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ABSTRACT 
The association rule mining is a fundamentally important task 
in the process of knowledge discovery in large databases. 
Several algorithms have been developed for single-level, 
single-dimensional, Boolean association rule mining. Some of 
them require a small amount of memory, but heavy disk access 
(such as Apriori-like algorithms); others necessitate low I/O 
activity, but large amount of memory (such as FP-growth). 
Different algorithms support different applications and 
requirements depending on the technical background. For this 
reason it is desirable to classify these algorithms.  

In this paper a trade-off is illustrated, namely, which 
aspects of selection should be considered, when one classifies 
association rule mining algorithms. Well known algorithms are 
categorized with these criteria, and the concept of restricted 
association rule mining is introduced. Necessary modifications 
are also shown to the algorithms assuming that not all frequent 
itemsets are needed, only those with maximal size of a given 
threshold. The paper examines the mining time for both the 
original and the modified algorithms, and calculates the profit.  

1. INTRODUCTION 
The association rule mining is a fundamentally important task 
in the field of data mining. It is a process of discovering not 
trivial relationships between data in large databases. The 
problem of association rule mining was first introduced by 
Agrawal et al in 1993 [1]. Since then it is one of the most 
popular research area on the field of knowledge discovery.  

The association rule mining problem is commonly known 
as the market basket analysis, but there are several applications 
that use association rules as well i.e. biological research areas, 
telecommunication and network analysis etc.  

Regarding the diversity of the applications that use 
association rule mining, several algorithms have been 
developed. All of these algorithms have their own advantages 
and disadvantages, so it is useful to compare them. Most of the 
algorithms find all frequent itemsets but there are several 

applications that do not need all of them. For this purpose we 
introduce the restricted itemset mining problem in which the 
algorithm finds only the maximal k-frequent itemsets. 

The organization of the paper is as follows. Section 2 
introduces the problem of association rule mining. Section 3 
discusses the aspects of classifying the frequent itemsets 
mining algorithms. In Section 4 we classify the most common 
known algorithms based on these aspects. In Section 5 we 
introduce the restricted sized itemset mining problem which 
means, that the algorithm need to discover not all frequent 
itemsets, but only those, which size is less than a given 
threshold. We also show in this section, how the algorithms 
have to be modified for this purpose. In section 5 we present an 
experimental analysis of the original and the modified 
algorithms. We conclude in section 7.  

2. PROBLEM STATEMENT 
The association rule mining problem is defined as follows. Let 

},...ii,{iI n21=  be the set of items. Let D be the set of task 
relevant data. D contains database transactions Ti, where 
transaction Ti is a subset of the items in I. The transaction Ti 
also contains an identifier TID. Let A and B be a set of items. 
Then the association rule is defined as follows: 

∅=∩⊂⊂→ BAandI,BI,AwhereB,A cs, . We say, that 

the rule BA cs→ ,  holds in the transaction set D with support 
s and confidence c, where s is the percentage of transactions in 
D that contain both A and B, and c is the percentage of 
transactions in D containing A that also contain B. There are 
two thresholds for these two values called minimum support 
(minsup) and minimum confidence (minconf) threshold. Rules 
satisfying both are called strong association rules.  

Those itemsets, which support is over the minimum 
support threshold are called frequent itemsets (FI). The itemset 
X is called a maximal frequent itemset (MFI), if X is frequent, 
and there is no superset of X, that is frequent. The itemset X is 
called frequent closed itemset (FCI), if there does not exist an 
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itemset X’ such that X’ contains X and t(X) = t(X’), where t(X) 
denotes the set of transactions containing the itemset X.  

The process of the association rule mining can be divided 
into two separate phases. In the first step the frequent itemsets 
have to be discovered. In the second step the association rules 
have to be generated from these frequent itemsets. The frequent 
itemsets are needed not only to generate association rules, but 
discovering frequent itemsets is also the first step of other data 
mining task i.e. sequential pattern mining, etc.  

The frequent itemsets are determined from the original 
database, which can scale up to terabytes in size. The 
association rules are retrieved from the frequent itemsets, which 
size is much smaller than the size of the original database. It is 
conceivable that from the two steps the first one is the most 
time consuming [1], so most of the published association rule 
mining algorithms deal with the problem of efficiently 
discovering the frequent itemsets.  

Certain applications deal with data of various 
characteristics. In one case, the size of the transactions can be 
relatively short, for example in market basket data; in other 
cases it can be relatively long, for example in biological data. 
So the length of the frequent pattern can also be short or long. 
In the first case, we say that the database is spare in the second 
case we say it is dense.  

3. ASPECTS OF CLASSIFYING 
In this paper we classify the frequent itemset mining algorithms 
considering the following aspects: 
• The type of the discovered frequent itemset 
• Using candidates 
• The representation of the transactions 
• The itemsets representation used in the algorithm 
• The number of disk access 
• The completeness of the generated frequent itemsets 
• The length of the maximal frequent pattern 

The type of the discovered frequent itemset 
There is an essential difference what the algorithm searches for. 
An algorithm may discover all frequent itemsets, or the 
frequent closed itemsets or only the maximal frequent itemsets. 

By means of the frequent itemsets all the association rules 
can be determined. The number of these rules is huge and more 
importantly some of them are redundant. Therefore the concept 
of frequent closed itemsets and the concept of association rules 
based on frequent closed itemsets were introduced in [2]. It is 
susceptible of proof that all association rules that can be 
deducted from the frequent itemsets can also be deducted from 
the association rules based on frequent closed itemsets. Because 
the cardinality of the frequent closed itemsets is much smaller, 
than the cardinality of the frequent itemsets, many algorithms 
solve the problem of finding the frequent closed itemset in 
place of finding all frequent itemsets. These algorithms are 
commonly faster.  

Mining the maximal frequent itemset lead to a loss of 
information, because it does not contain the support 
information of the subsets and the maximal frequent itemsets 
only in themselves are not useful for generating association 
rules. There are applications where the set of maximal patterns 
is needed, such as combinatorial pattern discovery in biological 
applications [3]. In those cases the purpose is to determine the 

maximal frequent itemsets, because the set of MFI is in orders 
of magnitude smaller than the set FCI, and FCI is in orders of 
magnitude smaller than FI. So it is easy to see, that MFI ⊆ FCI 
⊆ FI. 

Using candidates 
The algorithms can be distinguished whether it uses candidates 
during the mining process, or not. This can be important, 
because in many cases the number of candidates can be very 
large, while the number of the frequent itemsets is small. In this 
case using candidates may have a drawback. 

Certain algorithms generate candidates during the 
discovering process of the frequent itemsets. These algorithms 
generate first candidates, than each single candidate is checked, 
if its support is greater than the minimum support threshold. 
Other algorithms don’t use candidates to discover the frequent 
itemsets. Both of the two algorithms have its advantage and 
disadvantage. The disadvantage of using candidates is in 
general, that there are a huge amount of candidates, and only a 
few are proved frequent.  

The representation of the transactions 
It is of interest, and it is considerable which transaction-
representation should be used by the algorithm. The decision on 
choosing the right transaction representation depends on several 
factors. One of them is how the original dataset or database is 
organized that is, in which form is the data available for the 
algorithm. Another point of view is which representation is 
more suitable for the internal operation of the specific 
algorithm. The representation of the transactions can be 
fundamentally the following: horizontal item list, horizontal 
item vector, vertical TID (transaction identifier) list, and 
vertical TID vector. 

Each representation has its advantages and disadvantages. 
It is worth considering which form of data the actual algorithm 
should deal with. There are two ways organizing the 
transactions. In the one way for each transaction the items are 
enumerated, that are held by the given transaction. In the other 
way for each item the transactions IDs are enumerated, that 
holds the given item. There are four groups of transaction 
representation.  
• Horizontal item list (HIL) 

The representation of a transaction contains a transaction 
id (TID), and for each transaction, there is an ordered list 
of the items.  

• Horizontal item vector (HIV) 
The representation of a transaction contains the TID, and 
the items belonging to a transaction is represented in a bit 
vector. The length of the vector is the same as the number 
of the items (n). The i-th bit in the vector is 1, if the 
transaction holds the i-th item otherwise it is 0.  

• Vertical TID list (VTIDL) 
For each item there is a list of TIDs. These TIDs are the 
IDs of those transactions that hold the given item. 

• Vertical TID vector (VTIDV) 
In this case, for each item there is a bit vector. The length 
of the vector equals the number of the transactions in the 
database. For each transaction belongs a bit. If the i-th 
transaction holds the given item, than the i-th bit is 1 in 
the vector, otherwise 0. 
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The advantage of the list representation is, that we use 
storage space only for those items (or transactions), which 
belong to the given transaction (or item). In the case, if the 
number of the items in a transaction is relatively small, it is 
worth using this representation. There is a case for the 
horizontal item list that the data is available almost in this form; 
it is no need for transformation from the one representation to 
another. The advantage of the vertical TID vector is, that we 
can calculate the support of an itemset only by intersecting 
(logical AND operation) the two vectors, that belong to the 
parts of the itemset unlike in the case of horizontal 
representation, when we have to go through all the transactions 
list, and count the occurrences of the given items. The vertical 
TID vector can be more efficient than the vertical TID list, if 
the average number of the occurrence is bigger than N/32 
(where N denotes the number of transaction in the database), 
because if we store a TID in 32 bits, and an item occurs in more 
than N/32 transactions, then it is more efficient to hold them in 
a vector [3]. It may happen, that we use various form of 
representations during the algorithm depending on which form 
fits better to our needs.  

The itemsets representation used in the algorithm 
Regarding the computational costs and the performance it is an 
important aspect, how the algorithms handles the data. A hash-
tree, a lexicographical-tree or a bipartite graph can be built. 
Another important aspect is how the tree is traversed. 

The itemsets representation used in the algorithm can be 
diverse. The most common used structure is the lexicographical 
tree. The lexicographical tree is defined as following [4]: 
(1) To each frequent itemset belongs a node in the tree. The 

root node belongs to the null itemset. 
(2) Let I={i1,…ik} be an itemset, where i1, i2, .. ik are listed in 

lexicographical order. The parent of the node I is the 
itemset {i1,…ik-1} 

The algorithms that use this structure can differ in the way, how 
the tree is traversed. It can be a depth-first strategy (DFS), a 
breadth-first strategy (BFS), or a hybrid strategy. The 
algorithms reduce the searching area by pruning the tree based 
on a priori information.  

In another case, not the candidate itemsets are represented 
during the algorithm, but the transactions itself. Here a tree 
contains the transactions in a compressed way, and the frequent 
itemsets can be discovered from this tree without candidate 
generation. For example the FP-growth algorithm [5] that 
transforms the database into an FP-tree. 

The third form is to use a bipartite graph. Bipartite graphs 
are graphs, in which we can partition the vertices in two sets A 
and B. The vertices, that belongs to A can be connected only 
with vertices that belong to B and vice versa. The one set of the 
vertices are the transactions, the other set’s vertices are the 
items. There is an edge between a transaction and an item, if 
the transaction holds the item. By using bipartite graphs, the 
problem of finding the frequent itemsets is finding maximal 
cliques in the graph. This problem is NP-complete. 

The number of disk access 
Regarding the I/O cost, it is a very essential parameter, how 
many times the algorithm accesses the database. We distinguish 
level wise algorithms, two-phase algorithms (database 
compression methods or sampling) and partitioning algorithms. 

The number of disk access is critical in data mining task, 
because the I/O operation is more time consuming than a 
memory operation. It can be of advantage when we minimize 
the disk access. Regarding the database access, we encounter 
two main classes of the algorithms: level wise algorithms and 
two phase algorithms. The level wise algorithms read the whole 
database k times for finding the k-frequent itemset. The 
algorithm will read the database as many times, as long the 
longest itemset is. If there is only one long frequent itemset, the 
mining time will increase rapidly. There are several ideas how 
the mining time can be reduced for example with hash based 
algorithms [6], dynamic itemset count methods [7] and so on, 
but using these methods does not speed up the mining 
significantly.  

The two-phase mining algorithms read the database only 
twice. There are several cases to accomplish that. In one case 
by the first database reading the support count of the 1-frequent 
itemsets are determined, and using this information reading the 
second time the database we can build the whole database in 
the memory (with a clever compression of the database for 
example building a tree [5]). The mining operation has to be 
accomplished only in the memory.  

The second method is to divide the database into small 
parts, so that one part fit into the memory. Afterwards we can 
use a mining algorithm with a decreased minimum support 
threshold on this small database in the memory. In this case, 
after the first database read we have locally frequent itemsets 
that can be greater than the frequent itemsets in the original 
database, because it can happen, that an itemset is frequent 
locally, but not frequent globally. So a second database reading 
is needed to determine for each locally frequent itemset 
whether it is also frequent globally.  

The third method is the sampling. In this method, in the 
first step the database is sampled so that the sampled database 
fits into the main memory. In the second step the mining 
algorithm is executed in the memory. The third step and the 
second database scan is the verifying, checking of the frequent 
itemsets if they are really frequent.  

The completeness of the generated frequent itemsets 
By the sampling algorithms it can happen, that the algorithm 
does not find all frequent itemsets. It is possible, that a given 
application does not need it, so these algorithms have also 
justification.By the sampling algorithm it can happen that the 
statistical features of the sampled database do not match with 
the statistical features of the original database. In this case not 
all frequent itemsets will be found. Several algorithms ignore 
this, but there are algorithms which can indicate whether all the 
frequent itemsets were found or not [8].  

The length of the maximal frequent pattern 
The databases belonging to the various applications have 
various characteristic. One fundamental difference regarding 
the algorithm is whether the database is spare or dense, namely 
how long patterns contain the transactions. 

The algorithm’s performance depends on the features of 
the patterns in the database. There is a significant difference 
between the methods finding short and long frequent itemsets. 
The long patterns can be found by the depth-first traversing of 
the lexicographical tree, while the short patterns are found 



 4  

quickly by using breadth-first traversing in a lexicographical 
tree or by using level wise algorithms.  

4. CLASSIFICATION OF THE ALGORITHMS 
The algorithms can be classified differently regarding the 
aspects discussed in the previous section. In our classification 
the aspects of using candidates and of the type of the frequent 
patterns have the highest priority. We have chosen these two 
aspects because they differentiate the algorithms significantly. 
It is hard to compare –as well regarding the mining time, as 
well regarding the memory usage – two algorithms, if one of 
them find all frequent itemsets, and the other only the maximal 
frequent itemsets. The Figure 1 differentiates the known 
algorithms which can be found in the references regarding these 
aspects into five categories.  

ca
nd

ida
tes

No candidates

FI

F
C

I

MFI FI

FCI

FP-growth
PC-tree

PDA

CLOSETA-close
CHARM

Apriori
DHP
DIC
DCI

VIPER
ECLAT
Clique

MaxMiner
SmartMiner

GenMAx
MAFIA

DepthProject
MaxEclat

MaxClicque  
Figure 1. The classification of the algorithms 
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Apriori [9] P    P    
DHP[6] P    P    
DIC [7] P    P P   
DCI [10] P  P      
VIPER [11]    P     
ECLAT [12]   P   P   
Clicque [12]   P     P 
FP-growth [5] P      P  

FI
 

PC-tree [13] P      P  
A-Close [2] P    P    
CLOSET [14] P      P  FC

I 

CHARM [15] P    P    
MaxMiner [16] P    P    
SmartMiner [17]    P  P   
GenMax [18]   P  P    
MAFIA [3]    P  P   
DepthProject [19]    P  P   
MaxEclat [12]   P   P   

M
FI

 

MaxClicque [12]   P     P 
Table 1. The comparison of the algorithms  

5. SIZE RESTRICTED FREQUENT ITEMSETS 
To meet the needs of the end user it is important that the 
information discovered in the large database will be useful for 

the user. It is not profitable when the information can be 
processed by an expert only, who understands data mining in 
detail. To achieve easy-to-use services there are several 
methods. The first one is to discover only the frequent closed 
itemsets that is in order of magnitude smaller than the set 
frequent itemsets. From the set of frequent closed itemsets all 
association rules can be discovered. Unfortunately it possibly 
occurs that the number of the frequent closed itemset can also 
be too huge for human processing. Another key issue is that 
after the data mining process we use a post-processing 
algorithm for understanding the mined rules. This is almost 
necessary, but it makes difference what amount of information 
is to be post-processed.  

It may occur that the user establishes a claim to mine only 
the k-frequent itemsets. It is not presumptive that a manager in 
a supermarket will see frequent itemsets that are longer than 3 
or 4 items. If we modify the algorithms only to discover the 
maximal k-frequent itemsets we can save time.  

The easiest way to mine only the maximal k-frequent 
itemset is to modify the level wise algorithms (Apriori, DHP, 
DIC and so on). In this case we have to stop the algorithm after 
it founds the k-frequent itemsets. Similarly by the 
lexicographical tree traversing algorithms we have to limit the 
traversing of the tree by the k-th level independent from the 
traversing method (breadth-first or depth-first).  

The FP-growth algorithm first reads the database and 
counts the occurrences of the items. Regarding the 1-frequent 
items by the second database read it builds an FP-tree in the 
memory. After that it recursively generates conditional FP-trees 
and generates the frequent patterns without generating 
candidates. If we want to restrict the size of the frequent 
itemsets to be discovered, we have to make a modification in 
two places in the algorithm. We have to restrict the level of the 
recursion and we have to generate only the subsets of the single 
path tree with size of the threshold. The PC-tree algorithm does 
not differ significantly from the FP-growth, so the way to 
restrict it is the same. The CLOSET is a modification of the FP-
growth that finds only the frequent closed itemsets. It makes no 
sense to restrict the algorithms that discover only the maximal 
frequent itemsets because its aim is to find the long patterns in 
the database.  

6. SIMULATION 
To examine the speed-up of the algorithms when restricting the 
itemset size to be mined we implemented two fundamental 
algorithms, the Apriori and the FP-growth algorithm. The first 
one is a level wise algorithm, the second one is an algorithm, 
that does not use candidates, but it needs a huge amount of 
memory. The algorithms were implemented in C#. The 
simulations were executed on a Pentium 4 CPU, 2.40 GHz, and 
512MB of RAM computer.  

The datasets used by the algorithms are semantic datasets 
from [9]. We used two datasets for the experimentation. The 
T20I5D10K dataset means that there are 10K transactions in it, 
the average size of a transaction is 20, and the average size of 
the maximal frequent itemset is 5. Similarly the T20I7D10K 
means 10K transactions, the average size of a transaction is 20 
and the average size of the maximal frequent pattern is 7. 
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Figure 2. The execution time of the Apriori algorithm, 

T20I5D10K 
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Figure 3. The time to be saved when restricting the itemset 
size to 3, T20I5D10K 
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Figure 4. The number of candidates, T20I5D10K 
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Figure 5. The execution time per itemset levels, T20I5D10K 
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Figure 6. The execution time of the Apriori algorithm, 

T20I7D10K  
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Figure 7. The time to be saved when restricting the itemset 
size to 3, T20I7D10K 
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Figure 8. The number of candidates, T20I7D10K 
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Figure 9. The execution time per itemset levels, T20I7D10K 
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Figure 10. The execution time of the FP-growth algorithm, 

T20I5D10K 

0

2
4

6
8

10
12

14
16

18

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

tim
e 

(s
ec

)

Not restricted

Restricted

 
Figure 11. The recursive pattern growth time, T20I5D10K  
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Figure 12. The size of the created trees during the pattern 

growth phase in not restricted mining 
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Figure 13. The size of the created trees during the pattern 

growth phase in restricted mining 
 
Figure 1 shows two executions times of the Apriori 

algorithm on the dataset T20I5D10K as a function of the 
minimum support. The difference between the two executions 
is that the first was accomplished without restriction, and the 
second was restricted to 3. It is fully visible, that the restricted 
algorithm is faster, especially by lower minimal support 
threshold. In Figure 3 there are four times represented for each 
minimum support. The first three are the execution time for 
mining the 1-frequent, the 2-frequent and the 3-frequent 
itemsets. The fourth time is for the rest of the algorithm. It 
shows, how many time can be saved restricting the itemset size 
to 3. One can see that from 1% down to 0.5% the time saving 
keeps increasing. Figure 4 presents the sizes of the candidates in 
each level. In Figure 5 are the times depicted for processing the 
candidates in each level and finding the frequent itemsets. We 
can draw a conclusion that the Apriori algorithm spends most 
of its time generating and checking the 2-candidates. 

Figure 6, 7, 8, and 9 represents the same as the figures 
before but for the dataset T20I7D10K. We can see that the time 
gain by lower support is longer than that of dataset 
T20I5D10K. 

Figure 10 shows the execution times for the original and the 
restricted FP-growth algorithms as a function of the minimum 
support. It can be seen that in the restricted case the execution 
time is not significantly smaller than in case of the original 
algorithm in contrary to our expectations. For the explanation 
let us divide the execution time of the FP-grow algorithm in the 
following three parts: 
(1) Time for counting the 1-frequent items 
(2) Time for building the first tree 

(3) Time for the recursive pattern growth process that includes 
the construction of further trees 

Considering the way for restriction outlined in the previous 
section we can realize that the times for the first two parts are 
the same in the original and in the modified algorithms. The 
difference is only in the third part that is the recursive pattern 
growth time. Figure 11 represents the recursive pattern growth 
time for both the original and the restricted algorithm. We can 
see that there is hardly any difference between the two cases. 
The reason for this is depicted in Figure 12 and Figure 13. Figure 
12 illustrates the size of the trees (that is the number of nodes in 
the tree) built during the recursive pattern growth part of the 
original algorithm. The first tree is not shown because the 
building time for it is the same in both cases and its size is 
significant higher (162190 nodes in this case) than the size of 
the further trees. Figure 13 illustrates the size of trees of the 
restricted algorithm. Apparently the restricted algorithm 
generates fewer trees in the pattern growth phase than the 
original algorithm does. Comparing the two figures it is 
obvious that the two algorithms differs only in the number of 
the small trees that is the restricted algorithm generates all the 
big trees that the original algorithm generates, the saving is 
rather by the trees having between 1 and 20 nodes.  

Apparently, restricting the Apriori algorithm results in 
significant time savings especially at lower minimum support, 
but restricting the FP-growth algorithm produces no significant 
time saving. 
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7. CONCLUSION 
In this paper we have covered some of the efficiency issues of 
the algorithmic association rule mining. The aim of our 
examination was to classify the most commonly known 
frequent itemset discovering algorithms. We have established a 
system of aspects for classifying these algorithms. We divided 
the algorithms in two main classes namely the class of 
algorithms that use candidates and of those that do not. Within 
these two classes we defined another three classes based on the 
types of the discovered frequent itemsets (FI, FCI, and MFI).  

In the second part of the paper we have introduced a new 
category, the restricted itemset. This means that the algorithm 
does not have to discover all frequent itemsets only those have 
smaller size than a given threshold. We presented how the two 
of the main frequent itemset discovering algorithms – the 
Apriori and the FP-growth – should be modified for this 
purpose. Experimental results show that the algorithms are 
faster restricting the itemset size. In the case of the Apriori 
algorithm, the time saving in lower support threshold is 
significant, but in the case of FP-growth, the gain is very small. 
This phenomenon has been explained by the size and number 
of the trees generated by the recursive pattern growth part of 
the algorithm. 
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