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Abstract  

This paper describes a method of extracting rules from 
trained neural network based on two-level hierarchical 
evolutionary algorithm. Evolutionary algorithm on the 
lower level extracts one rule at a time. Those rules are 
the base for higher level evolutionary algorithm to 
search for whole set of rules. The proposed method has 
been tested on five public domain data sets and the 
results have been compared with other rule extraction 
methods. 
 
1. Introduction 

Neural networks are very attractive technique because 
of their ability of generalization. However, they include 
their ‘knowledge’ about solved problem in the form of 
numerical weights and interconnections, which is not 
comprehensible for the user. In several application 
domains (for example in medical problems) the 
explanation of the neural network (NN) solution is 
strongly desirable to ensure more trust in the response 
given by the network. This explanation can be seen as a 
method of the neural network validation or as an 
automatic knowledge acquisition. These are the reasons 
of the growing interest in extracting knowledge from 
neural network.  
The number of different approaches to the rule 
extraction from the neural network is proposed. They 
can be divided into three groups. Local methods try to 
analyse an activity of a single neuron in the hidden and 
output layers. They describe it in a form of rules. Then 
rules are concatenated so as a final result rules showing 
a dependence between output and inputs of NN are 
obtained. In these methods parameters of NN are very 
intensive exploited. We can list FullRe [11], Subset, M 
of N [13] and others [7, 8, 9] among these methods. 
Different approach is used in global methods. They 
concentrate on behaviour of a whole network treating it 
as a black box. We can name VIA [12] and other 

algorithms [4] among this category. Third possibility is 
called eclectic method and it combines some features 
from both of previous mentioned methods. A detailed 
survey of existing methods of knowledge extraction from 
the neural network can be found in [1, 4]. All of the 
methods have their advantages and drawbacks. For 
example some of them are dedicated to the problems 
with binary or nominal attributes. Others need special 
training procedure or retraining to extract rules. So the 
motivation to search an efficient method of the rule 
extraction from trained neural network, which would be 
independent on the type of attributes, the NN architecture 
or training procedure still exists. This paper presents our 
method of the rule extraction from neural network called 
GARulExNN (Genetic Algorithm Rule Extraction from 
Neural Network)1. 
 
2. The Proposed Method of the Rule 
Extraction from Neural Network 
 
We have developed the method of a rule extraction from 
trained neural network based on hierarchical 
evolutionary algorithm inspired by paper [6]. We have 
focused on the rule extraction from neural networks 
because NNs have good tolerance to noise. In our 
approach neural network is treated as an oracle 
producing patterns to evaluate rules searched by the 
evolutionary algorithm. In the above presented taxonomy 
the proposed method belongs to the global ones. The 
essence of our approach is composed of two levels of 
evolutionary algorithms called EA_1 (lower) and EA_2 
(upper). The EA_1 is responsible for searching the single 
rules describing a performance of neural network, while 
the role of the upper evolutionary algorithm is to search a 
set of rules, which with the best fidelity describes the 
performance of the neural network. The motivation 
behind the use of Two Eas was so that EA_1 produces 
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rules with the good accuracy, while EA_2 minimizes 
the number of rules, what increases the 
comprehensibility of rules. The similar result could be 
also obtained by a single EA but by encoding a set of 
rules in one chromosome. The class of problems is 
limited to the classification. 
2.1. EA_1 – The Lower Level Evolutionary 
Algorithm 
 
The lower evolutionary algorithm concentrates on 
searching single rules, that are the base for EA_2 to 
search for complete set of rules. In EA_1 Michigan 

approach is implemented, what means that in one 
individual one rule is coded. We assumed that the 
lower level EA will consist of parallel, independently 
evolving populations, where each of them is searching 
rules from one class (Fig. 1.). To implement 
evolutionary algorithm first of all the form of 
individual, genetic operators and fitness function have 
to be design. The details of the essential part of EA_1 
will be presented below in this section 
Each chromosome at the EA_1 level represents one 
rule that is given by Exp. 1. 

If p1AND p2 AND.... THEN k, (1) 
 
where each pi denotes i-th premise of the rule 
corresponding to the given neural network input. For 
discrete and continuous attributes premise describes the 
condition that the value of the attribute belongs to the 
interval (v1;v2) according to Exp. 2. 

);( 21 vvINattri  (2) 
 
For a nominal or Boolean attribute premise defines a 
value, which the attribute takes (exp 3.). 

ki valueattr =  (3) 

Each chromosome is composed of the genes coding 
premises and a single gene coding the conclusion (Fig. 
2). As a result of a binary flag staying before the code of 
premise the rules can take a different length. That means 
we have the ability to obtain rules with variable number 

of premises. The premise is included in the body of the 
rule if its flag is set to 1, only. The position of gene 
coding a premise in the chromosome corresponds to the 
neural network input. For each type of attribute special 
kind of gene is designed (Fig.3.). Gene for a binary 
attribute consists of two elements – flag (A) and the 
value (Value) of an input attribute (Fig. 3a), which can 
take one of two values: false or true. For nominal 
attributes the form of chromosome is similar, but the 
value (Value) can take one of the allowed values. 
Figure 3b presents gene of premise of the real type of 
attribute (continuous or discrete). It is composed of flag 
(A) and limits of a range (X1, X2), to which belongs the 
value of the attribute.  

Evolutionary algorithm EA_1 uses the standard genetic 
operators. The mutation operator applied to the flag 
changes its value to the opposite. In the case when the 
mutation is performed for gene containing premise 
describing discrete or continuous attribute the value 
setting the boundary of interval is substituted by other 
random value that belongs to the range of allowed 
values. The only difference between mutation for 
continuous and discrete attribute is that for continuous 
attribute it chooses one random value from the allowed 
range while for discrete attributes the new value (after 
mutation) is one of the discrete values from the range 
allowed for this attribute. Mutation is not permitted for 
gene containing the conclusion. The crossover operator 
is one-pointed. It is performed by exchanging genes 
between two individuals from the same class. 
The fitness function in GARulExNN promotes the 
individuals, which cover the most examples from correct 
class and less examples from improper class. In this 
context correct classification means that the rules classify 
the examples in the same way as neural network does. In 
other words we maximize the extent of covering of 
examples in a given class and minimize the extent of 
inconsistent covering of training examples. The fitness 
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function makes allowance for the length of the rule (a 
number of premises), as well. The formal form of the 
fitness function for EA_1 is presented by Eq.4. 
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In the equations (4), (5), (6), (7), (8) TP is the number 
of examples covered by the rule that have the class 
defined by neural network the same as predicted by the 
rule, FP is the number of examples covered by the rule 
where class predicted by the rule is different from the 
one assigned by NN, FN is the number of examples 
that are not covered by the rule but they have class 
labelled by neural network as predicted by the rule, TN 
is the number of examples that are not covered by the 
rule and their class determined by neural network is 
indeed different from one predicted by the rule, Cmax is 
the maximum number of premises in the rule (the 
number of the input attributes) whereas k is a penalty 
for improper classification and is described by Exp. 5. 
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In expression 5. k can not be less then 1 as it would 
increase the value of the fitness function. In the above 
fitness function both criteria: accuracy and 
comprehensibility are expressed.  
To create new generation in GARulExNN roulette 
wheel is applied. In this case the probability of the 
choice to the crossover is proportional to the fitness 
value. As it was mentioned, individuals in the lower 
level create the subpopulations. For each class one 
subpopulation is formed. EA in this population is 
searching for rules describing examples from this class. 
Populations are evolving independently through the 
assumed number of generations, which is set by the 
user. At the end, from each population the best 
individual is chosen and after decoding its rule he is 
put in the set of rules, which we call primary set of 
rules (Fig 1.) and examples covered by that individual 
are marked as ‘covered’. Then the process of searching 
single rules for uncovered examples is repeated with 
the new random population for each class. It is 
performed as long as there is any example not yet 
covered. 
 
2.2. EA_2 – The Upper Level Evolutionary 
Algorithm 
 
 The upper level evolutionary algorithm is responsible 
for searching optimal set of rules. It works with initial 
population formed on the base of rules delivered by 

EA_1. It means that EA_2 instead of random initial 
population starts with the population created on the base 
of rules obtained from EA_1.In this case one individual 
represents a set of rules. In order to obtain a variable 
number of rules the flag before each rule is implemented, 
as well (Fig.5.).At this level one-pointed crossover 
operator is implemented, as well. The intersection point 
can not lie inside the rule. Mutation operator at this level 
is similar to the lower level, but it introduces two new 
features. First thing is that a flag for the rule can be set or 

unset, which means a whole rule can be included or 
excluded from the decoded set of rules. Second 
modification applies to the values of premises in the rule. 
For continuous and discrete attributes change of value 
can not exceed given constraint, which is computed as 
percentage of the length of the adequate domain (e.g. 
10%). This was made to prevent damages to the rule that 
is usually already quite good and choosing new random 
value would rather decrease its performance. This 
method of changing values can not be applied to the 
nominal or Boolean domains as their values usually do 
not have order. Fitness function at this level maximises 
the predictive accuracy and brings the penalty for false 
classification. It gives the possibility of affecting the 
number of rules in the final set of rules. The fitness 
function is given by Eq. 6.  
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 where Rmax – is the maximum number of rules. It is 
equal to the number of rules produced by EA_1, R is the 
number of active rules in the individual, n is the number 
of classes, the meaning of the remaining symbols is the 
same as in Eq. 4 and 5.  
The creation of the initial population in EA_2 consists of 
encoding in the chromosome all rules acquired by EA_1 
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and setting flags in random way. Then a selection by 

roulette wheel takes place. In every generation 
individuals containing set of rules are evaluated. EA_2 
works for a given number of generations and then the 
best individual decodes its rules, which is the final 
solution. This set of rules is tested how good they are 
in generalization (fig. 4.). 
 
3. The performance of GARulExNN  
 
The algorithm of GARulExNN’s performance is 
presented in table 1.  
It starts from phase, where EA_1 is active. As it was 
mentioned EA_1 is composed of parallel evolutionary 
algorithms searching for rules describing given class. 
One chromosome here represents one rule. At this level 
we have as many evolutionary algorithms as many 
classes exists in the considered problem. In each 
generation rules are evaluated on the base of the 
examples produced by the neural network. Each 
evolutionary algorithm works for assumed number of 
generations. Next the best individual from each 
evolutionary algorithm is decoded and passed to the 
primary set of rules. All covered examples are marked 
and process is repeated until uncovered examples still 
exist. If this condition is fulfilled phase EA_2 begins. 
EA_2 focuses on optimisation of the primary set of 
rules found by EA_1. Chromosome ofEA_2 contains 
the set of rules that in the best way describes the 
performance of trained neural network. Initial 
population is formed on the base of primary set of 
rules. The maximum number of genes containing rules 
in the chromosome is equal to the number of rules in 
the primary set. However random value of flag staying 
before rule gives the individuals, which differ from the 
primary set of rules. During an evolution by applying 
genetic operators new generation of individuals are 
formed. In each generation individuals are evaluated in 
the similar way as in the phase EA_1.  
 
4. Experimental Study 
 
In our experiments we used data sets obtained from 
UCI Machine Learning Repository [3]. These were 
Iris, Wine, Monks-1, Monks-3 and Breast Cancer 
Wisconsin. Table 2 shows detailed information about 
these data sets. The last column of table 2 shows 
information about classification of all examples after 

the training of neural network was completed. Our task 
was to prove how good the set of rules can describe the 
behaviour of trained neural network. This was measured 
using predictive accuracy of the extracted set of rules 
defined by Eq. 7 and fidelity defined by equation 8. In 
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Table 1. The algorithm of the GARulExNN 
 
Phase EA_1 
Create random Initial Populations 
   For each EA_1i do 
       While there exists an example in i-th class, 
which is not marked as covered by any rule do 
  For a given number of generations do 
  Evaluate individuals 
  Apply genetic operators 
  Create new generation 
 End {for} 
     Bring the best individual to the primary set of rule
     Mark examples covered by the best individual 

End {while} 
End {for} 
Phase EA_2 
Unmark covered examples 
Create an initial population on the base of primary 
set of rules 
For a given number of generations do 
  Evaluate individuals 
  Apply genetic operators 
  Create new generation 
End {for} 
The best individual denotes the final set of rules 
End  
 

∑

∑

−

=

+
= n

i

n

i
i

FNTP

TP
accuracy

1

1

)(

, 
 
 
(7) 

n

TP  
those equations n stands for the number of 
 a data set. Fidelity in Eq. 8 is expressed by 
f the number of instances correctly classified by 
rules to the number of instances classified. 
ple can be classified by the neural network but 
ent is not true for a set of rules where an 

can remain unclassified. This unclassified 
causes decreasing of accuracy but has no 
on fidelity. In the context of the rule extraction 
neural networks ‘correct classification’ means 
et of rules predicts the same class for a given 
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Table 2. Experimental data sets from UCI Repository [3] 

Dataset Description of an instance Class Number of 
instances 

Number of 
instances after the 

neural network 
training 

Setosa 50 50 
Versicolour 50 46 Iris 

(150 instances) 4 continuous attributes 
Virginica 50 54 

1 59 59 
2 71 71 

Wine 
(178 instances) 13 continuous attributes 

3 48 48 
0 216 216 Monks-1 

(432 instances) 1 216 216 
0 204 204 Monks-3 

(432 instances) 

Attributes treated as 
discrete values: 

3 attr. with values {1,2,3} 
2 attr. with values {1,2} 

1 attr. with values {1,2,3,4} 1 228 228 

Benign 444 437 Breast cancer 
Wisconsin 9 attributes treated as 

discrete values {1,2,…,10} Malignant 239 246 
 our tests we achieved the best results with 
robability of crossover around 40% (both levels), 
robability of mutation around 5-10% (both levels), 
tness function parameters (Eq. 4, 5, 6) alfa=2, 
eta=0,05-0,1, gamma=3-4 (both levels). The number 
f generations and the size of population was various 
ut for the Breast Cancer Wisconsin data set those 
arameters were greater than in the rest of the data sets. 
ll of the tests were made using 10-fold cross 
alidation technique. The results of these experiments 
r all data sets are summarized in table 3, where BCW 

tands for Breast Cancer Wisconsin. Predictive 
ccuracy is a measure of accuracy for the testing 
xamples whereas accuracy was computed using all 
ata set (training and testing examples). The same 
istinction may be applied to the fidelity. Table 4 
resents results of GARulExNN for all data sets in the 
ontext of fidelity. Last column of tables 3 and 4 shows 
tatistics for ‘the best found set of rules’. As it was 
entioned we used 10-fold cross validation technique 

so we extracted 10 final sets of rules. Among those 10 
sets we chose one that had the highest accuracy (not 
predictive accuracy) and defined that set as ‘the best’. 
Usually there were couple of the rule sets with the 
highest accuracy.  
Table 5 shows the change of the example set of rules 
found by EA_1, which occurred after execution of EA_2. 
Example was taken from ‘the best found set of rules’ for 
Iris data set and the final set of rules was obtained as ‘the 
best during evolution’. Rules in the part EA_2 of table 5 
are numbered respectively to the ones in the EA_1 part. 
It can be easily noticed in table 5 that EA_2 removed 
first two rules and made some changes to the values of 
premises in rules 3 and 5. It illustrates the ability of 
EA_2 to optimise the set of rules found by EA_1. 
Usually EA_2 creates sets of rules with less number of 
rules. The value of accuracy for the final rule sets is less 
than accuracy for the rules obtained by EA_1 but the 
value of fidelity is rather stable. This leads to conclusion 
that final sets of rules would either correct classify an 

(683 instances) 
Table 3. The results of GARulExNN in the term of accuracy rate 

Neural network 
 

Primary set of rules 
(EA_1) 

Rules obtained ‘after 
the last generation’ 

(EA_2) 

Rules obtained as ‘the 
best individual during 

evolution’ (EA_2) 

The best found set 
of rules (EA_2) Dataset 

Predictive 
accuracy 

Training 
accuracy

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Training 
accuracy

Iris 0,933 0,978 0,960 8,9 ± 0,407 0,920 5,8 ± 0,389 0,960 7,5 ± 0,453 1 1 

Wine 1 1 0,904 14 ± 0,537 0,803 9,8 ± 0,389 0,882 11,3 ± 
0,517 0,889 0,994 

Monks-1 1 1 1 8,3 ± 0,153 0,988 7,9 ± 0,100 1 8 ± 0 1 1 
Monks-3 1 1 1 5 ± 0 1 5 ± 0 1 5 ± 0 1 1 

BCW 0,957 0,995 0,958 12,9 ± 0,277 0,905 7,6 ± 0,4 0,947 9,4 ± 0,542 1 0,995 
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Table 4. The results GARulExNN in term of the fidelity rate. (The sign “ –“ standing in the cell denotes the lack of 
information) 

Primary set of rules 
(EA_1) 

Rules obtained ‘after 
the last generation’ 

(EA_2) 

Rules obtained as ‘the 
best individual during 

evolution’ (EA_2) 

The best found set of 
rules (EA_2) Data 

set Predictive 
fidelity 

Number of 
rules 

Predictive 
fidelity 

Number of 
rules 

Predictive 
fidelity 

Number of 
rules 

Predictive 
fidelity Fidelity 

Iris 0,980 8,9 ± 
0,407 0,979 5,8 ± 

0,389 0,980 7,5 ± 
0,453 1 1 

Wine 0,947 14 ± 0,537 0,947 9,8 ± 
0,389 0,946 11,3 ± 

0,517 0,941 0,994 

Monks-
1 1 8,3 ± 

0,153 1 7,9 ± 
0,100 1 8 ± 0 1 1 

Monks-
3 1 5 ± 0 1 5 ± 0 1 5 ± 0 1 1 

BCW 0,966 12,9 ± 0,987 7,6 ± 0,4 0,966 9,4 ± 1 1 
0,277 0,542 

xample (that is the same as the neural network) or do 
ot classify it at all. 
able 6 shows comparison with other extraction 
ethods respectively with the same data set as they 
ere described in the literature. For the data sets: Iris, 
ine, Monks-1 GARulExNN outperformed the results 

f Santos’s method. Other methods were tested with 
reast Cancer Wisconsin data set, where the results 
btained by GARulExNN were a little bit worse than 
hose obtained by AntMiner but this comparison is not 
dequate to the whole extent. AntMiner acquires rules 
rom the data while GARulExNN from neural network, 
hat can introduce an additional disruption in the 

classification process.  
 
5. Conclusions 
 
In this paper the method of the rule extraction from 
neural networks via hierarchical evolutionary algorithm 
is presented. Its performance is evaluated on five public 
domain data sets. Our computational results show that 
GARulExNN can produce a set of rules describing the 
behaviour of the neural network with a good rate of 
accuracy. In the domain of rule extraction from neural 
networks ‘good accuracy rate’ denotes how good the set 
of rules can mimic the actions of the network. During our 
Table. 5. The example of the extracted set of rules 

1 IF PetalLen IN (1,1339949; 2,5258226) THEN Setosa 

2 IF PetalLen IN (2,8424874; 5,0500904) AND PetalW IN (0,8772328; 1,4421928) THEN 
Versicolour 

3 IF PetalLen IN (4,9506105; 6,7152651) THEN Virginica 
4 IF SepalLen IN (4,5179296; 4,87897) THEN Setosa 

5 IF PetalLen IN (2,073092; 4,8667007) AND PetalW IN (0,4399408; 1,6047208) THEN 
Versicolour 

6 IF PetalW IN (1,6293832; 2,4630256) THEN Virginica 
7 IF PetalLen IN (1,0502739; 2,5867165) THEN Setosa 

8 IF SepalW IN (3,052112; 4,2694208) AND PetalW IN (0,7661368; 1,766152) THEN 
Versicolour 

EA_1 

9 IF SepalW IN (2,3748848; 2,6995472) AND PetalW IN (1,450648; 2,482096) THEN 
Virginica 

Predictive 
accuracy=1 
Accuracy=1 
Predictive 
fidelity= 1 
Fidelity=1 

3 IF PetalLen IN (4,9981114; 6,7152651) THEN Virginica 
4 IF SepalLen IN (4,5179296; 4,87897) THEN Setosa 

5 IF PetalLen IN (2,413522; 4,8667007) AND PetalW IN (0,4399408; 1,6047208) THEN 
Versicolour 

6 IF PetalW IN (1,6293832; 2,4630256) THEN Virginica 
7 IF PetalLen IN (1,0502739; 2,5867165) THEN Setosa 

8 IF SepalW IN (3,052112; 4,2694208) AND PetalW IN (0,7661368; 1,766152) THEN 
Versicolour 

EA_2 (‘the 
best during 
evolution’) 

Predictive 
accuracy=1 
Accuracy=1 
Predictive 
fidelity=1 
Fidelity=1 
9 IF SepalW IN (2,3748848; 2,6995472) AND PetalW IN (1,450648; 2,482096) THEN 
Virginica 



research it became obvious that even evolutionary 
algorithm EA_1 can produce a set of rules with a high 
predictive accuracy rate but this comes with a cost of 
increased complexity of the rule set itself. 
Therefore the main goal of the upper level algorithm 
was to ‘prune’ the primary set of rules. The results 
have shown that this was achieved and the final sets of 
rules are composed of less number of rules but this 
causes decreasing of the accuracy of such rule 
classifier. However, this is not a major loss because the 
fidelity rate of the final set of rules is still stable. As it 
was mentioned in previous section this means that the 
set of rules classifier tends to correctly classify an 
example or not to classify it at all rather than to give a 
false classification. This behaviour may be desirable in 
the medical domains, where it is safer to admit that we 
do not know what sort of illness the patient has than to 
cure him of disease that he does not have. 
The weakness of our method is the amount of 
parameters that should be initially tested in order to 
find the best final set of rules. The purpose of EA_2 
was to find set of rules with a small number of rules 
preserving the accuracy obtained by EA_1. So as a 
result EA_2 finds more general set of rules but the 
accuracy is decreased. Therefore we decided to present 
two final sets of rules: extracted after the last 
generation and the set of rules stored as the best set 
found during the evolution on upper level. Usually that 
set was found early in the evolution process and was 
very similar to the primary set of rules. 
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Table 6. The Comparison of the GARulExNN results with other methods 
GARulExNN 

(‘the best sets of rules 
during evolution’ EA_2) 

Santos, Nievola, 
Freitas (GA)[7] 

AntMiner 
algorithm[5] 

PRIM 
algorithm[10] Data set 

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Number of 
rules 

Predictive 
accuracy 

Number 
of rules 

Iris 0,960 7,5 ± 0,453 0,933 10,6 – – – – 

Wine 0,882 11,3 ± 
0,517 0,853 88,6 – – – – 

Monks-1 1 8 ± 0 0,998 34,2 – – – – 
Breast 
Cancer 

Wisconsin 
0,947 9,4 ± 0,542 – – 0,955 5,60 ± 0,80 0,946  7 


