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ABSTRACT

We review the  integration  between  the  genetic  and
evolutionary techniques with artificial neural networks. A
Lamarckian  model  is  proposed  based  on  genetic
algorithms  and  artificial  neural  networks.  The  genetic
algorithm evolves the population while the artificial neural
network  performs  the  learning  process.  The  direct
encoding scheme was used. This model was submitted to
several  data  sets  and  provided  good  results,  exhibiting
superior robustness when compared with the Levenberg-
Marquardt and the Scaled Conjugate Gradient algorithms.
It  also  achieved  the  best  solutions  in  the  regression
problems.

1. Introduction

The genetic and evolutionary computation comprises
a  group  of  techniques  of  which  is  part  the  genetic
algorithms,  the  evolutionary  strategies,  the  genetic
programming and the evolutionary programming (Cortez
et.  al,  2002).  As  the  author  states,  there  isn’t  a  clear
division and exists an overlap of those techniques. Of the
above  referred  techniques  the  genetic  algorithms  (GA)
have  been  proving  that  they  are  robust  and  efficient
methods in the resolution of optimization problems.  The
GA, such as artificial  neural networks (ANN), had been
also inspired by biological phenomena, being in this case
an  analogy to  the  mechanisms of  the  evolution  and  the
natural  selection.  The  application  of  GA  as  an
optimization  technique  of  an  ANN  has  been  very
promising.  The  literature  review  reveals  that  the
optimization of an ANN with GA produces good results
comparatively  with  other  algorithms,  such  as  the
Backpropagation (BP) algorithm and their variants. In this
paper we review the possible interactions between GA and
ANN,  and  further  investigate  the  Lamarckian  approach
using the Levenberg-Marquardt algorithm with a variation
of the GA that uses a best individuals’ strategy.

According  to  Gruau  (1994)  the  interaction  between
GA and ANN can be reduced to the resolution of the right
codification  of  the  ANN’s  architecture  in  chromosomes
able to be manipulated by the GA. The author groups the
alternatives in three schemes: direct encoding; parametric
encoding;  indirect  encoding.  In  direct  encoding  the
weights matrices are encoded directly in the chromosomes.

In the parametric encoding a set of parameters is encoded
in  the  chromosome,  such  as  the  number  of  layers,  the
number  of  neurons  of  each  layer  and  the  type  of
connections among each layer. In the indirect encoding the
chromosome holds  a  grammar with a  certain  definition,
which allows the generation of families of ANN.

This classification differs considerably from (Whitley,
1995), where the GA have been applied to ANN following
three strategies.  The first  strategy is  equivalent to direct
encoding,  but  allows  the  learning  rate  inclusion  in  the
chromosome. The second strategy includes the parametric
and  grammatical  encode  and  it  is  designated  by
evolutionary  strategy  of  ANN’s  architectures.  The  third
strategy applies  the  GA in the  selection of  the  learning
vectors and in the interpretation of the output variables.

For Grönroos (1998) and Koehn (1994) GA is applied
following direct or indirect encoding strategies. But Yao
(1995)  divides  the  strategies  in  weights  adjustment,
architecture evolution and evolution of learning rules. The
first two strategies are associated respectively to direct and
indirect encoding.

Another classification made by Curran and O'Riordan
(2002) identifies five possible strategies of integrating GA
and  ANN:  weights  adjustment  of  the  connections
maintaining  a  fixed  architecture;  architecture  evolution
and  weights  adjustment  with  a  learning  algorithm;
identification of transfer  functions;  evolution of learning
rules;  combination of  several  strategies.  The author also
makes  the  explicit  division  between  direct  and  indirect
encoding.

From  the  literature  review  one  can  group  the
codification in direct, indirect or in a combination of the
two. In direct encoding a GA chromosome is composed by
genes,  which  represents  the  ANN  weights.  Other
parameters,  such  as  the  learning  rate  or  momentum
coefficient may also be included. With the direct encoding
scheme the algorithm that minimizes the error function is
replaced by the GA. The GA maintains a  population of
chromosomes,  where  each  chromosome  contains  all  the
ANN parameters.  Usually the ANN architecture remains
fixed during the learning phase and the chromosome can
use binary or real coding of the genotype. Therefore it is
feasible  to  use the conventional  genetic  operators.  With



the  indirect  encoding  scheme  the  ANN  architecture  is
encoded  in  the  chromosome.  In  fact  it  is  not  the
architecture itself that is encoded, but the production rules
that produce an outcome that originate it. The consecutive
application  of  the  genetic  operators  evolves  the  ANN’s
architecture.  Generally,  in  indirect  encoding the weights
are  not  encoded  in  the  chromosome.  If  the  problem
requires  variables  that  have  real  domains,  then  it  is
necessary to apply a learning algorithm, which can be one
of  the  fastest  variants  of  the  BP  algorithm.  When  we
combine  the  direct  and  indirect  encoding  schemes  the
ANN's  architecture  doesn't  remain  fixed  during  the
learning phase. The weights are also adjusted using GA,
genetic  programming  or  other  techniques.  The
chromosome  has  to  include  the  information  about  the
architecture and the weights.

According  to  Whitley  (1995)  there  are  two  main
factors for the avoidance of direct encoding: first, the BP
algorithm variants are very efficient in supervised learning
of  ANN;  second,  the  learning  process  of  an  ANN
represents  a  problem  that  is  not  well  suited  for  the
standard  GA,  since  it  is  a  multimodal  optimization
problem,  usually  named  Permutations  Problem or
Competing Conventions Problem.

In  spite  of  being  controversial,  the  direct  encoding
scheme continues to be applied with success. Example of
that is the study of Seiffert (2001) and Falco et al. (1997),
where the authors state that GA are more effective in the
search of the global optimum than the BP algorithm. In
fact GA are global search methods, while the BP algorithm
and its variants are local search methods.

Another  perspective  in  GA and ANN integration is
described by Sasaki and Tokoro (1997, 1999) and Rocha
et al. (2003). In this approach, illustrated in figure 1, the
concept  of  learning,  which  occurs  in  each  individual  –
ANN – and the concept of evolution, which takes place in
consecutive generations – GA – are combined, resulting in
what is  called the Lamarckian evolution.  In  Lamarckian
evolution  a GA and  a  learning algorithm are  iteratively
applied.  The  chromosomes  resulting  from  the  GA
population  evolution  are  decoded  and  submitted  to  a
learning  algorithm  and  then  the  improved  results  are
encoded back into GA individuals. Lamarckian evolution
remains as a main research subject in the field of neural
networks.

According to Ku and Mak (1997, 1998) and Ku et al.
(2000) there are two alternatives to embedding learning in
the  evolutionary  search:  Baldwin  and  Lamarckian.
Although the Baldwin effect is more biological plausible,
they achieved  better  and  faster  results  with Lamarckian
evolution in weights optimization of recurrent ANN. The
Lamarckian  approach  was  compared  with  the  gradient
descent  and  Baldwinian  learning  achieving  a  better
convergence.  Lamarckian  evolution  can  also  be
implemented  in  Hopfield  networks  (Imada  and  Araki

1996).  The  method  iteratively  applies  the  Hebbian
learning and the genetic operators to optimize the weights.
The results prove that Lamarckian evolution can improve
pattern storage capacity of the network.
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Figure 1 – Integration of GA and ANN (adapted from
(Mandischer, 1993)).

In  (Hakkarainen  et  al.  1996)  and  (Kyngäs  and
Hakkarainen 1996)  is  explained  a  Lamarckian  approach
that  evolves  a  set  of  randomly  initialized  ANN.  Those
ANN are trained with a BP algorithm during a number of
epochs and thereafter  the worst ANN are  removed.  The
genetic  operators are  then applied and training proceeds
with the new ANN. This method was used in the sunspot
prediction  problem and  though  it  got  good  results,  the
authors state that the method is computationally intensive.

In (Cortez  et  al.  2001)  is  described an evolutionary
approach  that  evolves  a  set  of  neural  networks.  Each
individual in the population encodes an ANN topology and
training is done with the RPROP algorithm. The genetic
operators  recombine  the  individuals  producing  new
topologies, allowing the system to find the best topology
for  a  given  problem.  In  the  evaluation  forecasting
problems, the model gave good results.

Rocha et al. (2003) have evaluated the performance of
Lamarckian and Baldwinian models and have concluded
that Lamarckian is  superior in static environments while
the  Baldwinian  is  superior  in  dynamic  environments.
Those finds do confirm the ones obtained by Sasaki and
Tokoro  (1997)  that  Lamarckian  is  efficient  in  static
environments,  performing  poorly  and  being  unstable  in
dynamic environments. 

More studies with Lamarckian models can be found in
(Cortez et al., 2002, Rocha et al., 2000) where Lamarckian
achieved good results in machine learning benchmarks.



2. Conceptual model

Based on previous good results shown by Lamarckian
evolution we propose a model using a faster version of the
BP  algorithm, the  Levenberg-Maquardt  algorithm and  a
version of GA that uses a best individuals’ strategy.

The LM algorithm (Levenberg-Marquardt), described
in  (Hagan  and  Menhaj,  1994)  is  a  variant  of  Newton's
method.  Although  Newton's  method  requires  the
calculation  of  the  Hessian  matrix,  the  LM algorithm is
based  in  the  Gauss-Newton  method,  avoiding  that
calculation. The LM algorithm approximates the Hessian
matrix through the Jacobian matrix. The LM algorithm can
only  be  applied  with  the  mean  square  error  function
(Bishop, 1995). The values of the connections are adjusted
following the equation:

            ( )    
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Where  W k is the weights matrix in epoch k ,  J k

is the Jacobian matrix in epoch k  and  e k  is the error in

epoch k .

In the proposed  model,  the GA uses a strategy that
guarantees best individuals found so far over generations
are  never  lost.  This  is  achieved  by  selecting  the  best
solutions from parents and offspring populations to create
a  new population  for  the  next  generation.  This  scheme
guarantees  best  solutions  are  never  lost  and  a  faster
convergence of the GA. Also, repeated individuals are not
allowed  during  the  creation  of  offspring  to  maintain
population diversity.

The conceptual model of the GA and ANN integration
is formalized in figure 2. In the presented model, the GA
starts  with  a  population  of  50  individuals,  each
representing  a  feedforward  architecture.  The  population
evolves  during  100  generations.  The  GA use  stochastic
universal sampling selection to select the individuals that
participate in the creation of new solutions (Baker, 1987),
uniform  crossover  and  mutation  is  implemented  by
flipping each chromosome bit with a probability equals to
the inverse of the chromosome length. The direct encoding
scheme  was used,  meaning  that  a  chromosome  holds  a
sequence of genes, each representing a weight value. Each
connection was encoded using 29 bits. The Gray code was
employed. 

After  the  evolution  phase,  the  chromosomes  are
decoded into feedforward architectures with the respective
weights. Then the model enters in a cycle.  The learning
phase  is  accomplished  with  the  LM  algorithm  and  is
divided  in  two  stages.  The  first  stage  comprises  the
training  of  all  the  50  networks  during  2  epochs  and
thereafter the best network is chosen. The best network is
then trained until  it  reaches convergence or  it  reaches a
predefined  number  of  epochs.  If  the  network  does  not

converge, then all the trained networks and their weights
are encoded back and the GA evolves the population once
more. In this phase, the GA evolves the population during
50 generations. This cycle is repeated until a solution is
obtained or the number of cycles is exhausted.
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Figure 2 – Lamarckian evolution proposed model.

3. Benchmarking setup

To evaluate the proposed model we selected four well
known data sets. These data sets can further be divided in
two classification  and  two regression  problems.  All  the
algorithms were tested in the MathWorks Matlab version
6.5 release 13 with Neural Network Toolbox 4.0.1 and the
Genetic  Algorithm toolbox  was  implemented  in  Delphi
5.0. 

In  all  the  experiments  the  data  was  pre-processed,
with the inputs and targets normalized so that they have
zero mean and unit standard deviation. Each data set was
divided  in  two  parts:  the  training  set  (75%  of  training
pairs)  and  the  test  set  (25%  of  training  pairs).  All  the
algorithms performed 30 runs and the number of epochs
was restricted to a maximum of 1000. The parameters of
each  algorithm  were  properly  tuned.  The  weights
initialization in the BP algorithms and its variants followed
the Nguyen-Widrow initialization algorithm (Nguyen and
Widrow, 1989).

The  choice  for  the  number  of  neurons  is  a
cumbersome task. There are some heuristics that provide
an approximate value, but in fact they don’t work in many
problems.  It  should  be  noted  that  an  ANN with  fewer
neurons  than  necessary will  lead  to  underfitting  and  an
ANN  with  more  neurons  than  necessary  will  lead  to
overfitting.  To  avoid  overfitting,  one  can  use  statistics
methods  and  heuristics  such  as  early  stopping,
regularization,  weight  decay,  cross  validation  and
Bayesian  regularization  and  model  selection  (Precheltz,
1997, Bishop, 1995, Sarle, 1995, Sigurdsson et al., 2000,
Larsen  and  Hansen,  1995,  Goutte  and  Larsen,  1998,



Larsen et al., 1998). In this study, we use cross-validation,
regularization and model selection.

To  evaluate  the  efficiency  of  the  algorithms  in
regression  problems  the  following  measure  was
established: RTest  – R regression value of the test data set.
The  R-values  are  obtained  from  a  linear  regression
between  the  network  outputs  and  the  targets,
corresponding to the correlation coefficient between two
vectors. The RTest gives the ANN ability to predict values
when facing new data. From the RTest different values, the
most interesting is the RTest max, which is the maximum R
value  obtained  from  a  linear  regression  between  the
network outputs and the corresponding targets in the 30
runs. A perfect fit would have a value of 100%.

 In the classification problems the following measure
was established:  Pct –  percentage of  test  pairs  classified
correctly.  The  classification  matrix  was  also  useful  to
evaluate the performance of the algorithms. We also used
the  RTest to  assess  the  classification  performance  of  the
algorithms.

The test data set is never used during training. This
part of the data set is only used when the learning process
has finished.

In order  to assess the Lamarckian Approach– LA –
performance the same problems were applied with Scaled
Conjugate  Gradient  backpropagation  –  SCG,  (Möller,
1990) and the LM backpropagation.

The  first  data  set  is  the  two  spiral  problem  –
classification problem – with  768 training pairs and was
applied  in  a  2-15-10-5-1  architecture  (figure  3).  The
second data set, provided by Marko Bohanec, is known as
the Car Evaluation Database and it is also a classification
problem. Is has 1728 training pairs and was applied in a
network with a 6-15-1 architecture. The third and fourth
data  sets  were  provided  by  Frank  Smieja  from  the
Adaptive  Systems  Research  Group  of  the  GMD  and
according to the author these approximation tasks are very
difficult  to  solve  for  neural  networks  with  no-local
activation  functions.  The  third  data  set  is  a  regression
problem with 400 training pairs which was tested in a 2-
15-1 architecture. The fourth data set is also a regression
problem and  was applied  in  a  2-15-1  architecture.  This
data set has also 400 training pairs.
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Figure 3 – The two spiral representation.

5. Benchmarking results

The  following  tables  contain  the  results  of  the
evaluations performed in the several problems.

Table 1 – Evaluating the test set in the two spiral problems
Pct RTest

Algorithm aver max min aver max min
SCG 98.4% 100% 97.3% 97.4% 97.8% 97.1%

LM 98.8% 100% 96.8% 97.9% 98.6% 97.1%

LA 99.8% 100% 99.7% 98.0% 98.9% 97.2%

Table 2 – Evaluating the test set in the car evaluation
database

Pct RTest

Algorithm aver max min aver max min
SCG 92.0% 95.4% 88.0% 93.0% 94.0% 91.2%

LM 92.1% 96.5% 83.8% 93.0% 95.5% 88.2%

LA 92.1% 93.5% 90.3% 93.0% 93.9% 91.4%

The  best  classification  matrix  achieved  by  the
algorithms is presented in table 3.

Table 3 – Best classification matrix.
LA LM SCG

292 12 0 0 294 6 0 0 298 7 0 0
8 80 4 0 6 81 3 0 2 76 3 0
0 7 13 5 0 12 14 3 0 16 12 4
0 0 1 10 0 0 1 12 0 0 3 11

Table 4 – Evaluating the test set in the Smieja functions
RTest – Smieja 1 RTest – Smieja 2

Algorithm aver max min aver max min
SCG 93.9% 94.0% 93.7% 94.9% 96.0% 93.5%

LM 94.4% 96.8% 90.0% 94.7% 96.9% 89.9%

LA 96.6% 97.7% 94.9% 97.7% 98.8% 97.0%
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Figure 4 – R-test for Smieja 1 best LA solution.

In all the tests performed Lamarckian evolution was
always much slower than the BP variants. This confirms
the findings in literature review. The LM was always the
fastest algorithm followed by the SCG. Nevertheless, the
LM  requires  more  computation  resources,  specially  in
terms of memory capacity.

In the two spiral problem all  the algorithms behave
similarly.  They were able  to  classify correctly the input
vectors of the test set at least once. The calculated average
was  almost  100%,  proving  that  all  the  algorithms
performed  well.  In  spite  of  that  Lamarckian  evolution
results  were slightly better,  with a  higher average and a
narrower interval, exhibiting a more robust behaviour. 

Before analysing the results in the second data set we
have  to  remark  that  this  classification  data  set  is  not
balanced.  This  means that  there  are  more  training pairs
belonging to some classes than others.  As we know this
imposes some problems to the algorithms, since they will
try to better fit the classes with more training pairs. In the
car  evaluation  database  the  average  classification  was
almost  identical  and the R average was equal  to all  the
algorithms. In this test we have to stand out that both the
LM and SCG reached higher results.  They were able to
classify more training pairs correctly than the LA. But the
LA achieved a narrower interval, followed by the SCG and
then by the  LM. In fact,  the LM gave the best  and the
worst results. In this data set it is also important to analyse
the classification matrix. It is clear that all the algorithms
favoured  the  classes  with  more  training  pairs  and  gave
poorer results in the classes with lesser  training pairs.  It
deserves also a remark that the run with the best Pct isn’t
always the run which gives the best classification matrix. It
may  classify  correctly  more  training  pairs  but  it  can

introduce bias  in  some classes or  as in this data set  the
classes  with  more  training  pairs  are  classified  more
accurately.

Results from the regression problems are presented in
table 4. As an example, the linear regression between the
network  outputs  and  the  targets  and  the  correlation
coefficient  are  presented  in  figure  4  for  the  best  LA
solution of Smieja 1 function.

In both regression problems, the LA was superior to
LM  and  SCG.  It  achieved  a  higher  average  and  a
maximum RTest and simultaneously a narrower interval.

An  aggregate  analysis  of  the  four  data  sets  results
allows us to conclude the LA is a viable alternative to the
backpropagation  variants,  namely  the  LM  and  SCG,
although  in  the  second  data  set  it  lacked  the  ability  to
obtain  the  maximum correct  classification  and  the  best
classification matrix as was the LM. Nevertheless, the LA
was  more  robust,  producing  a  narrower  interval.  In  the
regression problems LA was always superior, providing a
greater  average  compared  with  the  others  and,  at  least
once, a run achieved a better maximum R. The LA gave
once more a narrower interval.

Therefore,  the  results  from  the  four  data  sets
consistently demonstrated that LA is more robust than the
LM and SCG. In practice, this means one can apply the
LA  once  with  a  greater  probability  to  obtain  a  good
solution.  Unfortunately,  we cannot  extrapolate  the  same
findings to the achievement of the best solution, because it
fails to do so in the second data set.

This  finding  raises  an  interesting  question.  LA  is
considerably slower than LM and SCG, but  it  probably
requires  a  single run.  On the contrary,  it  is  well known
from the literature that BP algorithms and its variants are
dependable on the initial weight values. Therefore it would
be interesting to evaluate only one execution of the slower
LA  vs.  several  executions  of  faster  variations  of  BP
algorithm.

4. Conclusions and future work

We proposed a Lamarckian model combining a GA
based  on  a  best  individuals’  strategy  for  the  evolution
process and a two phase Levenberg-Marquardt algorithm
that performs the learning process. The GA addresses the
global  search  and  keeps  the  best  individuals,  but  still
maintains  diversity.  The  proposed  model  is  based  on  a
direct encoding scheme.

This  Lamarckian  model  was  compared  with  the
Levenberg-Marquardt backpropagation algorithm and with
the Scaled Conjugate Gradient backpropagation algorithm.
The Lamarckian model proved to be the most robust in all
the tests and provided the best solutions in the regression
problems.



As a result of this study some further research should
be made. First, the LA effectiveness in one run should be
measured in CPU time against the effectiveness of several
runs of BP variants. This research will give new insights
regarding the robustness of the algorithms and the required
corresponding  computer  resources.  Second,  the
Lamarckian model  should be  evaluated  and extended to
other data sets to verify the results obtained. Finally, the
proposed Lamarckian model should be tested with other
BP  variants,  such  as  QuickProp  or  even  the  Cascade
Correlation, and with other variants of GA.
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