Evolving Modular Neural Networks

to Solve Challenging Control Problems

Stephane Doncieux

Jean-Arcady Meyer

Animatlab - LIP6, France
http://animatlab.lip6.fr
{Stephane.Doncieux,Jean-Arcady.Meyer } @lip6.fr

Abstract

This article describes ModNet, a framework devoted
to the evolution of modular neural controllers that
affords possibilities of bootstrapping the search for
efficient solutions to challenging problems. Initial
knowledge may be provided either as modules as-
signed to specific computations, or as an overall con-
nectivity pattern describing how modules could be
connected to each other or to the controller’s inputs
and outputs. These possibilities are used to auto-
matically design neural networks that control respec-
tively two complex dynamic systems: a cartpole and
a lenticular blimp.

Introduction

Using artificial evolution to automatically gen-
erate neural networks [Meyer, 1998] has proved
to be a promising approach to the control
of complex dynamic systems like finless rock-
ets [Gomez and Miikkulainen, 2003] or a variety
of rolling, walking, swimming and flying robots
[Meyer et al., 2002]. But this evolution of neural
controllers is still confronted with difficulties, espe-
cially when the corresponding networks must include
sub-structures dedicated to specific computations or
when they must be connected to numerous inputs
and outputs. In the former case, when such a sub-
structure is discovered by chance, it may well soon
get lost due to the normal action of genetic opera-
tors like mutations or crossover. In the latter case, no
interesting solution may ever be discovered because
the exploration space is simply too large. This arti-
cle proposes a solution to both these issues, through
the management of modules that implement useful
capacities - either because they have been specifi-
cally designed by a human, or because they have
been discovered automatically by the evolutionary

process itself. These modules are capable both of be-
ing propagated through successive generations and of
efficiently bootstrapping the exploratory algorithm.
This is possible thanks to the use of a dedicated
framework, ModNet, which will first be described in
this paper and then put to work in two non-trivial
applications where neural networks are used to con-
trol respectively a cart-pole and a blimp.

1 ModNet

ModNet is a framework that calls upon modu-
lar encoding, thus making it possible to gener-
ate neural networks that are collections of mod-
ules. In traditional approaches to the evolution
of neural networks, the elementary units that are
manipulated are either the neuron or the connec-
tion. Likewise, traditional approaches to modu-
larity usually consist in evolving a single neural
network that is replicated to produce symmetries
[Kodjabachian and Meyer, 1998] or in letting evolu-
tion decide how predesigned modules may compete
for the control of a given system [Nolfi, 1997]. In
ModNet, the units that are manipulated by evolution
are modules that describe sub-networks whose struc-
tures are globally stable throughout the course of
evolution and that serve as building blocks on which
the evolutionary process may capitalize. These mod-
ules may encapsulate some a priori knowledge about
the problem to be solved, or they may emerge from
the evolutionary process.

1.1 The chromosome

Every chromosome associated with ModNet is made
up of three components: a list of model-modules, a
list of modules and a list of links between modules
(Figure 1).

The list of model-modules specifies which modules,
among a list initially provided by the experimenter,

Model-module list

O

1 2 3 4 5

Module list
m1| m2| m3| m4| m5| m6|m7
sl 2l 1lalslal2

Link list

ml->m3 ml->m2
m2->00 m6->02
m3->01 m7->0l1
il->m4 m4->m6
m4->m7 i0->ml

Figure 1: Left: An example of chromosome generated by ModNet. The chromosome is comprised of three
components: a list of model-modules, a list of modules and a list of links. Right: The corresponding decoded
neural network. Modules m3 and m4 are copies of the same model-module 1. Likewise, modules m2 and m7

are copies of model-module 2.

may be included in a given chromosome to gener-
ate the network. Each such model-module contains
a full description of the sub-network it represents,
i.e., it describes its structure and specifies all the pa-
rameters necessary to its functioning, like connection
weights, slopes of transfer functions, or time con-
stants.

The list of modules specifies which modules,
among the list of model-modules, are ultimately in-
corporated into the developed neural network. Thus,
a given module may appear several times within the
same controller. This feature of ModNet makes it
possible to significantly reduce the amount of infor-
mation necessary for the description of the final net-
work. It also affords the possibility of simply coding
symmetries because the same input may be linked
to different outputs through identical modules, as
shown below.

The list of links specifies how modules are inter-
connected in a given network. A link between mod-
ules does not correspond to a connection between
neurons. Instead, it associates a network’s input or
a module’s output with an input of another module
or with an output of the network. This association
entails the fusion of both elements involved. For ex-
ample, because a link associates the output of mod-
ule 1 to the input of module 2, the output neuron of
module 1 is merged with the input neuron of module
2 in the network of Figure 1.

1.2 Genetic operators

The mutation operator may change each component
of a chromosome. In particular, it may modify the

parameters of a given module which, in the applica-
tions described below, are connection weights only.
Each of these parameters is represented by a string
of eight bits using a binary encoding. It may be
mutated with a 0.1 mutation rate. Likewise, only
traditional artificial neurons with sigmoid transfer
functions are used here.

Structural mutations may also randomly add or
delete elements in each of a chromosome’s lists.
Beside the insertion of new model-modules in the
model-module list, mutations may also insert or sup-
press modules in the network by modifying the other
two lists.

Crossover operators are difficult to define and
manage with neural network encodings. They are of-
ten not used at all, especially when direct encodings
are concerned [Pasemann, 1997, Yao and Liu, 1997].
In ModNet, the crossover operator exchanges model-
modules between chromosomes with a probability of
0.6. Thus, an efficient sub-structure can easily be
propagated to new individuals because it will be ma-
nipulated as a non-breakable building block. Fur-
thermore, after a crossover, an individual may bene-
fit from efficient modules transmitted by each of its
parents.

1.3 ModNet’s bootstrapping

Each model-module that is included to the model-
module list, either at initialization or through mu-
tations over the course of evolution, is derived from
a pool of modules initially provided by the exper-
imenter. This set of initial modules may be cho-
sen randomly, or it may integrate some knowledge -

stemming from an a priori engineer’s analysis or from
results of previous experiments - which is instanti-
ated in module structures or in parameter values.
In particular, it is possible to specify the structure
of a module, i.e., which neuron is connected with
which other neuron, but not the corresponding con-
nection weights. Likewise, it is possible to specify
these weights, or to simply specify the sign of some
specific connections within the structure. Be that
as it may, any such initial specification may be later
overridden by mutations over successive generations:
its sole purpose is to bootstrap the evolutionary pro-
cess.

Additional bootstrapping knowledge may be taken
into account in ModNet through the use of so-called
"connectivity patterns". Indeed, it is possible to
specify a priori how some modules could be con-
nected to each other or to the network’s inputs and
outputs. Again, such initial patterns may be ex-
ploited and propagated from generation to genera-
tion or they may get lost.

2 Applications

To illustrate the properties of ModNet, we applied
it to two different and challenging control problems.
The first concerns the cartpole, a classical bench-
mark in control [Wieland, 1991]. The second one
deals with a lenticular blimp equipped with five sen-
sors and seven motors.

2.1 The Cartpole

The cartpole consists of a pole mounted on a cart in
such a way that the pole can swing in a vertical plane.
To swing and to balance the pole, the cart must be
pushed back and forth on a rail. Starting from an
arbitrary initial position of both the pole and the
cart, the goal of the control is to apply a sequence of
forces of constrained magnitude to the cart such that
the system remains as close as possible to the upright
position and to the centre of the rail. We provided
the controllers with the instantaneous deviations of
the pole’s angle and the cart’s position with respect
to their target values. Although the stabilization of
the cartpole requires the derivatives of these values,
we did not provide this information to the network,
which accordingly had to approximate it in order to
solve the problem.

We performed two series of experiments that dif-
fered only in the initial pool of modules we provided.
In the first series, the initial pool contained a single
module with a single input and output, and with a

direct connection linking the two. This constituted a
control experiment, as it closely ressembled a direct
encoding approach. In the second series of experi-
ments we provided a single module also with a single
input and output, but we did not specify its structure
and let the evolutionary process discover it.

The fitness function we used is the sum of two
terms:

f(z) =p(z) +

I (- zt<di<x,t>2>)
nbpor , 55, T

The first term, p(x), measures the percentage of
the maximum evaluation time the cartpole spent be-
fore going out of the limiting boundaries we defined
(£0.2 rad for the angle of the pole and +2m for the
position of the cart). The second term measures the
performance of the control, as the average, on each
of the degrees of freedom and over the evaluation pe-
riod, of the square distance between the actual and
the target positions (angle=0 and position=0). This
term has been normalized, as to lie between 0 and
1. Thus, the total fitness varied between 0 and 101.
A value greater than 100 means that the cartpole
did not overstep the imposed boundaries during the
whole experiment, and a value of 101 means that it
stayed at its equilibrium point throughout the entire
evaluation.

The experiments that call upon a module with
an unspecified structure are much more successful
than the others: eight runs of the control experi-
ments failed to keep the cartpole inside the desired
boundaries during the whole evaluation, whereas all
20 experiments of the second series succeeded (Ta-
ble 1). Furthermore, turns out that, although the
best networks generated during control runs are able
to maintain the cartpole within the assigned bound-
aries, they do not succeed in bringing it back to
the equilibrium point. With such controllers, the
cartpole keeps oscillating with a constant amplitude,
which implies that the underlying neural networks
do not compute any derivative!. In the second se-
ries of experiments, the generated controllers are able
to drive the cartpole quickly back to its equilibrium
point (Figure 2) thus implying that the underlying
neural networks did succeed in computing a deriva-
tive. The interesting point is that this functionality
is implemented within a single module (Figure 3) and
doesn’t result from the concatenation of several mod-
ules. As modules can be exchanged between chromo-
somes, as soon as one has been generated that com-
putes a derivative, it can quickly propagate to new

!Similar results have been reported in [Pasemann, 1997].

Generation Control experiments Unspecified structure
min | median | max | converged min | median | max | converged
20 7,72 | 45,46 | 100,79 4 81,18 88,18 | 100,85 8
100 8,69 | 84,56 | 100,81 7 84,50 | 100,81 | 100,86 16
500 9,11 | 89,98 | 100,81 9 100,70 | 100,84 | 100,94 20
1000 9,11 | 100,64 | 100,81 12 100,70 | 100,84 | 100,94 20
2000 9,11 | 100,65 | 100,82 12 100,79 | 100,86 | 100,94 20

Table 1: Fitness values obtained in two series of experiments on the control of the cartpole. Twenty runs
were performed in each condition. “converged” represents the number of experiments for which the best fitness

exceeds 100.

individuals thanks to the crossover operator. This
wouldn’t be possible should the corresponding func-
tionality be distributed among several modules.

Figure 2: Behavior of the cartpole controlled by the
network of Figure 3. The angle, in radians, is rep-
resented on the left, and the position, in meters, is
represented on the right. To check the robustness
of the controller, random disturbances of the pole’s
angle and the cart’s position are evenly applied.

2.2 The lenticular blimp

The goal of this application is to keep a lenticular
blimp (Figure 4) above a given visual target, at a
given altitude and as horizontal as possible. This
work is part of a project that aims at controlling
a real platform, but the results presented here are
preliminary and only follow from simulation.

Inputs to the evolved controllers are the pitch?
and roll® angles, the altitude and the relative po-
sition of the target in the frame relative to the
blimp*. The outputs of the controllers are sent to
the blimp’s seven motors. Details about the simula-
tion model and results concerning the separate con-
trol of the pitch, roll and altitude are to be found in
[Doncieux and Meyer, 2003].

2rotation along the lateral axis of the blimp.

Srotation along the longitudinal axis of the blimp.

40n the real platform, this information is given by a visual
tracking system.

As in the case of the cartpole, we performed sev-
eral series of evolutionary runs that differed in the
initial pool of modules we provided (Figure 5). In
the first two series, the initial pool contained three
modules of fixed structure, directly connecting one
input to one or two outputs. Additional modules
were provided to the initial pools of other two se-
ries in order to afford capacities for both derivative
or integral computations. The design of the sim-
plest derivative module was inspired by the results
of the cartpole, as it computed from an ongoing sig-
nal the difference between two successive time steps.
Two other derivative modules were endowed with two
outputs (identical or opposite). As to integral mod-
ules, they called upon an intermediate neuron with
a self-recurrent connection, a structure that is capa-
ble of integrating a signal, provided the correspond-
ing connection weights are set appropriately®. Like
the others, these modules were endowed with one or
two outputs. Moreover, in one of these two series,
the signs of given connections within some modules
were initially set to a priori rational values in or-
der to narrow the search space. For instance, recur-
rent connections of integral modules were initially
positive, while two connections were initially posi-
tive and the third initially negative, within deriva-
tive modules with three connections. Finally, unlike
the cartpole experiment, an additional connectivity
pattern (Figure 6) was afforded to each of the four
series, except the first. This pattern reflected a priori
engineering knowledge about which sensor should be
connected to which motor, as well as results of care-
ful analyses of some networks evolved during prelim-
inary runs not mentioned herein.

The fitness function was the same as that used for
the cartpole, except that it was averaged over the
five DOFs of the blimp. We defined boundaries of
+0.7 rad for the pitch and the roll, +20 m for the

5This is true only in the linear domain of the transfer func-
tion.

Figure 3: Left: best network generated after 2000 generations in a run of the second series (one module of
unspecified structure in the initial pool). Inputs are the position z of the cart and the angle 6 of the pole. Light
connections concern the network’s inputs and outputs, heavy connections are internal. Right: modules included
in that network. The right module approximates the derivative of its input signal as it computes the difference
between the current input and its value at the preceding time step.

Generation Data wo CP | wCP | w CP and PID | w CP and PID 2
20 Maximum | 100,775 | 100,815 100,741 100,745
Average 100,630 | 100,701 100,690 100,650
100 Maximum | 100,792 | 100,817 100,826 100,82
Average 100,663 | 100,764 100,73 100,693
500 Maximum | 100,802 | 100,820 100,858 100,873
Average 100,708 | 100,778 100,77 100,759

Table 2: Fitness values obtained in four series of experiments on the control of the blimp. Ten runs were made
for each condition. “wo CP”: runs without a connectivity pattern, “w CP”: runs with a connectivity pattern,
“PID”: runs with Derivative and Integral modules, “PID2”: runs with Derivative and Integral modules and with

some connection signs set initially.

Motor 1

Figure 4: The lenticular blimp and its seven motors.

horizontal position and 100 m for the altitude.

Although the differences are not considerable be-
tween the best fitness attained in each series (Table
2), they correspond to notable differences in behav-
ior. None of the controllers generated in the first

P Module | Module D Module
Figure 5: Proportional (P), Integrate (I) and

Derivate (D) module. To these modules with one
outputs, we have added modules with two outputs
(identical or opposite).

series are able to control all the DOFs. The best
individuals efficiently keep the pitch, the roll and

Figure 6: Connectivity pattern used in the blimp ex-
periment. This pattern suggests how modules could
be connected with each other or with the blimp’s in-
puts and outputs. Neuron 3, for instance, might be
linked to neurons 10 and 11 through a single mod-
ule (module (3)) that has one input and two out-
puts. This pattern was inferred from a priori knowl-
edge about the functioning of the blimp and from the
study of controllers generated in preliminary experi-
ments.

the horizontal position, but none of them are able
to maintain the altitude as well®.

In experiments exploiting an initial connectivity
pattern, all the controllers generated were able to
control each of the DOFs. Moreover, providing ad-
ditional knowledge such as module structures and
connection signs helped still better solutions to be
reached. The behavior generated by the best evolved
network is shown in Figure 7.

3 Conclusion

ModNet is a new framework devoted to the evolu-
tionary generation of neural controllers that makes it
possible to discover useful modules capable of being
propagated from one generation to another or reused
from one experiment to another. This framework
also provides the possibility of bootstrapping the evo-
lutionary process by taking domain-knowledge into
account through the use of predefined modules or
connectivity patterns. However, it should be empha-
sized that, as a result of the "tinkering" of evolution
[Jacob, 1977], these initial modules and patterns do
not necessarily survive in the final neural networks.
This characteristic notably affords the possibility of
automatically generating solutions that may turn out
to be more efficient that those conceived by a hu-
man. Illustrations of such possibilities may be found

8Individuals that efficiently kept the pitch, the roll and the
altitude, but not the position, were also obtained in some runs.

in [Doncieux and Meyer, 2003, Doncieux, 2003], for
example.

The ModNet framework has been successfully used
here to tackle two challenging control problems in-
volving an increasing number of DOFs: the con-
trol of a cartpole and that of a lenticular blimp.
Results concerning the control of a helicopter are
described elsewhere [Doncieux, 2003]. In experi-
ments with a 2-DOFs system like the cartpole, evolu-
tion discovered "derivative” modules and converged
much faster when it could adapt the structure of the
modules to be included in the corresponding con-
trollers. In the experiments with a 5-DOFs plat-
form like the blimp, evolution never converged to
efficient controllers without specifying a connectiv-
ity pattern suggesting which kind of neuronal orga-
nization should be tried first. Moreover, offering it
the possibility of capitalizing on modules dedicated
to useful computations like derivatives and integrals
still helped improve the convergence.

These results suggest two things. The first is that,
according to present technology and practice at least,
it is highly unlikely that efficient neural networks
capable of controlling dynamic systems with many
more than 5 DOFs will be discovered automatically
by artificial evolution left alone. The second is that
this rather pessimistic conclusion should probably be
tempered provided means for helping the evolution-
ary process are discovered and applied. This paper
describes some bootstrapping procedures that seem
to be useful in this respect. ModNet affords other ca-
pabilities that have yet to be implemented, notably
that of regrouping several modules, belonging to an
efficient controller at a given generation, into some
supra-module that could be passed on as such to the
next generation.

References

[Doncieux and Meyer, 2003] S. Doncieux and J.-A.
Meyer. Evolving neural networks for the control of
alenticular blimp. In G. R. Raidl et al., editor, Ap-
plications of Fvolutionary Computing, EvoWork-
shops2003: EvoBIO, EvoCOP, EvoIASP, Evo-
MUSART, FvoROB, EvoSTIM. Springer Verlag,
2003.

[Doncieux, 2003] S. Doncieux. Evolution de Con-
troleurs Neuronauzr pour Animats Volants
Méthodologie et Applications. PhD thesis, Univer-
sité Paris 6, 2003.

[Gomez and Miikkulainen, 2003] F. J. Gomez and
R. Miikkulainen. Active guidance for a finless

L L L L © L L
o 2000 4000 6000 8000 10000 o 2000 4000

L L a0 L . . L L
6000 8000 10000 -60 50 -0 30 20 10) 10 20

Figure 7: Behavior of the blimp controlled by the best network generated in a "w CP PID2". During the
evaluation period (25 sec), the coordinates of the visual target as well as the target altitude are changed
respectively once and twice. Meanwhile, the wind direction is changed several times, hence the observed
oscillations around equilibrium values. Left: pitch and roll in radians (x axis in 25 ms time steps). Middle:
altitude in meters. Right: 2D plot of the corresponding trajectory.

rocket using neuroevolution. In Erick Cantiu-Paz
et al., editor, Proceedings of the Genetic Evolu-
tionary Conference (GECCO03). Springer, 2003.

[Jacob, 1977] F. Jacob. Evolution and tinkering.
Science, 196(4295):1161-1166, 1977.

[Kodjabachian and Meyer, 1998] J. Kodjabachian
and J.-A. Meyer. Evolution and development of
modular control architectures for 1-d locomotion
in six-legged animats. Connection Science,
10:211-237, 1998.

[Meyer et al., 2002] J.-A. Meyer, S. Doncieux,
D. Filliat, and A. Guillot. Biologically Inspired
Robot Behavior Engineering, chapter Evolution-
ary Approaches to Neural Control of Rolling,
Walking, Swimming and Flying Animats or
Robots. Springer Verlag, 2002.

[Meyer, 1998] J.-A. Meyer. Evolutionary approaches
to neural control in mobile robots. In Proceedings
of the IEEE International Conference on Systems,
Man and Cybernetics, San Diego, 1998.

[Nolfi, 1997] S. Nolfi. Using emergent modularity to
develop control systems for mobile robots. Adap-
tive Behavior, 5(3/4):343-363, 1997.

[Pasemann, 1997] F. Pasemann. Pole-balancing
with different evolved neurocontrollers. In
ICANN’97 - International Conference on Artifi-
cial Neural Networks, 1997.

[Wieland, 1991] A. Wieland. Evolving neural net-
work controllers for unstable systems. In Interna-
tional Joint Conference on Neural Networks, 1991.

[Yao and Liu, 1997] X. Yao and Y. Liu. A new evo-
lutionary system for evolving artificial neural net-
works. IEEFE Transactions on Neural Networks,
8(3):694-713, 1997.

