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Abstract The paper has analyzed global convergence 
properties of adaptive genetic algorithms combining 
adaptive probabilities of crossover and mutation with 
diversity-guided crossover and mutation. By means of 
homogeneous finite Markov chains, it is proved that 
AGAD, which is present in this paper, and GAD (genetic 
algorithms with diversity-guided mutation) maintaining 
the best solution converge to the global optimum, which 
is the main contributions of this paper. The performance 
of AGA(adaptive genetic algorithms with adaptive 
probabilities of crossover and mutation), GAD and 
AGAD in optimizing several unimodal and multimodal 
functions has been compared. For multimodal functions, 
the AGAD converges to the global optimum for fewer 
generations than AGA and GAD, and it hardly has 
premature convergence. 
Key Diversity-guided mutation; Adaptive genetic 
algorithm; Markov chain analysis; Global convergence. 
 
1. Introduction 
It is known that the performance of the genetic 
algorithms (GAs) is dependent upon the operator 
probabilities used. Adaptation of operator probabilities 
makes the genetic algorithm a more effective optimizer. 
By adapting operator probabilities we can get benefit: (1) 
Increasing the quality of solutions obtained. (2) 
Allowing the GAs to find a solution of a given quality 
more quickly. Therefore, by employing some methods, 
some researchers attempt to automatically adjust the 
operator probabilities as the genetic algorithm runs 
according to the quality of solutions[1,2,3], in which the 
quality of a solution determines its operator probabilities. 
It is also known that the premature convergence is a 
major problem in GAs and adaptive genetic algorithms 
may lead to premature convergence[4], in order to 
overcome it, the term ‘diversity’ is employed. Diversity 
is undoubtedly closely related to the performance of 

GAs, especially when attempts are made to avoid 
premature convergence and escaping local optima. Only 
a few papers[5,6,7] have used diversity measure to control 
the search direction of evolutionary algorithms, and 
global convergence properties of genetic algorithms with 
diversity-guided crossover and mutation have hardly 
been discussed. 
We make an attempt to mix adaptive crossover and 
mutation of Srinivas[1] and diversity-guided crossover 
and mutation in order to get the balance between 
avoiding premature convergence and converging more 
quickly. We created AGAD, and proved that AGAD and 
GAD maintaining the best solution converges to the 
global optimum by homogeneous finite Markov chains 
in the paper, when diversity-guided mutation 
probabilities are bigger than 0, but AGA not always do 
so. In section 5 the performance of AGA, GAD and 
AGAD has been compared in optimizing several 
unimodal/multimodal functions. For multimodal 
functions, AGAD performs significantly better than 
AGA and GAD. 
 
2. Preliminary 
We make the assumption that genetic algorithms are 
used to tackle static optimization problem� in which 
there are  individuals within the population noted as 
binary string of fixed length :  

N
l
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and correspond fitness values { ∞<≤ ii ff 0| , 
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Definition 1  Let  be a sequence of random 

variables representing the best fitness within a 
population represented by state  at step 
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then, it is called that a genetic algorithm converges to the 
global optimum. 
In implement of GAs the convergence critical or 
condition of halting execution often is defined to be 

 generations without best fitness improvement. 

The convergence speed is the generations or halt 
generations that GAs has run before the convergence 

critical hold. In this paper, let =400 for 

15-dimention and =80 for 2-dimention in function 

optimal problems. 

genN

genN

genN

Definition 2  A square matrix  is said (1) 

nonnegative, if , 

nnjiaA ×= )( ,

0, ≥jia },,1{, nji Λ∈ ; (2) positive, if 

, ; 0, >jia },,1{, nji Λ∈

A nonnegative matrix A  is said to be (3) 

primitive, if >0, such that ∃ k kA is positive; (4) 

stochastic, if � ; ∑
=

=
n

j
jia

1
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A stochastic matrix A  is said to be column 
allowable, if it has at least one positive entry in each 
column. 
Lemma 1[9]  Let and  are stochastic matrices, 
where M is positive and S is column allowable. Then the 
product  is positive. 

MC, S

CMS
Theorem 1  Let  and  are stochastic 
matrices. If 

aa MMCC ,,, S
M  is positive,  is column allowable and 

 diagonally positive. Then the product 
 is positive.  

S
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Proof Let ,  and 

. Since (1), we have 
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So,  is positive. 0M

Note that the product of stochastic matrices is again a 
stochastic matrix, According to Lemma 1, 

SCMSCMMCP aa 0==  is positive. Hence, the proof 

is completed. 
 
3. Modified adaptive genetic algorithm 
AGAD 
The modified genetic algorithm with adaptive crossover, 
mutation probabilities and diversity- guided mutation 
(AGAD) can be sketched as Fig.1. Adaptive crossover 
and mutation probabilities of individuals (denoted as  
and ) within the population are  and  

respectively, which are determined by individual fitness 
evaluations within the current population. The famous 
calculating method of  and  which is 

introduced by Srinvas

i
j ),( jipc )(ipm

),( jipc )(ipm
 [1] is as follows 

choose an initial population 

calculate the fitness of each individual 

perform selection 

repeat { 

perform crossover with adaptive probability 

perform diversity-guided crossover (see Fig.2) 

perform diversity-guided mutation (see Fig.3) 

perform mutation with adaptive probability 

calculate the fitness of each individual 

perform selection 

} until some stopping criterion applies 

Fig.1 AGAD 

calculate diversity of the population 

if diversity < 1λ  

perform crossover with probability  5k
else 

perform crossover with probability  6k
end if

Fig.2 perform diversity-guided crossover 
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Where ,1,0 21 ≤< kk 1,0 43 << kk ,  and  

are respectively the average fitness value and the 

maximum fitness value of the population, and '  is the 

lager of fitness values of the individuals  and 

avgf maxf

f

i j  to be 
crossed.  is the fitness value of the individual  to 

be mutated. 

f i

Other papers[2, 3] have developed Srinvas’s adaptive 
genetic algorithm by means of modifying the formulae 

(3) and (4).  
Their adaptive genetic algorithms can increase the 
converge speed, but at least there are two shortage: (1) 
Crossover probability of the best individuals is very 
small (close to zero)�so, the building-blocks of the 
best/better individuals do not spread out. (2) Them often 
lead to premature convergence[4].  
In order to overcome premature convergence we use a 
diversity measure to alternate between exploring and 
exploiting behavior. A diversity measure for 
N-dimensional numerical problems is defined as: 
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length of the diagonal in the search space , and 

|| S

lRS ⊂

jg is the j'th value of the average point, and  are 

the size of population and the length of a individual 
respectively.  

N l

Genetic algorithms[8] put stress on the crossover as the 
primary operator to search the space. Under crossover 
operators genetic algorithms exploit the area determined 
by the population in the search space. When 
probabilities of crossover operators are high, 
exploitations are more efficient. 
The pseudo-code for “perform diversity-guided 
crossover” in the AGAD is listed in Fig. 2, and the 
pseudo-code for “perform diversity-guided mutation” in 
the AGAD is listed in Fig. 3, where 10 1 << λ , 

10 32 <<< λλ , 10 65 ≤<< kk , 10 789 <<<< kkk  

and >0 is almost 0. 9k

4. Markov Chain Analysis of 

AGAD and GAD 

The AGAD or GAD can be described as a Markov chain 

over a finite state space  of cardinality Nl•=Λ }1,0{

Nl •=Λ || . The probabilistic changes of the individuals 

within the population caused by AGAD or GAD are 
captured by the transition matrix P , which can be 
decomposed in a natural way into a product of stochastic 
matrices SCMMCP aa=  for AGAD and CMSP =  
for GAD, where , C ,aC M ,  and  describe the 

intermediate transitions caused by crossover with 
adaptive probabilities, crossover with diversity-guided 
crossover probabilities, mutation with diversity-guided 
mutation probabilities, mutation with adaptive 
probabilities and selection, respectively. This leads to: 

aM S

Theorem 2  The transition matrix of the AGAD with 

calculate diversity of the population 

if diversity < 2λ  

perform mutation with probability  7k
else if diversity < 3λ  

perform mutation with probability  8k
else 

perform mutation with probability  9k
end if 

Fig.3 perform diversity-guided mutation 
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diversity-guided mutation probability , 

adaptive mutation probability  and 

adaptive crossover probability  and 

proportional selection is primitive. 

10 << mp

1)(0 <≤ ipm

]1,0[),( ∈jipc

Proof The crossover operators may be regarded as 
random total functions whose domains and ranges are 

, i.e. each state of  is mapped probabilistically to 
another state. Therefore, and  are stochastic. The 

same holds for the other operators and their transition 
matrices. Because the mutation operator is applied 
independently to each gene-bit in the population the 
probability that state i becomes state j after 
diversity-guided mutation can be aggregated to  

Λ Λ

aC C

),(),( )1( jiHl
m

jiH
mij ppm −−= >0, 

where denotes the Hamming distance between the 

binary representations of state i and state j. 

ijH

After mutation with adaptive probability, the diagonal 
elements in are aM

l
m

a
ii ipm ))(1( −= >0, 

Thus M  is positive, and  diagonally positive.  aM

Since S is column allowable(the details see [10]),  by 
Lemma 1,  is positive. Since every 

positive matrix is primitive, the proof is completed. 

SCMMCP aa=

Corollary 1 The AGAD is an ergodic Markov chain, i. 
e. , there exists an unique limit distribution for the states 
of the chain with nonzero probability to be in any state at 
any time regardless of the initial distribution 
If M  is replaced with  in the theorem 6 and 7 of 

the paper [10], the proof of the theorem 6 and 7 of the 
paper [10] hold. So we have following result. 

aMM

Theorem 3 The AGAD maintaining the best solution 
found over time after/before selection converges to the 
global optimum. 
If all the adaptive probabilities , , 01 =k 02 =k 03 =k , 

,  and , AGAD becomes into 

GAD. From Theorem 3 we have 

04 =k 65 kk = 09 >k

Corollary 2  The GAD maintaining the best solution 

found over time after/before selection converges to the 
global optimum. 
As shown in [11], although AGA is a Markov chain over 

a finite state space , when not maintaining 

the best solution found over time after/before selection, 
adaptive genetic algorithms of Srinivas

Nl•=Λ }1,0{

[1] don’t converge 
to the global optimum. But when maintaining the best 
solution found over time after/before selection, since the 
transition matrix of adaptive genetic algorithms of 
Srinivas[1] isn’t positive(the mutation probability of the 
best individual is 0), we can’t get result of convergence 
to the global optimum from the finite Markov chain 
theorem. 

5. Experiments and Analyses 

In this section, we discuss the experiments that we have 
conducted to compare the performance of the AGAD. 
For this purpose we will employ one unimodal and two 
nonunimodal functions with varying complexities as 
follows:  
Quadric: A unimodal function with significant 
interaction between its variables. The global maximum 
is located at X = 0, so that f (X) = 0. 

    ∑ ∑
= =
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Ackley: A multi-modal function with deep local 
maximum, which is X = 0, with f (X) = 0. 

=)(Xf  
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Rastrigin: A multi-modal version of the Spherical 
function, characterised by deep local maxima arranged 
as sinusoidal bumps. The global maximum is f (X) = 0, 
where X = 0. The variables of this function are 
independent.  
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Table I lists the parameter settings for the functions in 
the benchmark suite.  

Table 1   FUNCTION PARAMETERS 

Function Dim Domain Threshold 

Ackley 15 -30 x≤ i≤ 30 3.0 

Rastrigin 15 -5.12 x≤ i≤ 5.12 1.5 

Quadric 15 -100 x≤ i≤ 100 0.02 

We use the genetic algorithm with simple crossover, 

binary mutation and proportional selection. The 

parameters of algorithms in this paper are set as follows. 

For the functions  and , we used population of 

100 and ,
21, ff 3f

8.021 == kk 3.01 =λ , 01.02 =λ , 

25.03 =λ , , , , 3.05 =k 85.06 =k 8.07 =k 03.08 =k , 

and ,  for AGA and 

 for AGAD, since AGAD has yet 

diversity-guided mutation. 

00001.09 =k 5.043 == kk

3.043 == kk

Let we discuss the genetic algorithm with diversity- 
guided mutation (GAD), in which the crossover 
probability is fixedly =0.8, and the mutation 

probability is determined as in Fig.4. It has been 
mentioned that this algorithm can overcome premature 
convergence, but there are some shortages. Since lower 
the diversity is, more the exploitation for local area is, 
faster convergence to minima is, but more easily 
premature convergence happens. Otherwise, higher the 

diversity is, more the exploration to global area is, and 
slower convergence to minima is. Of course the genetic 
algorithm with diversity-guided mutation can efficiently 
maintain the diversity of population.  

cp

If test function is non-unimodal, GA with only fixed 
mutation probability often suffers from premature 
convergence, and high diversity can help GA to escape 
from local optimum, exploring global optimum. AGA 
also suffers from premature convergence, but 
convergence is faster than GA with only fixed mutation 
probability. So, we present AGAD combining AGA and 
GAD. 
Let us make some performance comparison of three 
algorithms. Table II presents average halt generations 
obtained by running the various algorithms until they 
discovered an objective function value below the 
corresponding value listed in the ‘threshold’ column of 
Table I. All experiments consisted of 50 runs. These 
results give an indication of the robustness as well as the 
rate of convergence of the three algorithms on the 
various benchmark functions. 

Table 2  COMPARE PERFORMENCE 

 Algorithm
 

Function 
AGA GAD AGAD 

Ackley 3753.51 31966.89 2655.26 

Rastrigin 4711.73 3961.75 3348.96 

Quadric 3342.03 3617.92 3482.40 

The results listed in Table II clearly show that the 
AGAD outperforms the other algorithms, since the 
AGAD converges to the global optimum for fewer 
generations than AGA and GAD. Better fitness will be 
obtained as shown in Table 3 if the AGAD run until it 
stagnated, which is here defined to be 400 generations 
without fitness improvement. Note that all functions 
were tested using 15-dimensional search spaces. All 
experiments for every function consist of 20 runs 
respectively�and the results of average best fitness are 
list in Table III on the three benchmark problems. 
Thanks to the diversity, AGAD and GAD are able to 
escape local optimum, and thanks to adaptive crossover 

choose an initial population 

calculate the fitness of each individual 

perform selection 

repeat { 

perform crossover with fixed probability 

perform diversity-guided mutation (see Fig.3) 

calculate the fitness of each individual 

perform selection 

} until some stopping criterion applies 

Fig.4 GA with diversity-guided mutation 
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and mutation AGAD can converge more quickly. The 
last function, Quatric, which is modified Spherical 
function, is unimodel, but it has significant interaction 
between variables. So it is not easy to solve it. 
Conclusively, AGAD performs significantly better than 
AGA and GAD.  

Table 3  AVERAGE BEST FITNESS 

    Algorithm 

Function 
AGA GAD AGAD 

Ackley 5.165E-1 1.160E-2 2.437E-2

Rastrigin 3.336 4.635E-2 1.951E-2

Quadric 1.228E-3 7.324E-3 4.063E-3

 

6. Results 
This paper analyzed the global convergence properties 
of AGA, GAD and AGAD, and it has been proved that 
AGAD maintaining the best solution found over time 
converge to the global optimum by means of 
homogeneous finite Markov chains.  
AGAD combines the advantage of the two algorithms 
AGA and GAD, in which AGA used individual’s level 
adaptive mutation probability, and GAD used 
population’s level adaptive mutation probability. AGA 
convergences fast, but often get into local minima; GAD 
can efficiently overcome premature convergence, but the 
convergence speed is limited under the thresholds of the 
diversity. 
Some experiments in optimizing several unimodal and 
multimodal functions showed that AGAD has 
significantly faster convergence than AGA and GAD. 
Combining diversity-guided mutation with other genetic 
operators converging faster, we will get better balance 
between overcoming premature convergence and 
convergence speed, and improve performance of GA, 
which is a meaningful investigation to do in the future. 
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