
Hierarchical Evolutionary Algorithm in the Rule Extraction from Neural
Network

Urszula Markowska-Kaczmar, Roman Zagórski

Wroclaw University of Technology, Wyb.Wyspianskiego 27, 50-270 Wroclaw, Poland

Kaczmar@ci.pwr.wroc.pl

Abstract

This paper describes a method of extracting rules from
trained neural network based on two-level hierarchical
evolutionary algorithm. Evolutionary algorithm on the
lower level extracts one rule at a time. Those rules are
the base for higher level evolutionary algorithm to
search for whole set of rules. The proposed method has
been tested on five public domain data sets and the
results have been compared with other rule extraction
methods.

1. Introduction

Neural networks are very attractive technique because
of their ability of generalization. However, they include
their ‘knowledge’ about solved problem in the form of
numerical weights and interconnections, which is not
comprehensible for the user. In several application
domains (for example in medical problems) the
explanation of the neural network (NN) solution is
strongly desirable to ensure more trust in the response
given by the network. This explanation can be seen as a
method of the neural network validation or as an
automatic knowledge acquisition. These are the reasons
of the growing interest in extracting knowledge from
neural network.
The number of different approaches to the rule
extraction from the neural network is proposed. They
can be divided into three groups. Local methods try to
analyse an activity of a single neuron in the hidden and
output layers. They describe it in a form of rules. Then
rules are concatenated so as a final result rules showing
a dependence between output and inputs of NN are
obtained. In these methods parameters of NN are very
intensive exploited. We can list FullRe [11], Subset, M
of N [13] and others [7, 8, 9] among these methods.
Different approach is used in global methods. They
concentrate on behaviour of a whole network treating it
as a black box. We can name VIA [12] and other

algorithms [4] among this category. Third possibility is
called eclectic method and it combines some features
from both of previous mentioned methods. A detailed
survey of existing methods of knowledge extraction from
the neural network can be found in [1, 4]. All of the
methods have their advantages and drawbacks. For
example some of them are dedicated to the problems
with binary or nominal attributes. Others need special
training procedure or retraining to extract rules. So the
motivation to search an efficient method of the rule
extraction from trained neural network, which would be
independent on the type of attributes, the NN architecture
or training procedure still exists. This paper presents our
method of the rule extraction from neural network called
GARulExNN (Genetic Algorithm Rule Extraction from
Neural Network)1.

2. The Proposed Method of the Rule
Extraction from Neural Network

We have developed the method of a rule extraction from
trained neural network based on hierarchical
evolutionary algorithm inspired by paper [6]. We have
focused on the rule extraction from neural networks
because NNs have good tolerance to noise. In our
approach neural network is treated as an oracle
producing patterns to evaluate rules searched by the
evolutionary algorithm. In the above presented taxonomy
the proposed method belongs to the global ones. The
essence of our approach is composed of two levels of
evolutionary algorithms called EA_1 (lower) and EA_2
(upper). The EA_1 is responsible for searching the single
rules describing a performance of neural network, while
the role of the upper evolutionary algorithm is to search a
set of rules, which with the best fidelity describes the
performance of the neural network. The motivation
behind the use of Two Eas was so that EA_1 produces

1 This work was supported by Polish Committee for

Scientific Research under grant number 4 T11 E 02323

mailto:Kaczmar@ci.pwr.wroc.pl

rules with the good accuracy, while EA_2 minimizes
the number of rules, what increases the
comprehensibility of rules. The similar result could be
also obtained by a single EA but by encoding a set of
rules in one chromosome. The class of problems is
limited to the classification.
2.1. EA_1 – The Lower Level Evolutionary
Algorithm

The lower evolutionary algorithm concentrates on
searching single rules, that are the base for EA_2 to
search for complete set of rules. In EA_1 Michigan

approach is implemented, what means that in one
individual one rule is coded. We assumed that the
lower level EA will consist of parallel, independently
evolving populations, where each of them is searching
rules from one class (Fig. 1.). To implement
evolutionary algorithm first of all the form of
individual, genetic operators and fitness function have
to be design. The details of the essential part of EA_1
will be presented below in this section
Each chromosome at the EA_1 level represents one
rule that is given by Exp. 1.

If p1AND p2 AND.... THEN k, (1)

where each pi denotes i-th premise of the rule
corresponding to the given neural network input. For
discrete and continuous attributes premise describes the
condition that the value of the attribute belongs to the
interval (v1;v2) according to Exp. 2.

);(21 vvINattri (2)

For a nominal or Boolean attribute premise defines a
value, which the attribute takes (exp 3.).

ki valueattr = (3)

Each chromosome is composed of the genes coding
premises and a single gene coding the conclusion (Fig.
2). As a result of a binary flag staying before the code of
premise the rules can take a different length. That means
we have the ability to obtain rules with variable number

of premises. The premise is included in the body of the
rule if its flag is set to 1, only. The position of gene
coding a premise in the chromosome corresponds to the
neural network input. For each type of attribute special
kind of gene is designed (Fig.3.). Gene for a binary
attribute consists of two elements – flag (A) and the
value (Value) of an input attribute (Fig. 3a), which can
take one of two values: false or true. For nominal
attributes the form of chromosome is similar, but the
value (Value) can take one of the allowed values.
Figure 3b presents gene of premise of the real type of
attribute (continuous or discrete). It is composed of flag
(A) and limits of a range (X1, X2), to which belongs the
value of the attribute.

Evolutionary algorithm EA_1 uses the standard genetic
operators. The mutation operator applied to the flag
changes its value to the opposite. In the case when the
mutation is performed for gene containing premise
describing discrete or continuous attribute the value
setting the boundary of interval is substituted by other
random value that belongs to the range of allowed
values. The only difference between mutation for
continuous and discrete attribute is that for continuous
attribute it chooses one random value from the allowed
range while for discrete attributes the new value (after
mutation) is one of the discrete values from the range
allowed for this attribute. Mutation is not permitted for
gene containing the conclusion. The crossover operator
is one-pointed. It is performed by exchanging genes
between two individuals from the same class.
The fitness function in GARulExNN promotes the
individuals, which cover the most examples from correct
class and less examples from improper class. In this
context correct classification means that the rules classify
the examples in the same way as neural network does. In
other words we maximize the extent of covering of
examples in a given class and minimize the extent of
inconsistent covering of training examples. The fitness

G e ne s of pr em ise s

G e ne 1= P rem is e for a ttr1 F lag

C onc lus ion

Fig.2. The form of chromosome in the EA_1

X 1 X 2AA V a lu e

b)a)

Fig. 3. Types of gene in GARulExNN

 Evolutionary Algorithm
(EA_1)

 Evolutionary Algorithm
(EA_1)

Level 1

 Pool

Crossover

SelectionMutation

 Evolutionary Algorithm (EA_1)Fitness
Fitness

Set of
examples

If..Then...
Fitness

If..Then...
Fitness

If..Then...

Neural
network

Fitness
criteria

If..Then... Primary
set of
rules

The best
rule

Initial
population
of EA_2

Fig. 1. Schema of the rule extraction by lower level
evolutionary algorithm

function makes allowance for the length of the rule (a
number of premises), as well. The formal form of the
fitness function for EA_1 is presented by Eq.4.

k
C

CC
FNTP

TP

Fitness max
EA

−
+

+
=

max

1_

βα

(4)

In the equations (4), (5), (6), (7), (8) TP is the number
of examples covered by the rule that have the class
defined by neural network the same as predicted by the
rule, FP is the number of examples covered by the rule
where class predicted by the rule is different from the
one assigned by NN, FN is the number of examples
that are not covered by the rule but they have class
labelled by neural network as predicted by the rule, TN
is the number of examples that are not covered by the
rule and their class determined by neural network is
indeed different from one predicted by the rule, Cmax is
the maximum number of premises in the rule (the
number of the input attributes) whereas k is a penalty
for improper classification and is described by Exp. 5.



 ≥

=
caseoppositethein

FPifFP
k

1
1γγ

(5)

In expression 5. k can not be less then 1 as it would
increase the value of the fitness function. In the above
fitness function both criteria: accuracy and
comprehensibility are expressed.
To create new generation in GARulExNN roulette
wheel is applied. In this case the probability of the
choice to the crossover is proportional to the fitness
value. As it was mentioned, individuals in the lower
level create the subpopulations. For each class one
subpopulation is formed. EA in this population is
searching for rules describing examples from this class.
Populations are evolving independently through the
assumed number of generations, which is set by the
user. At the end, from each population the best
individual is chosen and after decoding its rule he is
put in the set of rules, which we call primary set of
rules (Fig 1.) and examples covered by that individual
are marked as ‘covered’. Then the process of searching
single rules for uncovered examples is repeated with
the new random population for each class. It is
performed as long as there is any example not yet
covered.

2.2. EA_2 – The Upper Level Evolutionary
Algorithm

 The upper level evolutionary algorithm is responsible
for searching optimal set of rules. It works with initial
population formed on the base of rules delivered by

EA_1. It means that EA_2 instead of random initial
population starts with the population created on the base
of rules obtained from EA_1.In this case one individual
represents a set of rules. In order to obtain a variable
number of rules the flag before each rule is implemented,
as well (Fig.5.).At this level one-pointed crossover
operator is implemented, as well. The intersection point
can not lie inside the rule. Mutation operator at this level
is similar to the lower level, but it introduces two new
features. First thing is that a flag for the rule can be set or

unset, which means a whole rule can be included or
excluded from the decoded set of rules. Second
modification applies to the values of premises in the rule.
For continuous and discrete attributes change of value
can not exceed given constraint, which is computed as
percentage of the length of the adequate domain (e.g.
10%). This was made to prevent damages to the rule that
is usually already quite good and choosing new random
value would rather decrease its performance. This
method of changing values can not be applied to the
nominal or Boolean domains as their values usually do
not have order. Fitness function at this level maximises
the predictive accuracy and brings the penalty for false
classification. It gives the possibility of affecting the
number of rules in the final set of rules. The fitness
function is given by Eq. 6.

k

R
RR

FNTP

TP

Fitness
max

n

i

n

i
i

EA

−+
+

=
∑

∑

−

= max

1

1

2_

)(
βα

,

(6)

 where Rmax – is the maximum number of rules. It is
equal to the number of rules produced by EA_1, R is the
number of active rules in the individual, n is the number
of classes, the meaning of the remaining symbols is the
same as in Eq. 4 and 5.
The creation of the initial population in EA_2 consists of
encoding in the chromosome all rules acquired by EA_1

 Pool

Crossover

SelectionMutation

 Evolutionary Algorithm (EA_2)

Level_2

Fitness

Set of
examples

Fitness
Fitness

Neural
network

Fitness
criteria

Final
set of
rules

Initial
population
 of EA_2

Fitness

decoding
After n

generation

Set of rules
Set of rules

Fig. 4. Schema of the extraction of the final set of
rules by EA_2

and setting flags in random way. Then a selection by

roulette wheel takes place. In every generation
individuals containing set of rules are evaluated. EA_2
works for a given number of generations and then the
best individual decodes its rules, which is the final
solution. This set of rules is tested how good they are
in generalization (fig. 4.).

3. The performance of GARulExNN

The algorithm of GARulExNN’s performance is
presented in table 1.
It starts from phase, where EA_1 is active. As it was
mentioned EA_1 is composed of parallel evolutionary
algorithms searching for rules describing given class.
One chromosome here represents one rule. At this level
we have as many evolutionary algorithms as many
classes exists in the considered problem. In each
generation rules are evaluated on the base of the
examples produced by the neural network. Each
evolutionary algorithm works for assumed number of
generations. Next the best individual from each
evolutionary algorithm is decoded and passed to the
primary set of rules. All covered examples are marked
and process is repeated until uncovered examples still
exist. If this condition is fulfilled phase EA_2 begins.
EA_2 focuses on optimisation of the primary set of
rules found by EA_1. Chromosome ofEA_2 contains
the set of rules that in the best way describes the
performance of trained neural network. Initial
population is formed on the base of primary set of
rules. The maximum number of genes containing rules
in the chromosome is equal to the number of rules in
the primary set. However random value of flag staying
before rule gives the individuals, which differ from the
primary set of rules. During an evolution by applying
genetic operators new generation of individuals are
formed. In each generation individuals are evaluated in
the similar way as in the phase EA_1.

4. Experimental Study

In our experiments we used data sets obtained from
UCI Machine Learning Repository [3]. These were
Iris, Wine, Monks-1, Monks-3 and Breast Cancer
Wisconsin. Table 2 shows detailed information about
these data sets. The last column of table 2 shows
information about classification of all examples after

the training of neural network was completed. Our task
was to prove how good the set of rules can describe the
behaviour of trained neural network. This was measured
using predictive accuracy of the extracted set of rules
defined by Eq. 7 and fidelity defined by equation 8. In

both of
classes in
relation o
the set of
Any exam
this statem
example
example
influence
from the
that the s
instance a

 Rule1 Flag Rulen

Fig.5. The form of chromosome in the EA_2

Table 1. The algorithm of the GARulExNN

Phase EA_1
Create random Initial Populations
 For each EA_1i do
 While there exists an example in i-th class,
which is not marked as covered by any rule do
 For a given number of generations do
 Evaluate individuals
 Apply genetic operators
 Create new generation
 End {for}
 Bring the best individual to the primary set of rule
 Mark examples covered by the best individual

End {while}
End {for}
Phase EA_2
Unmark covered examples
Create an initial population on the base of primary
set of rules
For a given number of generations do
 Evaluate individuals
 Apply genetic operators
 Create new generation
End {for}
The best individual denotes the final set of rules
End

∑

∑

−

=

+
= n

i

n

i
i

FNTP

TP
accuracy

1

1

)(

,

(7)

n

TP
those equations n stands for the number of
 a data set. Fidelity in Eq. 8 is expressed by
f the number of instances correctly classified by
rules to the number of instances classified.
ple can be classified by the neural network but
ent is not true for a set of rules where an

can remain unclassified. This unclassified
causes decreasing of accuracy but has no
on fidelity. In the context of the rule extraction
neural networks ‘correct classification’ means
et of rules predicts the same class for a given
s the network does.

∑

∑

−

=

+
= n

i

i
i

FPTP
fidelity

1

1

)(

,
(8)

In
p
p
fi
b
o
b
p
A
v
fo
s
a
e
d
d
p
c
s
m

Table 2. Experimental data sets from UCI Repository [3]

Dataset Description of an instance Class Number of
instances

Number of
instances after the

neural network
training

Setosa 50 50
Versicolour 50 46 Iris

(150 instances) 4 continuous attributes
Virginica 50 54

1 59 59
2 71 71

Wine
(178 instances) 13 continuous attributes

3 48 48
0 216 216 Monks-1

(432 instances) 1 216 216
0 204 204 Monks-3

(432 instances)

Attributes treated as
discrete values:

3 attr. with values {1,2,3}
2 attr. with values {1,2}

1 attr. with values {1,2,3,4} 1 228 228

Benign 444 437 Breast cancer
Wisconsin 9 attributes treated as

discrete values {1,2,…,10} Malignant 239 246
 our tests we achieved the best results with
robability of crossover around 40% (both levels),
robability of mutation around 5-10% (both levels),
tness function parameters (Eq. 4, 5, 6) alfa=2,
eta=0,05-0,1, gamma=3-4 (both levels). The number
f generations and the size of population was various
ut for the Breast Cancer Wisconsin data set those
arameters were greater than in the rest of the data sets.
ll of the tests were made using 10-fold cross
alidation technique. The results of these experiments
r all data sets are summarized in table 3, where BCW

tands for Breast Cancer Wisconsin. Predictive
ccuracy is a measure of accuracy for the testing
xamples whereas accuracy was computed using all
ata set (training and testing examples). The same
istinction may be applied to the fidelity. Table 4
resents results of GARulExNN for all data sets in the
ontext of fidelity. Last column of tables 3 and 4 shows
tatistics for ‘the best found set of rules’. As it was
entioned we used 10-fold cross validation technique

so we extracted 10 final sets of rules. Among those 10
sets we chose one that had the highest accuracy (not
predictive accuracy) and defined that set as ‘the best’.
Usually there were couple of the rule sets with the
highest accuracy.
Table 5 shows the change of the example set of rules
found by EA_1, which occurred after execution of EA_2.
Example was taken from ‘the best found set of rules’ for
Iris data set and the final set of rules was obtained as ‘the
best during evolution’. Rules in the part EA_2 of table 5
are numbered respectively to the ones in the EA_1 part.
It can be easily noticed in table 5 that EA_2 removed
first two rules and made some changes to the values of
premises in rules 3 and 5. It illustrates the ability of
EA_2 to optimise the set of rules found by EA_1.
Usually EA_2 creates sets of rules with less number of
rules. The value of accuracy for the final rule sets is less
than accuracy for the rules obtained by EA_1 but the
value of fidelity is rather stable. This leads to conclusion
that final sets of rules would either correct classify an

(683 instances)
Table 3. The results of GARulExNN in the term of accuracy rate

Neural network

Primary set of rules
(EA_1)

Rules obtained ‘after
the last generation’

(EA_2)

Rules obtained as ‘the
best individual during

evolution’ (EA_2)

The best found set
of rules (EA_2) Dataset

Predictive
accuracy

Training
accuracy

Predictive
accuracy

Number of
rules

Predictive
accuracy

Number of
rules

Predictive
accuracy

Number of
rules

Predictive
accuracy

Training
accuracy

Iris 0,933 0,978 0,960 8,9 ± 0,407 0,920 5,8 ± 0,389 0,960 7,5 ± 0,453 1 1

Wine 1 1 0,904 14 ± 0,537 0,803 9,8 ± 0,389 0,882 11,3 ±
0,517 0,889 0,994

Monks-1 1 1 1 8,3 ± 0,153 0,988 7,9 ± 0,100 1 8 ± 0 1 1
Monks-3 1 1 1 5 ± 0 1 5 ± 0 1 5 ± 0 1 1

BCW 0,957 0,995 0,958 12,9 ± 0,277 0,905 7,6 ± 0,4 0,947 9,4 ± 0,542 1 0,995

e
n
T
m
w
W
o
B
o
t
a
f
w

Table 4. The results GARulExNN in term of the fidelity rate. (The sign “ –“ standing in the cell denotes the lack of
information)

Primary set of rules
(EA_1)

Rules obtained ‘after
the last generation’

(EA_2)

Rules obtained as ‘the
best individual during

evolution’ (EA_2)

The best found set of
rules (EA_2) Data

set Predictive
fidelity

Number of
rules

Predictive
fidelity

Number of
rules

Predictive
fidelity

Number of
rules

Predictive
fidelity Fidelity

Iris 0,980 8,9 ±
0,407 0,979 5,8 ±

0,389 0,980 7,5 ±
0,453 1 1

Wine 0,947 14 ± 0,537 0,947 9,8 ±
0,389 0,946 11,3 ±

0,517 0,941 0,994

Monks-
1 1 8,3 ±

0,153 1 7,9 ±
0,100 1 8 ± 0 1 1

Monks-
3 1 5 ± 0 1 5 ± 0 1 5 ± 0 1 1

BCW 0,966 12,9 ± 0,987 7,6 ± 0,4 0,966 9,4 ± 1 1
0,277 0,542

xample (that is the same as the neural network) or do
ot classify it at all.
able 6 shows comparison with other extraction
ethods respectively with the same data set as they
ere described in the literature. For the data sets: Iris,
ine, Monks-1 GARulExNN outperformed the results

f Santos’s method. Other methods were tested with
reast Cancer Wisconsin data set, where the results
btained by GARulExNN were a little bit worse than
hose obtained by AntMiner but this comparison is not
dequate to the whole extent. AntMiner acquires rules
rom the data while GARulExNN from neural network,
hat can introduce an additional disruption in the

classification process.

5. Conclusions

In this paper the method of the rule extraction from
neural networks via hierarchical evolutionary algorithm
is presented. Its performance is evaluated on five public
domain data sets. Our computational results show that
GARulExNN can produce a set of rules describing the
behaviour of the neural network with a good rate of
accuracy. In the domain of rule extraction from neural
networks ‘good accuracy rate’ denotes how good the set
of rules can mimic the actions of the network. During our
Table. 5. The example of the extracted set of rules

1 IF PetalLen IN (1,1339949; 2,5258226) THEN Setosa

2 IF PetalLen IN (2,8424874; 5,0500904) AND PetalW IN (0,8772328; 1,4421928) THEN
Versicolour

3 IF PetalLen IN (4,9506105; 6,7152651) THEN Virginica
4 IF SepalLen IN (4,5179296; 4,87897) THEN Setosa

5 IF PetalLen IN (2,073092; 4,8667007) AND PetalW IN (0,4399408; 1,6047208) THEN
Versicolour

6 IF PetalW IN (1,6293832; 2,4630256) THEN Virginica
7 IF PetalLen IN (1,0502739; 2,5867165) THEN Setosa

8 IF SepalW IN (3,052112; 4,2694208) AND PetalW IN (0,7661368; 1,766152) THEN
Versicolour

EA_1

9 IF SepalW IN (2,3748848; 2,6995472) AND PetalW IN (1,450648; 2,482096) THEN
Virginica

Predictive
accuracy=1
Accuracy=1
Predictive
fidelity= 1
Fidelity=1

3 IF PetalLen IN (4,9981114; 6,7152651) THEN Virginica
4 IF SepalLen IN (4,5179296; 4,87897) THEN Setosa

5 IF PetalLen IN (2,413522; 4,8667007) AND PetalW IN (0,4399408; 1,6047208) THEN
Versicolour

6 IF PetalW IN (1,6293832; 2,4630256) THEN Virginica
7 IF PetalLen IN (1,0502739; 2,5867165) THEN Setosa

8 IF SepalW IN (3,052112; 4,2694208) AND PetalW IN (0,7661368; 1,766152) THEN
Versicolour

EA_2 (‘the
best during
evolution’)

Predictive
accuracy=1
Accuracy=1
Predictive
fidelity=1
Fidelity=1
9 IF SepalW IN (2,3748848; 2,6995472) AND PetalW IN (1,450648; 2,482096) THEN
Virginica

research it became obvious that even evolutionary
algorithm EA_1 can produce a set of rules with a high
predictive accuracy rate but this comes with a cost of
increased complexity of the rule set itself.
Therefore the main goal of the upper level algorithm
was to ‘prune’ the primary set of rules. The results
have shown that this was achieved and the final sets of
rules are composed of less number of rules but this
causes decreasing of the accuracy of such rule
classifier. However, this is not a major loss because the
fidelity rate of the final set of rules is still stable. As it
was mentioned in previous section this means that the
set of rules classifier tends to correctly classify an
example or not to classify it at all rather than to give a
false classification. This behaviour may be desirable in
the medical domains, where it is safer to admit that we
do not know what sort of illness the patient has than to
cure him of disease that he does not have.
The weakness of our method is the amount of
parameters that should be initially tested in order to
find the best final set of rules. The purpose of EA_2
was to find set of rules with a small number of rules
preserving the accuracy obtained by EA_1. So as a
result EA_2 finds more general set of rules but the
accuracy is decreased. Therefore we decided to present
two final sets of rules: extracted after the last
generation and the set of rules stored as the best set
found during the evolution on upper level. Usually that
set was found early in the evolution process and was
very similar to the primary set of rules.

References

[1] Andrews R.: Survey and critique of techniques for
extracting rules from trained artificial neural networks
(Knowledge-Based Systems, Volume: 8, Issue: 6,
December, 1995, pp. 373-389)
[2] Arbatli A. D., Akin, H. L.: Rule extraction from
trained neural networks using genetic algorithms
Nonlinear Analysis, Volume: 30, Part 3, December,
1997, pp. 1639-1648

[3] Blake C. C., Merz C.: UCI Repository of Machine
Learning Databases, University of California, Irvine,
Dept. of Information and Computer Sciences, 1998
[4] Darbari A.: Rule Extraction from Trained ANN:A
survey, Technical report Institut of Artificial
intelligence, Dep. of Comp. Science, TU Dresden, 2000
[5] Parpinelli R., Lopes H., Freitas A.: An Ant Colony
Based System for Data Mining: Applications to Medical
Data, in: H. Abbass, R. Saker, C. Newton. (eds.) Data
Mining: a heuristic approach pp.191-208. London: Idea
Group Publishing 2001;
[6] Radcliffe N. J., Surry P. D.: Co-operation through
Hierarchical Competition in Genetic Data Mining,
Technical Report EPC-TR94-09, Edinburgh Parallel
Computing Centre, 1994,
[7] Santos R., Nievola J., Freitas A.: Extracting
Comprehensible Rules from Neural Networks via
Genetic Algorithm, In Proc.2000 IEEE Symp. On
Combination of Evolutionary Combination and Neural
Network, pp. 130-139, San Antonio, RX, USA, 2000
[8] Sethi I.K., Yoo J. H.: Symbolic Approximation of
Feedforward Neural Networks in E.S. Gelsema and
L.N.Kanal (Eds.) Pattern Recognition in Practice, pp.
313-324, North-Holland, 1994.
[9] Setiono R.: Extracting rules from pruned neural
networks for breast cancer diagnosis, Artificial
Intelligence in Medicine, Volume: 8, Issue: 1, February,
1996, pp. 37-51
[10] Silva, R. B. A. Ludermir, T.B.: Neural Network
Methods for Rule Induction, 1999; Proceedings of the
1999 International Coinference on Neural Networks,
Paper Paper 2099, Washington - DC
[11] Taha I., Ghosh J.: Symbolic Interpretation of
Artificial Neural Networks, Tech. Rep. TR-97-01-106,
The Comp. and Vision Research Center, Univ. of Texas,
Austin, 1996.
[12] Thrun S. B.: Extracting provably correct rules from
artificial neural network, Technical Report, Institut für
Informatik, Universität Bonn, Bonn,1994.
[13] Towell, G. G., Shavlik, J.: Extracting refined rules
from knowledge based neural networks. Machine
Learning vol. 131 (1993), 71–101

Table 6. The Comparison of the GARulExNN results with other methods
GARulExNN

(‘the best sets of rules
during evolution’ EA_2)

Santos, Nievola,
Freitas (GA)[7]

AntMiner
algorithm[5]

PRIM
algorithm[10] Data set

Predictive
accuracy

Number of
rules

Predictive
accuracy

Number of
rules

Predictive
accuracy

Number of
rules

Predictive
accuracy

Number
of rules

Iris 0,960 7,5 ± 0,453 0,933 10,6 – – – –

Wine 0,882 11,3 ±
0,517 0,853 88,6 – – – –

Monks-1 1 8 ± 0 0,998 34,2 – – – –
Breast
Cancer

Wisconsin
0,947 9,4 ± 0,542 – – 0,955 5,60 ± 0,80 0,946 7

