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Abstract

We consider the fundamental problem of reconstruct-
ing a map when the given data is the set of road
travel distances among cities in a region. This prob-
lem is the “inverse” of the distance estimation prob-
lem, in which the goal is to determine a good estima-
tor for inter-city road travel distances. More specifi-
cally, given the road distances among cities in a geo-
graphical area, we attempt to determine the locations
of the cities in a two dimensional map so that the
Euclidean inter-city distances approximate the actual
road distances as closely as possible. The reported so-
lutions to this problem are few, and primarily involve
multi-dimensional scaling techniques. We propose an
adaptive method to overcome their distinct disadvan-
tages. The new method has been rigorously tested on
different data sets obtained from various countries.
Our results have also been compared with the perfor-
mance of the classical multi-dimensional scaling and
ALSCAL. The accuracy of the proposed method is
superior. It has also two additional desirable proper-
ties. First, we can obtain point configurations even
if some of the input data are missing. Second, it
becomes possible to determine configurations where
points representing cities are located close to the orig-
inal ones.

1 Introduction

One of the classic problems studied in operations re-
search and geographic information systems is the dis-
tance estimation problem, which involves the deter-
mination of a good estimator for the inter-city road
travel distances evaluated as a function of the city co-
ordinates in the map. This problem has been exten-
sively studied because of its importance in location,
distribution and logistic problems [1, 2]. The distance
estimation problem has an “inverse” problem which
we call the map reconstruction problem (referred to

as MapRecon in the following). It is based on resolv-
ing the following question: Given the road distances
among a set of cities, determine locations for cities
where distance relationships are preserved. Observe
that this is a rather general problem, since the com-
puted configuration for the cities can be regarded as
an abstract map reflecting a hidden structure.

From the above perspective, the reader will observe
that MapRecon has a close connection with multi-
dimensional scaling (MDS). The main goal of MDS is
to visualize and analyze similarities or dissimilarities
between “objects” using a lower dimensional repre-
sentation of their feature vectors, while, in turn, si-
multaneously preserving the hidden structure.

The first MDS method was proposed by Torger-
son [3], and historically has its roots in psychometrics
where it was used to discover people’s judgments on
the similarity of various objects. The literature on
MDS is fairly extensive. In the context of this paper,
the excellent book by Borg and Groenen [4] should
suffice to update any interested reader.

In terms of nomenclature, if the MDS methodology
is based on measured dissimilarities (at the ratio level
of measurement), it is called a metric MDS. In this
case the aim of the exercise is to find a configuration
of points that preserves the scaled dissimilarities be-
tween the objects. Typically, this scaling is achieved
by a transformation function. If the MDS is based on
proximities obtained at the ordinal level of measure-
ment (e.g., judgements, perceptions), the scheme is
referred to as a nonmetric MDS. In nonmetric MDS
[5] we assume that there is a monotonic relationship
between the inter-point distances and observed prox-
imities. This, in turn, means that the reproduced
distances are constrained to preserve the rank order
among the similarities or dissimilarities rather than
the actual distances among objects.

MapRecon is equivalent to the metric MDS where
objects are cities in a given region, and dissimilar-
ities among objects are considered to be road dis-



tances among the cities. To formally formulate the
problem, we first of all observe that if we are given
a matrix ∆ = [δij : i, j = 1, ..., n] of road distances
between all pairs of n cities, these cities can be rep-
resented by n points in a Euclidean space En−1 such
that the Euclidean inter-city distances dij are equal
to δij for all i, j provided that the elements of ∆ sat-
isfy the metric inequality. The problem becomes both
pertinent and non-trivial if we have to represent the
cities by n points in a lower dimensional subspace
Er where r << n − 1. It is clear that in the case
of MapRecon, r = 2. An analytical technique, re-
ferred to as the classical MDS (CMDS) [6] has been
shown to be capable of exactly reproducing the road
distances when they are Euclidean (i.e., δij = dij).
Indeed, with a little imagination, this technique can
also be employed when the road distances are approx-
imately Euclidean. Since typical road distances can
be perceived as being Euclidean distances distorted
by errors, CMDS has been used to solve the map
reconstruction problem [7]. However, such solutions
possess a fundamental “infirmity”, namely, that the
reproduced inter-city distances deviate significantly
from the true road distances, resulting in a solution
with poor accuracy. In this context, accuracy is mea-
sured in terms of the discrepancy between actual road
distances and their estimates obtained by MDS.

Apart from the considerations mentioned above,
MDS techniques possess a few other important draw-
backs. The first one is related to the number of in-
put dissimilarities or distances that are necessary to
determine a feasible and meaningful location for the
objects. Traditional MDS algorithms require an n×n
matrix of input dissimilarities, where n is the num-
ber of objects. This could be problematic because
of the resource limitations (cost, time etc.) involv-
ing the data collection procedure. Another impor-
tant fact is that a map created by any MDS method
is usually orientation-free, that is the orientation of
the points representing the objects is arbitrary. Gen-
erally speaking, this does not pose a significant prob-
lem since most of the time we are only concerned with
the proximity of the reproduced points on the lower
dimensional map, which enables us to “visually” dis-
cover the hidden structure in the data. There may
be occasions, however, where apart from the dissimi-
larity that exists between the “objects”, we have fur-
ther information about some of the objects. This in-
formation could be physical measurements about the
objects along a set of dimensions such as the latitude
and longitude of cities. In such a case the objective
becomes to discover a relation between the coordi-
nates of the objects (possibly in a high dimensional
space) and the positions of the points representing

these objects in a lower dimensional space by pre-
serving the proximities. Steyvers [8] gives an exam-
ple of this in a psychological context. He points out
that when the physical representation of the features
comprising the stimuli is ignored, as in a traditional
MDS technique, it becomes difficult to interrelate the
actual positions of stimuli with the points on the map
that represent the stimuli. This happens because the
orientation of the points on the reproduced map turns
out to be different from the original map of objects
due to the possible translation, rotation and reflection
phenomena.
In this work we propose a new adaptive scheme for

solving the map reconstruction problem. It can find
spatial representations of cities even if some of the
road distance data between cities are missing. The
procedure is implemented and tested on several data
sets where each data set consists of inter - city road
travel distances in a given region. We have compared
the performance of the new method with that of the
CMDS and ALSCAL [9]. We use ALSCAL that is
available in SPSS 10.0 for Windows. Experimental
results have shown that the performance of the new
method is better in terms of the scaling error mea-
sured by the stress function. Furthermore, the final
locations of the cities tend to overlap with the original
locations.
In the next section CMDS and ALSCAL are briefly

explained. The new adaptive method is introduced in
Section 3. Section 4 includes experimental results on
the performance of the new method. Finally, Section
5 concludes the paper.

2 Map Reconstruction With
Classical MDS and ALSCAL

If we know the coordinates of two points in a mul-
tidimensional coordinate system, the Euclidean dis-
tance between these two points is easily calculated.
If the p-dimensional coordinates of n points are given
in an n × p dimensional matrix, say X, where each
column corresponds to a dimension, and each row cor-
responds to a point, then the Euclidean distances be-
tween all pairs of points can be calculated by using
the entries of n × n dimensional matrix B = XXT

where brs =
Pp

j=1 xrjxsj . When we put the center of
gravity of the points at the origin,

Pn
r=1 xrj = 0,

j = 1, ..., p, the sum of any row or column of B
will be zero. Since B is symmetric, we can write
B = QΛQ−1 or Λ = Q−1BQ where Q is the matrix
whose columns are the eigenvectors of B. If B is pos-
itive definite, all the eigenvalues are greater than zero



and it follows that

B = QΛQ−1 = QΛ1/2Λ1/2Q−1 = XXT (1)

Hence the coordinates of n points may be found by
setting X = QΛ1/2.
If the distances obey the triangular inequality, B

will be positive semidefinite. As mentioned before,
unless the road distances are exactly Euclidean, there
will always be a discrepancy between the reproduced
(Euclidean) distances and true road distances. In
most cases, road distances among cities in a region
are larger than the Euclidean distances because of
natural barriers such as lakes, rivers, mountains etc.
In order to assess the performance of any other MDS
technique we have to use a goodness-of-fit criterion
that measures the deviation between the Euclidean
distances among points on the map and original dis-
tances among objects. One of the most widely used
measures is the stress function. There are different
stress functions in the literature, normalized stress,
raw stress, Kruskal stress and S-stress. We will use
the Kruskal stress (also known as “Stress formula
1”) which is provided in the output of ALSCAL. It
was first proposed by Kruskal [11] in 1964 when he
coined the term STRESS (standardized residual sum
of squares). The formula for the stress is as follows:vuutP

i<j (f (δij)− dij)
2P

i<j d
2
ij

(2)

In this formula dij refers to the Euclidean distance
between points i and j on the map, kxi − xjk , where
xi and xj are the coordinates of points i and j. f (δij)
is a linear transformation function. Note that when
the original distances are preserved perfectly for all
city pairs i and j, then f (δij) = dij for all i, j and the
stress is zero. Hence, a smaller stress value indicates
a better representation. In the case of CMDS, the
function f is the identity function, i.e., f (δij) = δij .
In such a case the stress function becomesvuutP

i<j (δij − dij)
2P

i<j d
2
ij

(3)

In other words, they are absolute MDS techniques.
ALSCAL, on the other hand, uses a linear transfor-
mation function f (δij) = αδij for scaling the original
distances.
In Section 4, different methods will be compared in

terms of STRESS given with formula (3).

3 The New Method

Our aim is to determine a two-dimensional config-
uration for a set of n points in such a way that
the inter-point Euclidean distances approximate the
inter-city road distances as closely as possible. To
achieve this, we will not use any matrix-based com-
putations. Rather, we will perform operations on the
points that “resemble” the operations done in vec-
tor quantization (VQ) and Kohonen’s Self-Organizing
Maps (SOM). As a consequence the new method can
be said of having a "real time" flavor.
Rather than representing the entire data in a com-

pressed form using estimated parameters, VQ [10]
opts to represent the data in the actual feature space
by compressing the information using a “small” set
of vectors, called the code-book vectors. These code-
book vectors are migrated in the feature domain so
that they collectively represent the distribution under
consideration. In both VQ and the SOM the polar-
izing algorithm is repeatedly presented with a point
i from the set of points of a particular class. Each
point i is represented by its feature vector ui. The
neurons attempt to incorporate the topological infor-
mation which is present in ui. This is done as follows.
First of all, the closest neuron to i at time t, j∗, is de-
termined (also called the “winner”). It is represented
by the vector yj∗(t). Here t is the discretized (syn-
chronized) time index. This neuron and a group of
neurons in its neighborhood, Bj∗(t), are now moved
in the direction of ui. The set Bj∗(t) is called the
“bubble of activity” at time t. The actual migra-
tion of the neurons is achieved by rendering the new
point yj(t+1) representing neuron j, to be a convex
combination of ui and yj(t), j ∈ Bj∗(t). The bub-
ble of activity, Bj∗(t), is the parameter which makes
VQ differ from the SOM. Indeed, if the size of the
bubble is always set to be zero, only the closest neu-
ron is migrated, yielding a VQ scheme. However, in
the SOM, the nearest neuron and the neurons within
the bubble are also migrated, and it is this widened
migration process which permits the algorithm to be
both topology preserving and self-organizing.
Elegant though they are, VQ and SOM methods

cannot be directly applied to the MapRecon prob-
lem. The reasons for this are the following. First
of all, unlike in the fields of VQ and SOM, there is
no question of presenting a city (a data point) to the
network because, there is no available data point. All
that is available is the set of inter-city road travel
distances. Secondly, as a consequence of the latter,
there is no question of a “winning neuron” which wins
the competition. This, further disallows the entire is-
sue of defining “neighbor neurons” and a “bubble of



activity”.
NeuroMapRecon operates by representing each city

by a neuron in a two dimensional space. As a pre-
processing step, the elements δij of the distance ma-
trix are normalized by dividing them by the largest
element in the matrix. The initialization of the neu-
rons are performed by assigning them weights (coor-
dinates) that are uniformly distributed on the unit
square (i.e., in the interval [0, 1] along the x and y
dimensions). The migration occurs as follows.
At each iteration t of the new method, a random

pair of cities (i, j) is selected from among n cities. The
road distance between these two cities is compared
with the estimate obtained by calculating the Eu-
clidean distance dij(t) between the weights of neurons
i and j representing cities i and j. If the distance be-
tween neurons i and j1 is less than the road distance
between cities i and j, i.e., dij(t) < δij , the neurons
are clearly “too close for comfort”. To compensate for
this, the weights of the neurons are updated. To put
it differently, the neurons are moved away from each
other along the line connecting them by an amount
proportional to the difference between dij(t) and δij .
The proportionality factor is a parameter called the
“step size”, µ (t). As a result, both neuron i and j are
moved by an amount equal to µ (t) (δij − dij(t)) /2 so
that the distance between the neurons increases by
µ (t) (δij − dij(t)). The value of µ (t) is reduced once
all n(n− 1)/2 pairs of cities are presented twice and
the corresponding neurons are updated as it is tra-
ditionally done in VQ and SOM. One such iteration
is referred to as an cycle of the new method. In our
implementation the initial value of µ (t) is equal to
unity and it is decreased linearly according to the
following rule: µ (t) = 1 − t/1000. If the distance
between neurons i and j is too far apart, the weights
of the neurons are updated by an amount equal to
µ (t) (dij(t)− δij) /2 such that the distance between
neurons i and j and the corresponding road distance
come closer to each other by µ (t) (dij(t)− δij).
Note that we do not use the diagonal elements

δii = 0 in the updates, and that in each cycle ev-
ery pair is introduced twice to the algorithm in order
to increase the rate of convergence. The termination
criterion is based on the improvement in the stress of
the configuration. If the reduction of the stress value
in two consecutive cycles turns out to be less than
a predetermined small value �, the algorithm termi-
nates and the current configuration of the neurons is
accepted as the solution. The steps of the method are
given below formally.

1The distance between two neurons is defined as the Eu-
clidean distance between the weights of these neurons.

Input: Scaled distance matrix ∆ and � = 10−6

Output: Spatial representation of cities in E2

0 Generate n neurons with yi(0) ∈ (0, 1) ,
1 ≤ i ≤ nstress(0)←∞ and t← 1

1 For each city pair i and j
Do the following in a random order:
If dij(t) ≤ δij , move i and j apart
by an amount µ (t) (δij − dij(t)) /2

If dij(t) > δij move i and j closer
by an amount µ (t) (dij(t)− δij) /2

2 If stress(t) ≤ stress(t− 1) and
stress(t− 1)− stress(t) < � Then stop
Else t← t+ 1, decrease µ (t) and GoTo Step 1

The algorithm described above, clearly, has the ef-
fect that it moves every pair of neurons in such a man-
ner that their Euclidean distance after the migration
is closer to the road distance than it was before the
migration. Thus, if the road distances are themselves
Euclidean, as assumed in the CMDS, it is possible
that the neurons will converge to a configuration for
which the stress is zero. Numerical results supporting
this claim are provided in the next section.
In addition to STRESS we use a second perfor-

mance criterion referred to as the average location
error in order to measure the deviation between the
reproduced map and the original map of the cities.
It is defined as follows: LE =

¡P
i∈S ei

¢
/n. Here, ei

is the Euclidean distance between city i and neuron i
which represents city i on the reconstructed map, n is
the number of cities, and S is the set of cities where
|S| = n. It is important to note that the location er-
ror can only be computed if the city coordinates are
available as part of the data. In real-life applications
where MDS is used, we do not have access to this in-
formation. Otherwise MDS would not be necessary.
Our motivation in using this error measure is to show
the value of the extra information (the coordinates of
at most two cities) in reproducing maps as faithfully
as possible to actual maps. Notice that when the in-
put distance matrix consists of Euclidean distances
and we obtain a city configuration with no distor-
tions such as translation, rotation and reflection, the
final coordinates of the neurons will overlap with the
cities they represent. In other words, the positions of
the cities in the reconstructed map will exactly match
with the locations of the cities in the actual map. In
such a case, ei = 0 for all i ∈ S resulting in zero
location error. However, this is only possible if the
inter-city distances are Euclidean. This means that
it is not possible to have a zero location error with
a distance matrix consisting of road travel distances.
Therefore reconstruction methods with small location
errors are capable of producing maps preserving not
only distance relations but also locational proximity.



4 Experimental Results

Using six different data sets consisting of inter-city
road travel distances from various countries, we have
compared the performance of three methods, i.e.,
CMDS, ALSCAL and the new method. Each method
is employed to reproduce the locations of the cities for
each data set. In the interest of nomenclature, the
data sets are referred to by the name of the country
from which they are sampled [13]. With the exception
of Türkiye data, the number of cities in each data set
is 15 resulting in a 15×15 distance matrix. The data
for Türkiye consists of inter-city distances among 80
cities, which gives rise to an 80×80 distance matrix.
We have two kinds of inter-city distances, Euclidean
distances and true road travel distances among the
cities.
The performance of the three methods is evaluated

based on two criteria. The first one is STRESS given
with formula (3). It is a very frequently used measure
in the MDS literature, and also one of the two mea-
sures employed in ALSCAL (the other is S-stress).
The other performance measure is the average loca-
tion error.
It is possible to divide our experiments into three

groups. In the first one, the road distances are Eu-
clidean. The second set of experiments is carried out
when the road distances are true. In many real life
applications some of the inter-city road travel dis-
tances could be missing. Considering this, we per-
form a third group of experiments where the distance
matrix is not complete. First 5, then 10 entries of the
distance matrix are chosen randomly and they are not
used as an input to the methods with the exception of
the CMDS since the latter is not designed to handle
missing input data. Therefore, we compare the new
method only with ALSCAL in this case.
In all of the experiments the learning rate µ(t) is

decremented linearly starting at unity, according to
the update equation µ(t) = 1 − t/1000. Clearly this
allows for 1000 or less epochs.

4.1 Results when Road Distances are
Euclidean

For each data set, the new method is employed to
reconstruct the map when the road distances among
the cities are considered to be Euclidean. STRESS
values reported in Table 1 demonstrate the accuracy
of the new method. Recall that, as the distances
are Euclidean, CMDS and ALSCAL guarantee final
configurations with a zero STRESS value. There-
fore, no row is given for them in Table 1 (to save
space we use the following abbreviations for countries:

A C E F T U
4×10−8 0.0024 4×10−8 4×10−8 6×10−8 0.01

Table 1: Stress values for Euclidean data by the new
method.

A C E F T U
1 3787 3690 614 855 312 3639
2 3787 3646 536 897 694 2933
3 1605 2739 408 457 787 2310

Table 2: Location error values for Euclidean inter-city
distances.

A=Australia, C=Canada, E=England, F=France,
T=Türkiye, U=United States). Since the final con-
figuration obtained by the new method depends on
the initial weights (coordinates) of the neurons, we
performed 10 replications, where neurons were as-
signed random initial weights in each case. Reported
numbers are the average stress values. The results
obtained by the new method are very close to zero
showing the success of the method. It undoubtedly
performs almost as well as CMDS and ALSCAL on
the Euclidean data.
In this setting, we would like to mention that there

is no accepted standard as to what value of the stress
can be used as an indicator of a good representation.
As a rule of thumb, we have resorted to the classi-
fication given by Kruskal: Any value less than 0.05
is excellent, values between 0.05 and 0.1 are satisfac-
tory, and anything above 0.15 is unacceptable. From
the results given in Table 1 we conclude that the per-
formance of the new method is excellent.
Average location errors (rounded off to the nearest

integer) are presented in Table 2. (to save space we
use the following convention: 1=CMDS, 2=ALSCAL,
3=New method). Since the results obtained by
CMDS and ALSCAL do not depend on the initial
conditions, there is no need for repeating the runs in
either of these methods. On the other hand, we re-
port the average values of 10 replications obtained by
the new method. We observe that the location error
usually decreases for all data sets as the method goes
from classical MDS to NeuroMapRecon. Exception
can be observed for France and Türkiye. For Türkiye
data CMDS has the smallest location error. The sec-
ond best is ALSCAL. As for France data, the location
error of CMDS is the smallest, but the new method
performs better then ALSCAL this time.
Figure 1 illustrates the final configuration that is

obtained for the USA data with CMDS when inter-
city road distances are Euclidean, while Figure 2
displays the points generated by ALSCAL. Finally,



Classical Scaling Actual Locations

Figure 1: Final configuration obtained by classical
MDS.

ALSCAL Actual Locations

Figure 2: Final configuration obtained by ALSCAL.

Figure 3 shows the locations obtained by the new
method. In all figures actual locations are also plot-
ted in order to visualize final deviations.

4.2 Results when Inter-city Road
Travel Distances are not Eu-
clidean

When the distance matrix consists of inter-city road
travel distances which are not Euclidean, the final
configurations obtained by CMDS and ALSCAL have
nonzero stress values. It is for such real-life data set-
tings that the new method demonstrates its true ad-
vantages. Stress values and location errors obtained
with all three methods are given in Tables 3 and 4,
respectively. The values given for the new method are
again the average values over 10 replications depend-
ing on the strategy. Based on the STRESS values
reported in Table 3 we can say that ALSCAL per-
forms better than CMDS while the new method is
the best method with respect to both performance
measures. According to the stress scale proposed by
Kruskal the new method seems to be “excellent”.

A C E F T U
1 0.0557 0.0252 0.0639 0.0345 0.0469 0.0419
2 0.0509 0.0230 0.0600 0.0312 0.0422 0.0376
3 0.0452 0.0131 0.0444 0.0276 0.0390 0.0295

Table 3: STRESS values for true inter-city road travel
distances.

A C E F T U
1 3102 2761 639 866 793 2939
2 3896 3930 551 897 792 2936
3 1938 2869 452 472 806 2438

Table 4: Location error values for true inter-city road
travel distances.

4.3 Results for Incomplete Data Sets

The new method can also reconstruct maps even if
some of the distance data are missing. In order to
demonstrate the efficiency of the new method with
respect to this property, experiments are conducted
by removing some elements of the distance matrix,∆.
In order to reduce the bias, for each data set the ex-
periments are repeated 10 times by randomly remov-
ing first 5 and then 10 δij’s from ∆. Since the final
configuration given by the new method is dependent
on the initial weights of the neurons, 10 replications
are performed with random neuron initializations for
each of the 10 runs. Note that a different set of dis-
tances are removed from ∆ in each run. Therefore,
STRESS values reported in the second and fourth
columns (new method columns) of Table 5 are the
averages of 100 replications. However, random ini-
tialization is not possible for ALSCAL and thus the
numbers given in the third and fifth columns of Table
5 are the averages of 10 stress values.
Results obtained with the new method are again

New Method Actual Locations

Figure 3: Final configuration obtained by the new
method.



5 missing δij 10 missing δij
New M. ALSCAL New M. ALSCAL

A 0.04429 0.03898 0.04762 0.04805
C 0.01313 0.04126 0.01284 0.02126
E 0.04183 0.04130 0.04779 0.05788
F 0.03089 0.04068 0.02854 0.02902
T 0.03909 0.08008 0.03907 0.04212
U 0.04460 0.04304 0.03626 0.03401

Table 5: Performance of the new method when some
input data is missing.

superior. Even in the presence of missing input data,
it is capable of finding a final configuration with “ex-
cellent” stress values. ALSCAL performs slightly bet-
ter for the Australia and England data with 5 missing
values, and for the USA data with 5 and 10 missing
values.

5 Conclusions

In this paper we have considered the fundamental
problem of reconstructing a map when the given data
is the set of distances among cities in a region. This
is the “inverse” of the distance estimation problem
where the goal is to determine a good estimator for
inter-city road travel distances as a function of given
city coordinates. In the map reconstruction problem
our aim is to determine the location of the cities in
a two dimensional map such that the Euclidean dis-
tances among the points in the obtained configuration
approximate true road distances as closely as possi-
ble. The reported solutions to this problem are few,
and primarily involve traditional techniques used in
MDS.

The solution we propose, called the new method, is
very accurate and does not involve any intricate ma-
trix computations. It is also adaptive and can be said
to be of a “real time” flavor. The new method has
been rigorously tested on different data sets consist-
ing of inter-city road travel distances obtained from
various countries by comparing the results with those
provided by CMDS method and ALSCAL. The ac-
curacy of the proposed method is superior. The new
method has also the following two desirable proper-
ties. First, it can reproduce configurations even if
some of the input data are missing. Second, it is
possible to obtain configurations without translation,
rotation and reflection so that cities are located very
close to their original locations.
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