. Finally, the
proposed Lamarckian model should be tested with other
BP variants, such as QuickProp or even the Cascade
Correlation, and with other variants of GA.

Acknowledgments

The authors would like to thank Sérgio Tinoco for its
help in the text revision and the two referees for their
helpful comments.

References

Baker, J. - Reducing bias and inefficiency in the selection
algorithm. Genetic Algorithms and their Applications:
Proceedings of the 2nd Int. Conf. on Genetic Algorithms,
(1987), p. 14-21.
Bishop, Christopher M. - Neural networks for pattern
recognition. Oxford New York: Clarendon Press; Oxford
University Press, 1995. xvii, 482 p. ISBN 0198538642.
Cortez, P., Rocha, M. e Neves, J. - Evolving Time Series
Forecasting Neural Network Models. Proceedings of
International Symposium on Adaptive Systems:
Evolutionary Computation and Probabilistic Graphical
Models (ISAS 2001). Havana, Cuba, (2001), p. 84-91.
Cortez, P, Rocha, M. e Neves, J. - A Lamarckian
Approach for Neural Network Training. Neural Processing
Letters. 15:2, (2002), p. 105-116.
Curran, D. e O'Riordan, C - Applying Evolutionary
Computation to Designing Neural Networks: A Study of
the State of the Art. Departement of Information
Technology, National University of Ireland, 2002.
Technical Report NUIG-IT-111002.
Falco, I. De, Della, A., Natale, P. e Tarantino, E. -
Artificial Neural Networks Optimization by means of
Evolutionary Algorithms. Research Institute on Parallel
Information Systems, Department of Mathematics and
Applications, University of Napoles "Frederico II", 1997.
Goutte, Cyril e Larsen, Jan - Adaptive Regularization of
Neural Networks using Conjugate Gradient. Proceedings
of ICASSP'98. Seattle. 2, (1998), p. 1201-1204.
Grönroos, Markos A. - Evolutionary design of neural
networks: University of Turku, Finland, 1998. Master
Thesis.
Gruau, Frédéric - Neural networks synthesis using cellular
encoding and the genetic algorithm. Lyon, France:
Universite Claude Bernard-Lyon I, 1994. PhD Thesis.

Hagan, Martin T. e Menhaj, Mohammad B. - Training
feedforward networks with the Marquardt algorithm. IEEE
Transactions on Neural Networks. 5:6, (1994), p. 989-993.
Hakkarainen, J., Jumppanen, A., Kyngäs, J. e Kyyrö, J. -
An evolutionary approach to neural network design
applied to sunspot prediction. Department of Computer
Science, University of Joensuu, 1996. 6 p. Technical
Report.
Imada, Akira e Araki, Keijiro - Lamarckian Evolution of
Associative Memory. Proceedings of IEEE International
Conference on Evolutionary Computation, (1996), p. 676-
680.
Koehn, Philipp - Combining genetic algorithms and neural
networks: The encoding problem. Knoxville: University of
Tennessee, 1994. Master Thesis.
Ku, K. W. e Mak, M. W. - Exploring the Effects of
Lamarckian and Baldwinian Learning in Evolving Neural
Networks. Int. Conf. on Evolutionary Computation
(ICEC'97), (1997), p. 617-20.
Ku, K. W. e Mak, M. W. - Empirical Analysis of the
Factors that Affect the Baldwin Effect. Fifth Internation
Conference on Parallel Problem Solving from Nature
(PPSN'98). Amsterdam, (1998), p. 481-490.
Ku, K. W., Mak, M. W. e Siu, W. C. - A Study of the
Lamarckian Evolution of Recurrent Neural Networks.
IEEE Transactions on Evolutionary Computation. 4:1,
(2000), p. 31-42.
Kyngäs, J. e Hakkarainen, J. - Predicting sunspot numbers
with evolutionary optimized neural networks. Proceedings
of the Second Nordic Workshop on Genetic Algorithms
and their Applications: Jarmo Alander, (1996), p. 173-180.
Larsen, Jan e Hansen, Lars Kai - Empirical Generalization
Assessment of Neural Network Models. Proceedings of
the IEEE Workshop on Neural Networks for Signal
Processing V. Piscataway, New Jersey: IEEE, (1995), p.
30-39.
Larsen, Jan, Svarer, Claus, Andersen, Lars Nonboe e
Hansen, Lars Kai - Adaptive Regularization in Neural
Network Modeling. In G.B. Orr, K. Müller - Neural
Networks: Tricks of the Trade, 1998. p. 113-132.
Mandischer, Martin - Representation and evolution of
Neural Networks. Artificial Neural Nets and Genetic
Algorithms Proceedings of the International Conference.
Innsbruck, Austria: Springer, Wien and New York, (1993),
p. 643-649.
Möller, Martin - A Scaled Conjugate Gradient Algorithm
for Fast Supervised Learning. Aarhus: Computer Science
Department, University of Aarhus, Denmark, 1990. 21 p.
Nguyen, D e Widrow, B - Improving the Learning Speed
of Two-Layer Neural Networks by Choosing Initial Values
of Adaptive Weights. International Joint Conference on
Neural Networks. San Diego, CA. III, (1989), p. 21-26.

Precheltz, Lutz - Early stopping - but when. Fakultät für
Informatik; Universität Karlsruhe, 1997. Technical Report.
Rocha, M., Cortez, P. e Neves, J. - The Relationship
between Learning and Evolution in Static and Dynamic
Environments. Proceedings of Second International
Symposium on Engineering of Intelligent Systems
(EIS2000). Paisley, Scotland: ICSC Academic Press,
(2000), p. 377-383.
Rocha, M., Cortez, P. e Neves, J. - Adaptive Learning in
Changing Environments. 11th European Symposium on
Artificial Neural Networks (ESANN'2003). Bruges,
Belgium, (2003), p. 487-492.
Sarle, Warren S. - Stopped training and other remedies for
overfitting. Proceedings of the 27th Symposium on
Interface, (1995).
Sasaki, Takahiro e Tokoro, Mario - Adaptation toward
Changing Environments: Why Darwinian in Nature?
Fourth European Conference on Artificial Life: MIT
Press, (1997).
Sasaki, Takahiro e Tokoro, Mario - Evolving Learnable
Neural Networks under Changing Environments with
Various Rates of Inheritance of Acquired Characters:
Comparison between Darwinian and Lamarckian
Evolution. Department of Computer Science, Faculty of
Science and Technology, Keio University, 1999. 1-22 p.
Technical Report.
Seiffert, Udo - Multiple Layer Perceptron Training Using
Genetic Algorithms. Proceedings of the 9. European
Symposium on Artificial Neural Networks ESANN 2001.
Bruges, Belgium. ISBN 2-930307-01-3, (2001), p. 159-
164.
Sigurdsson, Sigurdur, Larsen, Jan e Hansen, Lars Kai - On
Comparison of Adaptive Regularization Methods.
Proceedings of the IEEE Workshop on Neural Networks
for Signal Processing X. Sydney: IEEE, (2000), p. 221-
230.
Whitley, Darrell - Genetic Algorithms and Neural
Networks. In Cuesta, G. Winter and J. Periaux and M.
Galan and P. - Genetic Algorithms in Engineering and
Computer Science. Chichester: John Wiley and Sons, Ltd.,
1995. p. 203-216.
Yao, Xin - Evolutionary Artificial Neural Networks. In
Williams, A. Kent and J. G. - Encyclopedia of Computer
Science and Technology. New York: Marcel Dekker,
1995. p. 137-170.

