

Proceedings of _______:
Conference Name
Date and Location

 Reference ID

HIGHER-ORDER MOBILE AGENTS FOR CONTROLLING INTELLIGENT ROBOTS

Yasushi Kambayashi/Nippon Institute of Technology Munehiro Takimoto/ Tokyo University of Science

ABSTRACT
This paper presents a framework for controlling

intelligent robots. This framework provides novel methods
to control coordinated systems using higher-order mobile
agents. Higher-order mobile agents are hierarchically
structured agents that can contain other mobile agents. By
using higher-order mobile agents, intelligent robots in
action can acquire new functionalities dynamically as well
as exchange their roles with other colleague robots.

1. INTRODUCTION

The traditional means to constructing intelligent robots
is making large monolithic artificial intelligent software.
Robotics has been considered as a part of artificial
intelligence. ALVINN autonomous driving system is one
of the most successful such developments [1].

Putting intelligence into robots is, however, not easy
task. Intelligent robot that is able to work in the real world
needs large scale knowledge base. The ALVINN system
employs the neural networks to acquire the knowledge
semi-automatically [2].

One of the limitations of neural networks is, however,
to require the assumption that the system is used in the
same environment as it is trained. When the intelligent
robot is expected to work in unknown space or the
extremely dynamic environment, it is not realistic to
assume the neural network is fully trained. Indeed, some
intelligent robots need a mechanism to adopt unknown
environment.

On the other hand, multi-agent system in robotics is
getting popular in RoboCup or MIROSOT recently [3]. In
the traditional multi-agent systems, robots communicate
each other to achieve cooperative behaviors. The Nerd

Herd and ALLIANCE are successful examples of
cooperative intelligent systems [4] [5]. They, however,
cannot be extended dynamically after they start working.
Further more, one agent program controls one robot, and
there is no notion that a mobile agent migrates dynamically
into a robot to extend the functionality of the robot. It is
hard for the traditional multi-agent systems to adapt
unknown environments.

In this paper, we propose a framework for constructing
intelligent robots controlled by higher-order mobile agents.
The higher-order property of the mobile agents enables
them to be organized hierarchically and dynamically. Each
mobile agent can be a container of other mobile agents and
can migrate to other agents. Therefore the robots
controlled by the mobile agents can acquire new functions
by migration of other agents. The extended agent behaves
as a single agent so that it can migrate to another agent with
the containing agents.

 In addition to the advantages described above,
higher-order mobile agents require minimum
communication. They only need connection being
established when they perform migration [6]. This is useful
for controlling robots working in a remote site.

The structure of this paper is as follows. The second
section describes the higher-order mobile agents. The third
section describes the dynamic extension feature of the
mobile agent system. The dynamic extension is the key
feature to add new functionalities to intelligent robots in
action. The fourth section shows an example intelligent
robot system in which robots play the game of TAG.
Finally, the fifth section discusses future works and
conclusive remarks.

NOMENCLATURE
Mobile agent, dynamic software extension, dynamic
software composition, and intelligent robot control.

2. HIGHER-ORDER MOBILE AGENT

The mobile agent system we use to control robots is
based on a mobile agent system, called MobileSpaces,
developed by I. Sato [7] [8]. MobileSpaces is also based on
the mobile ambients computational model proposed by L.
Cardelli and A. D. Gordon [9]. MobileSpaces provide the
basic framework for mobile agents. It is built on the Java
virtual machine, and agents are supposed to be
programmed in Java language.

Mobile agents can migrate place to place. When they
migrate, not only the program code of the agent but also the
state of the agent can be transferred to the destination. The
higher-order mobile agents are mobile agents whose
destination can be other mobile agents as well as places in
traditional agent systems.

Two unique features are worth mentioning for our
robot control system. 1) Each mobile agent can contain one
or more mobile agents (hierarchical construction), and 2)
Each mobile agent can migrate to any other mobile agent
(inter-agent migration).

Thus migration to another agent results in a nesting
structure of agents. Agents in the other agent are still
autonomous agents that can behave own scenario. When
an agent migrates to another agent, the coming agent is
called the child agent, and the container agent is called
parent agent. In the same sense, nested agents are called
descendent agents and nesting agents are called ancestral
agents. Parent agents give their resources and services to
their child agents so that an agent or a group of agent can
acquire whatever its parent provides. Figure 1 illustrates
the situation that agent C migrates from agent A to agent B,
and the child agent D also migrate from agent A to agent B.
Serialization and other necessary processing to migrate are
done by a special stationary agent MATP.

The first feature allows a mobile application to be
constructed by organizing more than one agent. The
second feature allows a group of agents to be treated as a
single agent. By using these two features, we can construct
a mobile application as the combination of mobile agents.
We can send the base agent to remote site, and then we can
add new features and functions to the base agent by sending
other agents later, while the base agent is running.

We use a special addressing term like URL to specify
agents in a hierarchical structure. In this paper, we call it
URL too. Figure 2 depicts a situation that an agent alpha
that contains the other agent beta is on a machine whose IP
address is 012.345.678.901 and uses port number 5000. In
this case, URL for agent beta is
“://012.345.678.901:5000/alpha/beta.”

3. DYNAMIC EXTENSION
MobileSpace provides the basic mechanism for agent

migration and remote method invocation. When an agent
wants to invoke a method in another agent, the calling
agent just needs to specify the called agent with URL and
send a message object to the agent. It lacks, however, the
feature that an agent can dynamically extend its
functionality. For intelligent robot control, we add the
dynamic extension feature to customize functions of robots
while they are running.

Suppose an agent A is working somewhere and we
want to extend its feature. One way is to replace that agent
with a new agent B. On the other hand in our system, we
only need to send an agent A’ with the new feature to the
agent A. While the agent A’ is being the child of A, the
agent A behaves with the extended feature. If the agent A’
leaves the agent A, the agent A behaves with the original
feature. All the other agents do not have to be aware of the
change of the agent A. In Figure 3, after an agent A’
migrates to an agent A, the other agent B still
communicates to the agent A without knowing the
migration of A’. The agents A and A’ behave just as a
single agent for the agent B.

012.345.678.901: 5000

Figure ２. URL for agent beta is
:// 012.345.678.901: 5000/alpha/beta

alpha

beta

agent A

agent A agent B

agent B

agent C

agent D

agent C

agent D

before migration

after migration

Figure １. When agent C migrates from agent A to agent
B, the contained agent D also migrates from A to B.

In order to extend the agent A, the agent A’ only needs

to have the difference (the new feature to be added). If the
agents A and A’ have methods with the same signature, the
method in agent A’ override the method with the same
signature in the agent A.

For example, if output method in the agent A is needed
to extend, the agent A’ with new output method is to be sent
into the agent A. The child agent A’ intercepts all the
incoming messages to A and passes through all the
messages except for output request as shown in Figure 4.
For output request, the agent A’ uses its own output method
instead of the output method in the parent agent A. Thus
the agent migration achieves the same semantics with the
dynamic inheritance [10].

The agent A’ is also designed to communicate to B.
Since A and A’ are agents with their own threads, the agent
A can still send messages to B after the arrival of A’.
Therefore it is possible that the message sending of A
interferes the message sending of A’ as shown in Figure 5.

In order to ameliorate this problem, the extending
agent A’ have a mechanism to suppress its parent’s
message sending. It is hard for A to anticipate which of its
messages may be suppressed in the future. Therefore the
parent agent (that is extended) should not have any
responsibility about it. On the other hand, it is easy for A’
to have a list of messages to be suppressed (forbidden list).
Therefore the child agent (that extends the parent) is given
the forbidden list when it is created. The list consists of
pairs of URL and method names that the parent agent is
supposed to refrain to send.

When an agent tries to send a message to another agent,
it checks the forbidden list in the child agent recursively. If
the agent finds that the message it is trying to send is
forbidden, it refrains to send it.

The following is an example for dynamic extension.

The sender agent (Figure 6) sends a message to the reporter
agent (Figure 7) once a second. The getService method in
sender agent sends the message which tells how much
seconds is passed after the sender is created. The reporter
agent just displays the given number in the message. When
these agents start working, the method output in the
reporter agent is called once a second and display the
current content of count.

A

A’ request for A

Figure 4. Every message to A is intercepted by A’. If the
method corresponding to the request is not implemented
in A’, it is passed through A.

checked by A’

pass to A

message
from A

message
from A’

B

B

message to B

message to BA

message to B

message to A

A’

A

before migration

after migration

A’

Figure 5. Agent A’ migrates into A, and tries to
represent for communication to B. Agent A can still
send messages to B, and these may interfere the
messages from A’.

agent A

agent A agent B

agent B

agent A’

agent A’

A and B communicate each other.

B thinks it is still communicating to A.

Figure 3. Dynamic extension by migration of agent
with new features.

A’ migrates to A.

Then we create an extending agent reporter2 (Figure

8) and make it migrate into the reporter agent and override
the output method. The difference between reporter and
reporter2 is the latter’s output method displays annotated
messages. The sender agent sends the same massage to the
reporter agent, but now the arrived message is intercepted
by the extending agent reporter2 and reporter2’s output
method is invoked so that annotated messages are
displayed as shown in Figure 9.

Now we create another extending agent sender2 that
extends the sender agent. Sender2 is the same as sender but
sends a message once per ten seconds. When we make this

extending agent migrate into the sender agent, it starts to
send messages once per ten seconds. However, the original
sender sender is still working and issuing its message once
a second.

This is not a favorable situation. I order to prevent this
interference, sender2 has to have the forbidden list that tells
which methods in the parent agent are supposed to be
suppressed. The addRefusal method invocation in sender2
agent does this task (see Figure 10). The user of this agent
is expected to set the URL and method name by using this
method. Note that the URL is “://reporter/”, not
“://reporter2.” Sender2 does not know the reporter
agent has been extended.

For example, once sender2 have arrived in sender
agent with the proper forbidden list, sender’s message
(output invocation) is suppressed by sender2 and the
reporter agent received the output message once per ten
seconds as shown in Figure 11.

After that, if the child agent of the reporter agent,
reporter2, leaves from reporter and reporter has no child,
the output request from sender2 causes reporter’s output
method invoked and non-annotated messages start to be
displayed again. Then, the state of the target agent for
sender and sender2 (the reporter), is changed, but they need
not know about it. What sender and sender2 know is that
they are sending messages to the reporter agent.

Note that the behavior of the sender agent before the
reporter’s extension is the same as that of after the
reporter’s extension, and that of after the extension is
cancelled (when the child agent leaves).

Similarly, when the child agent of the sender agent
sender2 leaves from sender, sender agent is allowed to
send messages, and reporter agent displays the output once
a second.

addRefusal(new AgentURL(“://reporter/”), ”output”,
 new Class[]{int.class});

Figure 10. addRefusal method invocation

reporter2

Invoking
output method reporter

sender

Annotated messages are displayed.

Figure 9. Upon arrival of reporter2, the new output
method is used.

Public class sender extends Agent implements Runnable,
Serializable, StatusListner, StructureListner {
 Transient private Thread th;
 …
 setName(“sender”);
 …
 public void run() {
 int count=0;
 try {

while (true) {
 count++;
 Thread.sleep(1000);
 Message msg = new Message(“output”);
 Msg.setArg(count);
 getService(new AgentURL(“://reporter/”), msg);
 }
 } catch (Exception e) {System.out.println(e)}

Figure 6. The sender agent.

Public class reporter extends Agent implements
Runnable, Serializable, StatusListner,
StructureListner {
 Transient private Thread th;
 …
 setName(“reporter”);
 …
 public void output(int count) {
 System.out.println(count);
}

Figure 7. The reporter agent.

Public class reporter2 extends Agent implements
Runnable, Serializable, StatusListner,
StructureListner {
 Transient private Thread th;
 …
 setName(“reporter2”);
 …
 public void output(int count) {
 System.out.println(count+” seconds passed after

the sender created.);
}

Figure 8. The reporter2 agent.

Thus the extension and restriction of agents can be

achieved dynamically by the other agents’ migration. It is
not necessary to statically compose the agent program. It is
even not necessary to stop the running agent. It should be a
desirable feature for intelligent robot control program.

4. ROBOT CONTROL EXAMPLE

In this section, we demonstrate that the higher-order
mobile agent with dynamic extension is suitable to
compose software to control intelligent robot.

Intelligent robots are expected to work in distributed
environment and communication is relatively unstable so
that fully remote control is hard to achieve. Also we cannot
expect that we know everything in the environment
beforehand. Therefore intelligent robot control software
needs to have the following features: 1) It should be
autonomous in some extent. 2) It should be extendable to
accommodate the working environment. 3) It should be
replaceable as it is in action. Our higher-order mobile
agent with dynamic extension satisfies all these desirable
features.

Our control software consists of mobile agents which
are autonomous in some extent. Once each agent migrates
to a remote site, it requires minimum communication to the
original site. Mobile agents are higher-order so that one
can construct a larger agent by hierarchical composition of
smaller agents. Finally, when we find that the constructed
software has anomaly, we can replace the unsuitable
component (an agent) with new component (another agent)
by using agent migrations.

4.1 THE ROBOT

We employed Palm Pilot Robot Kit (PPRK) by
ACRONAME Inc. as the platform for our prototype system
[11]. Each robot has three servo motors with tires. The

power is supplied by four AA batteries. It has a servo
motor controller board that accepts RS-232 serial data from
a host computer. We use Toshiba Libretto notebook
computers for the host computers. Each robot holds one
notebook computer as the host computer. Our control
agents are supposed to migrate to the host computer by
wireless LAN (see Figure 12).

4.2 THE CONTROLLER AGENTS

In the beginning, two agents are supposed to migrate to
the host computer to give the basic behavior of the robot.
One is operate agent, and the other is wall agent.

Operate agent can read and write serial data, and
behaves as the interface between PPRK on-board controller
and the intelligent software agent. Wall agent receives
sensor data from operate agent, determines the basic
behaviors of the robot based on that data, and sends
messages such as go-forward, turn-left/right and stop to
operate agent. And then operate agent translates
instructions corresponding to these messages into serial
data and sends to the on-board controller.

In order to achieve these functions, operate agent has
methods to obtain and to release a serial port, to read the
sensor data as well as to instruct the robot movement. To
read sensor data, an event listener is required. The
registration of the event listener is done as a part of
obtaining the serial port.

The sole task of wall agent is to avoid collisions.
When it receives sensor data indicating something exists in
front of it (wall or another robot), it issues instructions to
turn around. This simple collision avoidance algorithm is
implemented in think method in wall agent.

In order to give the robots more intelligent behavior,

reporter2

Invoking output method
once per ten seconds

reporter

Reporter2’s output method is invoked.

Figure 11. Upon arrival of sender2, sender’s output
method is suppressed, and sender2’s is used.

sender2

sender

Sender tries to send output
message, but blocked by
sender2.

Figure 12. Robot control agents are working on
ACRONAME PPRK.

one is expected to extend this wall agent by the dynamic
extension. In this example, two agents, chase and escape,
extend wall agent. Robots with escape agent try to avoid
the chaser as well the wall, while the robot with chase agent
looks for other robots and tries to catch one of them. As a
result, they play the game of TAG. Figure 13 shows the
structure of the agents that control the robot.

The escape and chase agents have their own think
methods so that they can extend wall agent to make the
behaviors of the robots more intelligent. The think method
of escape agents can distinguish the other robots from the
wall, and instruct different behaviors. It can move as close
as 30 cm if it finds the wall in front of it, but it should not
move as close as 60 cm if it finds a robot in front of it,
because the other robot may be the chaser.

The chase agent has two methods. One is its own think
method and the other is arrive method. The think method
of chase agents can also distinguish the other robots from
the wall, and instruct different behaviors. If the robot with
chase agent finds another robot, it chases the robot and tries
to catch it. Since our robots do not have arms, if the chaser
gets as close as 10 cm to another robot, the chaser judges
the other robot to be caught. Figure 14 shows the think
method of the chase agent.

When the robot with chase agent catches another robot,
it migrates to the wall agent on the caught robot, so that the
roles of chaser and escapee can be exchanged each other as
shown in Figure 15. This is done by the move method

invocation in the think method of the chase agent as shown
in Figure 14. Upon arrival in the wall agent on the caught
robot, the chase agent make the escape agent migrate back
to the wall agent on the robot which the chase agent existed
previously. This is achieved by the arrive method in the
chase agent. Figure 16 shows the arrive method.

The chase agent initiates and controls the exchange of
the roles. Therefore other agents e.g. escape and wall agent,
do not have to know anything about the role exchange. In
addition, messages from the operate agent are intercepted
by the child agents, i.e. the escape or chase agent, the
operate agent do not need to know whether it
communicates with the wall agent, the escape agent, or the
chase agent. While chase and escape agents are migrating
to swap themselves, the robot is controlled by the wall
agent, which avoids collision. This simplicity is achieved
by the framework of higher-order mobile agents.

5. CONCLUSION AND FUTURE DIRECTION

We have presented a new framework for controlling
intelligent robots. The framework helps users to construct
intelligent robot control software by migration of mobile
agents. Since the migrating agents are higher-order, the
control software can be hierarchically assembled while
they are running. Dynamically extending control software
by the migration of mobile agents enables us to make base
control software relatively simple, and to add
functionalities one by one as we know the working
environment.

Thus we do not have to make the intelligent robot
smart from the beginning or to make the robot learn by
itself. We can send intelligence later as new agents.

We implemented a TAG playing robots to show the
effectiveness of our framework.

Even though our example is a toy program, our
framework is scalable, and making a practical system is just

public void think(int dist1, int dist2) {
if (dist2<=10) {

 Context cx;
 cx = getContext();
 try {
 cx.move(new AgentURL(“://wall/chase/”,

new AgentURL(nextAddress));
 } catch(Exception e) {System.out.println(e);}
 }
 Message msg;
 if (dist2<100) {
 msg = new Message(“forward”);
 } else {
 msg = new Message(“turn”);
 }
 try {
 getService(new AgentURL(“://operate/”, msg);
 } catch(Exception e) {System.out.println(e);}
}

 Figure 14. think method in the chase agent

wall agent operate agent

sensor data
from the
robot

instructions
to the
on-board
controller

instructions

translated
sensor data

agent for
intelligent
behaviors

migrates and extends
wall agent

Figure 13. Structure of the controller agents. The
base agent MATP is not shown.

made by adding more mobile agents to the base system.
On the other hand, we are aware of the shortcomings of

this prototype. The system lacks of any security features
that are required for practical systems. Also the
implementation of the dynamic extension is not as elegant
as we wish. The current system use rewriting references
and other rather brute force programming techniques. We
plan to re-implement the system based on events and event
listeners.

ACKNOWLEDGMENTS
Masato Kurio and Satoshi Kanesaka contributed in

discussions and implementation of the system.

REFERENCES
[1] D. A. Pomerleau, “Defense and Civilian Applications of
the ALVINN Robot Driving System”, Proceedings of
Government Microcircuit Applications Conference, 1994.

[2] D. A. Pomerleau, “ALVINN: An Autonomous Land
Vehicle in a Neural Network”, Advances in Neural
Information Processing System 1, Morgan Kaufmann,
1989.

[3] R. R. Murphy, Introduction to AI robotics, MIT Press,
2000.

[4] M. Mataric, “Minimizing Complexity in Controlling a
Mobile Robot Population”, Proceedings IEEE
International Conference on Robotics and Automation,
1992.

[5] L.E. Parker, “ALLIANCE: An Architecture for Fault
Tolerant Multirobot Cooperation”, IEEE Transaction on
Robotics and Automation, vol. 14, No. 2. pp.20-240, 1998.

[6] W. Binder, J. G. Hulaas and A. Villazon, “Portable
Resource Control in the J-SEAL2 Mobile Agent System”,
Proceedings of International Conference on Autonomous
Agents (AGENTS'01), pp.222-223, May 2001.

[7] I. Satoh, “Hierarchically Structured Mobile Agents and
their Migration”, Workshop on Mobile Object Systems
(MOS'99), July 1999.

[8] I. Satoh, "MobileSpaces: A Framework for Building
Adaptive Distributed Applications using a Hierarchical
Mobile Agent System", Proceedings of IEEE International
Conference on Distributed Computing Systems
(ICDCS'2000), pp.161-168, IEEE Computer Society, April
2000.

wall

escape

operatewall

chase

operate

wall

escape

operatewall

chase

operate

(a) When the chaser catches the escapee, the chase agent
migrates to the wall agent on the escapee.

(b) Migrated chase agent makes the escape agent migrate back
to where the chase agent came.

wall

chase

operatewall

escape

operate

(c) The escape agent is moved by the chase agent, and the
exchange of the roles is over.

Figure 15. The chaser catches the escapee and they
swap their roles.

public void arrive(StructureEvent e) {
 Context cx;
 cx = getContext();
 try {
 cx.move(new AgentURL(“://wall/escape/”,

new AgentURL(nextAddress));
 } catch(Exception x) {System.out.println(x);}
}

Figure 16. arrive method in the chase agent

[9] L. Cardelli and A. D. Gordon, “Mobile Ambients”,
Foundations of Software Science and Computational
Structures, LNCS, vol. 1378, pp. 140-155, 1998.

[10] M. Abadi and L. Cardelli, A Theory of Objects,
Springer-Verlag, 1996.

[11] Acroname Inc. home page, http://www.acroname.com/

