
 1

Proceedings of _______:
Conference Name
Date and Location

Reference ID

AN ANALYSIS OF ASSOCIATION RULE MINING ALGORITHMS

Renáta Iváncsy
Department of Automation

and Applied Informatics
Budapest University of

Technology and Economics
renata.ivancsy@aut.bme.hu

Ferenc Kovács
Department of Automation

and Applied Informatics
Budapest University of

Technology and Economics
kovacsf@aut.bme.hu

István Vajk
Department of Automation

and Applied Informatics
Budapest University of

Technology and Economics
vajk@aut.bme.hu

ABSTRACT
The association rule mining is a fundamentally important task
in the process of knowledge discovery in large databases.
Several algorithms have been developed for single-level,
single-dimensional, Boolean association rule mining. Some of
them require a small amount of memory, but heavy disk access
(such as Apriori-like algorithms); others necessitate low I/O
activity, but large amount of memory (such as FP-growth).
Different algorithms support different applications and
requirements depending on the technical background. For this
reason it is desirable to classify these algorithms.

In this paper a trade-off is illustrated, namely, which
aspects of selection should be considered, when one classifies
association rule mining algorithms. Well known algorithms are
categorized with these criteria, and the concept of restricted
association rule mining is introduced. Necessary modifications
are also shown to the algorithms assuming that not all frequent
itemsets are needed, only those with maximal size of a given
threshold. The paper examines the mining time for both the
original and the modified algorithms, and calculates the profit.

1. INTRODUCTION
The association rule mining is a fundamentally important task
in the field of data mining. It is a process of discovering not
trivial relationships between data in large databases. The
problem of association rule mining was first introduced by
Agrawal et al in 1993 [1]. Since then it is one of the most
popular research area on the field of knowledge discovery.

The association rule mining problem is commonly known
as the market basket analysis, but there are several applications
that use association rules as well i.e. biological research areas,
telecommunication and network analysis etc.

Regarding the diversity of the applications that use
association rule mining, several algorithms have been
developed. All of these algorithms have their own advantages
and disadvantages, so it is useful to compare them. Most of the
algorithms find all frequent itemsets but there are several

applications that do not need all of them. For this purpose we
introduce the restricted itemset mining problem in which the
algorithm finds only the maximal k-frequent itemsets.

The organization of the paper is as follows. Section 2
introduces the problem of association rule mining. Section 3
discusses the aspects of classifying the frequent itemsets
mining algorithms. In Section 4 we classify the most common
known algorithms based on these aspects. In Section 5 we
introduce the restricted sized itemset mining problem which
means, that the algorithm need to discover not all frequent
itemsets, but only those, which size is less than a given
threshold. We also show in this section, how the algorithms
have to be modified for this purpose. In section 5 we present an
experimental analysis of the original and the modified
algorithms. We conclude in section 7.

2. PROBLEM STATEMENT
The association rule mining problem is defined as follows. Let

},...ii,{iI n21= be the set of items. Let D be the set of task
relevant data. D contains database transactions Ti, where
transaction Ti is a subset of the items in I. The transaction Ti
also contains an identifier TID. Let A and B be a set of items.
Then the association rule is defined as follows:

∅=∩⊂⊂→ BAandI,BI,AwhereB,A cs, . We say, that

the rule BA cs→ , holds in the transaction set D with support
s and confidence c, where s is the percentage of transactions in
D that contain both A and B, and c is the percentage of
transactions in D containing A that also contain B. There are
two thresholds for these two values called minimum support
(minsup) and minimum confidence (minconf) threshold. Rules
satisfying both are called strong association rules.

Those itemsets, which support is over the minimum
support threshold are called frequent itemsets (FI). The itemset
X is called a maximal frequent itemset (MFI), if X is frequent,
and there is no superset of X, that is frequent. The itemset X is
called frequent closed itemset (FCI), if there does not exist an

 2

itemset X’ such that X’ contains X and t(X) = t(X’), where t(X)
denotes the set of transactions containing the itemset X.

The process of the association rule mining can be divided
into two separate phases. In the first step the frequent itemsets
have to be discovered. In the second step the association rules
have to be generated from these frequent itemsets. The frequent
itemsets are needed not only to generate association rules, but
discovering frequent itemsets is also the first step of other data
mining task i.e. sequential pattern mining, etc.

The frequent itemsets are determined from the original
database, which can scale up to terabytes in size. The
association rules are retrieved from the frequent itemsets, which
size is much smaller than the size of the original database. It is
conceivable that from the two steps the first one is the most
time consuming [1], so most of the published association rule
mining algorithms deal with the problem of efficiently
discovering the frequent itemsets.

Certain applications deal with data of various
characteristics. In one case, the size of the transactions can be
relatively short, for example in market basket data; in other
cases it can be relatively long, for example in biological data.
So the length of the frequent pattern can also be short or long.
In the first case, we say that the database is spare in the second
case we say it is dense.

3. ASPECTS OF CLASSIFYING
In this paper we classify the frequent itemset mining algorithms
considering the following aspects:
• The type of the discovered frequent itemset
• Using candidates
• The representation of the transactions
• The itemsets representation used in the algorithm
• The number of disk access
• The completeness of the generated frequent itemsets
• The length of the maximal frequent pattern

The type of the discovered frequent itemset
There is an essential difference what the algorithm searches for.
An algorithm may discover all frequent itemsets, or the
frequent closed itemsets or only the maximal frequent itemsets.

By means of the frequent itemsets all the association rules
can be determined. The number of these rules is huge and more
importantly some of them are redundant. Therefore the concept
of frequent closed itemsets and the concept of association rules
based on frequent closed itemsets were introduced in [2]. It is
susceptible of proof that all association rules that can be
deducted from the frequent itemsets can also be deducted from
the association rules based on frequent closed itemsets. Because
the cardinality of the frequent closed itemsets is much smaller,
than the cardinality of the frequent itemsets, many algorithms
solve the problem of finding the frequent closed itemset in
place of finding all frequent itemsets. These algorithms are
commonly faster.

Mining the maximal frequent itemset lead to a loss of
information, because it does not contain the support
information of the subsets and the maximal frequent itemsets
only in themselves are not useful for generating association
rules. There are applications where the set of maximal patterns
is needed, such as combinatorial pattern discovery in biological
applications [3]. In those cases the purpose is to determine the

maximal frequent itemsets, because the set of MFI is in orders
of magnitude smaller than the set FCI, and FCI is in orders of
magnitude smaller than FI. So it is easy to see, that MFI ⊆ FCI
⊆ FI.

Using candidates
The algorithms can be distinguished whether it uses candidates
during the mining process, or not. This can be important,
because in many cases the number of candidates can be very
large, while the number of the frequent itemsets is small. In this
case using candidates may have a drawback.

Certain algorithms generate candidates during the
discovering process of the frequent itemsets. These algorithms
generate first candidates, than each single candidate is checked,
if its support is greater than the minimum support threshold.
Other algorithms don’t use candidates to discover the frequent
itemsets. Both of the two algorithms have its advantage and
disadvantage. The disadvantage of using candidates is in
general, that there are a huge amount of candidates, and only a
few are proved frequent.

The representation of the transactions
It is of interest, and it is considerable which transaction-
representation should be used by the algorithm. The decision on
choosing the right transaction representation depends on several
factors. One of them is how the original dataset or database is
organized that is, in which form is the data available for the
algorithm. Another point of view is which representation is
more suitable for the internal operation of the specific
algorithm. The representation of the transactions can be
fundamentally the following: horizontal item list, horizontal
item vector, vertical TID (transaction identifier) list, and
vertical TID vector.

Each representation has its advantages and disadvantages.
It is worth considering which form of data the actual algorithm
should deal with. There are two ways organizing the
transactions. In the one way for each transaction the items are
enumerated, that are held by the given transaction. In the other
way for each item the transactions IDs are enumerated, that
holds the given item. There are four groups of transaction
representation.
• Horizontal item list (HIL)

The representation of a transaction contains a transaction
id (TID), and for each transaction, there is an ordered list
of the items.

• Horizontal item vector (HIV)
The representation of a transaction contains the TID, and
the items belonging to a transaction is represented in a bit
vector. The length of the vector is the same as the number
of the items (n). The i-th bit in the vector is 1, if the
transaction holds the i-th item otherwise it is 0.

• Vertical TID list (VTIDL)
For each item there is a list of TIDs. These TIDs are the
IDs of those transactions that hold the given item.

• Vertical TID vector (VTIDV)
In this case, for each item there is a bit vector. The length
of the vector equals the number of the transactions in the
database. For each transaction belongs a bit. If the i-th
transaction holds the given item, than the i-th bit is 1 in
the vector, otherwise 0.

 3

The advantage of the list representation is, that we use
storage space only for those items (or transactions), which
belong to the given transaction (or item). In the case, if the
number of the items in a transaction is relatively small, it is
worth using this representation. There is a case for the
horizontal item list that the data is available almost in this form;
it is no need for transformation from the one representation to
another. The advantage of the vertical TID vector is, that we
can calculate the support of an itemset only by intersecting
(logical AND operation) the two vectors, that belong to the
parts of the itemset unlike in the case of horizontal
representation, when we have to go through all the transactions
list, and count the occurrences of the given items. The vertical
TID vector can be more efficient than the vertical TID list, if
the average number of the occurrence is bigger than N/32
(where N denotes the number of transaction in the database),
because if we store a TID in 32 bits, and an item occurs in more
than N/32 transactions, then it is more efficient to hold them in
a vector [3]. It may happen, that we use various form of
representations during the algorithm depending on which form
fits better to our needs.

The itemsets representation used in the algorithm
Regarding the computational costs and the performance it is an
important aspect, how the algorithms handles the data. A hash-
tree, a lexicographical-tree or a bipartite graph can be built.
Another important aspect is how the tree is traversed.

The itemsets representation used in the algorithm can be
diverse. The most common used structure is the lexicographical
tree. The lexicographical tree is defined as following [4]:
(1) To each frequent itemset belongs a node in the tree. The

root node belongs to the null itemset.
(2) Let I={i1,…ik} be an itemset, where i1, i2, .. ik are listed in

lexicographical order. The parent of the node I is the
itemset {i1,…ik-1}

The algorithms that use this structure can differ in the way, how
the tree is traversed. It can be a depth-first strategy (DFS), a
breadth-first strategy (BFS), or a hybrid strategy. The
algorithms reduce the searching area by pruning the tree based
on a priori information.

In another case, not the candidate itemsets are represented
during the algorithm, but the transactions itself. Here a tree
contains the transactions in a compressed way, and the frequent
itemsets can be discovered from this tree without candidate
generation. For example the FP-growth algorithm [5] that
transforms the database into an FP-tree.

The third form is to use a bipartite graph. Bipartite graphs
are graphs, in which we can partition the vertices in two sets A
and B. The vertices, that belongs to A can be connected only
with vertices that belong to B and vice versa. The one set of the
vertices are the transactions, the other set’s vertices are the
items. There is an edge between a transaction and an item, if
the transaction holds the item. By using bipartite graphs, the
problem of finding the frequent itemsets is finding maximal
cliques in the graph. This problem is NP-complete.

The number of disk access
Regarding the I/O cost, it is a very essential parameter, how
many times the algorithm accesses the database. We distinguish
level wise algorithms, two-phase algorithms (database
compression methods or sampling) and partitioning algorithms.

The number of disk access is critical in data mining task,
because the I/O operation is more time consuming than a
memory operation. It can be of advantage when we minimize
the disk access. Regarding the database access, we encounter
two main classes of the algorithms: level wise algorithms and
two phase algorithms. The level wise algorithms read the whole
database k times for finding the k-frequent itemset. The
algorithm will read the database as many times, as long the
longest itemset is. If there is only one long frequent itemset, the
mining time will increase rapidly. There are several ideas how
the mining time can be reduced for example with hash based
algorithms [6], dynamic itemset count methods [7] and so on,
but using these methods does not speed up the mining
significantly.

The two-phase mining algorithms read the database only
twice. There are several cases to accomplish that. In one case
by the first database reading the support count of the 1-frequent
itemsets are determined, and using this information reading the
second time the database we can build the whole database in
the memory (with a clever compression of the database for
example building a tree [5]). The mining operation has to be
accomplished only in the memory.

The second method is to divide the database into small
parts, so that one part fit into the memory. Afterwards we can
use a mining algorithm with a decreased minimum support
threshold on this small database in the memory. In this case,
after the first database read we have locally frequent itemsets
that can be greater than the frequent itemsets in the original
database, because it can happen, that an itemset is frequent
locally, but not frequent globally. So a second database reading
is needed to determine for each locally frequent itemset
whether it is also frequent globally.

The third method is the sampling. In this method, in the
first step the database is sampled so that the sampled database
fits into the main memory. In the second step the mining
algorithm is executed in the memory. The third step and the
second database scan is the verifying, checking of the frequent
itemsets if they are really frequent.

The completeness of the generated frequent itemsets
By the sampling algorithms it can happen, that the algorithm
does not find all frequent itemsets. It is possible, that a given
application does not need it, so these algorithms have also
justification.By the sampling algorithm it can happen that the
statistical features of the sampled database do not match with
the statistical features of the original database. In this case not
all frequent itemsets will be found. Several algorithms ignore
this, but there are algorithms which can indicate whether all the
frequent itemsets were found or not [8].

The length of the maximal frequent pattern
The databases belonging to the various applications have
various characteristic. One fundamental difference regarding
the algorithm is whether the database is spare or dense, namely
how long patterns contain the transactions.

The algorithm’s performance depends on the features of
the patterns in the database. There is a significant difference
between the methods finding short and long frequent itemsets.
The long patterns can be found by the depth-first traversing of
the lexicographical tree, while the short patterns are found

 4

quickly by using breadth-first traversing in a lexicographical
tree or by using level wise algorithms.

4. CLASSIFICATION OF THE ALGORITHMS
The algorithms can be classified differently regarding the
aspects discussed in the previous section. In our classification
the aspects of using candidates and of the type of the frequent
patterns have the highest priority. We have chosen these two
aspects because they differentiate the algorithms significantly.
It is hard to compare –as well regarding the mining time, as
well regarding the memory usage – two algorithms, if one of
them find all frequent itemsets, and the other only the maximal
frequent itemsets. The Figure 1 differentiates the known
algorithms which can be found in the references regarding these
aspects into five categories.

ca
nd

ida
tes

No candidates

FI

F
C

I

MFI FI

FCI

FP-growth
PC-tree

PDA

CLOSETA-close
CHARM

Apriori
DHP
DIC
DCI

VIPER
ECLAT
Clique

MaxMiner
SmartMiner

GenMAx
MAFIA

DepthProject
MaxEclat

MaxClicque
Figure 1. The classification of the algorithms

The main features of the referenced algorithms regarding

the mentioned aspects are shown in Table 1:

Representation of the
transactions Used structure

Algorithm

H
IL

H
IV

V
T

ID
L

V
T

ID
V

B
FS

D
FS

FP
-t

re
e

B
ip

ar
tit

e
G

ra
ph

Apriori [9] P P
DHP[6] P P
DIC [7] P P P
DCI [10] P P
VIPER [11] P
ECLAT [12] P P
Clicque [12] P P
FP-growth [5] P P

FI

PC-tree [13] P P
A-Close [2] P P
CLOSET [14] P P FC

I

CHARM [15] P P
MaxMiner [16] P P
SmartMiner [17] P P
GenMax [18] P P
MAFIA [3] P P
DepthProject [19] P P
MaxEclat [12] P P

M
FI

MaxClicque [12] P P
Table 1. The comparison of the algorithms

5. SIZE RESTRICTED FREQUENT ITEMSETS
To meet the needs of the end user it is important that the
information discovered in the large database will be useful for

the user. It is not profitable when the information can be
processed by an expert only, who understands data mining in
detail. To achieve easy-to-use services there are several
methods. The first one is to discover only the frequent closed
itemsets that is in order of magnitude smaller than the set
frequent itemsets. From the set of frequent closed itemsets all
association rules can be discovered. Unfortunately it possibly
occurs that the number of the frequent closed itemset can also
be too huge for human processing. Another key issue is that
after the data mining process we use a post-processing
algorithm for understanding the mined rules. This is almost
necessary, but it makes difference what amount of information
is to be post-processed.

It may occur that the user establishes a claim to mine only
the k-frequent itemsets. It is not presumptive that a manager in
a supermarket will see frequent itemsets that are longer than 3
or 4 items. If we modify the algorithms only to discover the
maximal k-frequent itemsets we can save time.

The easiest way to mine only the maximal k-frequent
itemset is to modify the level wise algorithms (Apriori, DHP,
DIC and so on). In this case we have to stop the algorithm after
it founds the k-frequent itemsets. Similarly by the
lexicographical tree traversing algorithms we have to limit the
traversing of the tree by the k-th level independent from the
traversing method (breadth-first or depth-first).

The FP-growth algorithm first reads the database and
counts the occurrences of the items. Regarding the 1-frequent
items by the second database read it builds an FP-tree in the
memory. After that it recursively generates conditional FP-trees
and generates the frequent patterns without generating
candidates. If we want to restrict the size of the frequent
itemsets to be discovered, we have to make a modification in
two places in the algorithm. We have to restrict the level of the
recursion and we have to generate only the subsets of the single
path tree with size of the threshold. The PC-tree algorithm does
not differ significantly from the FP-growth, so the way to
restrict it is the same. The CLOSET is a modification of the FP-
growth that finds only the frequent closed itemsets. It makes no
sense to restrict the algorithms that discover only the maximal
frequent itemsets because its aim is to find the long patterns in
the database.

6. SIMULATION
To examine the speed-up of the algorithms when restricting the
itemset size to be mined we implemented two fundamental
algorithms, the Apriori and the FP-growth algorithm. The first
one is a level wise algorithm, the second one is an algorithm,
that does not use candidates, but it needs a huge amount of
memory. The algorithms were implemented in C#. The
simulations were executed on a Pentium 4 CPU, 2.40 GHz, and
512MB of RAM computer.

The datasets used by the algorithms are semantic datasets
from [9]. We used two datasets for the experimentation. The
T20I5D10K dataset means that there are 10K transactions in it,
the average size of a transaction is 20, and the average size of
the maximal frequent itemset is 5. Similarly the T20I7D10K
means 10K transactions, the average size of a transaction is 20
and the average size of the maximal frequent pattern is 7.

 5

0

10

20

30

40

50

60

70

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

tim
e

(s
ec

)

Not restricted

Restricted

Figure 2. The execution time of the Apriori algorithm,

T20I5D10K

0

5

10

15

20

25

30

35

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

minimum support

tim
e

(s
ec

)

1-frequent 2-frequent 3-frequent 4-10 frequent

Figure 3. The time to be saved when restricting the itemset
size to 3, T20I5D10K

0

50000

100000

150000

200000

250000

300000

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

n
u

m
b

er
 o

f
ca

n
d

id
at

es 1-candidate

2-candidate

3-candidate

4-candidate

5-candidate

6-candidate

7-candidate

8-candidate

9-candidate

10-candidate

Figure 4. The number of candidates, T20I5D10K

0

5

10

15

20

25

30

35

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

ti
m

e
(s

ec
)

1-frequent

2-frequent

3-frequent

4-frequent

5-frequent

6-frequent

7-frequent

8-frequent

9-frequent

10-frequent

Figure 5. The execution time per itemset levels, T20I5D10K

0

10

20

30

40

50

60

70

80

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

tim
e

(s
ec

)

Not restricted

Restricted

Figure 6. The execution time of the Apriori algorithm,

T20I7D10K

0

5

10

15

20

25

30

35

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

minimum support

tim
e

(s
ec

)

1-frequent 2-frequent 3-frequent 4-10 frequent

Figure 7. The time to be saved when restricting the itemset
size to 3, T20I7D10K

0

50000

100000

150000

200000

250000

300000

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

minimum support

n
u

m
b

er
 o

f
ca

n
d

id
at

es

1-candidate 2-candidate 3-candidate 4-candidate 5-candidate

6-candidate 7-candidate 8-candidate 9-candidate 10-candidate

Figure 8. The number of candidates, T20I7D10K

0

5

10

15

20

25

30

35

0.5% 0.6% 0.7% 0.8% 0.9% 1.0% 1.1% 1.2% 1.3% 1.4% 1.5%

minimum support

tim
e

(s
ec

)

1-frequent 2-ferquent 3-frequent 4-frequent 5-frequent

6-frequent 7-frequent 8-frequent 9-frequent 10-frequent

Figure 9. The execution time per itemset levels, T20I7D10K

 6

0
2
4
6
8

10
12
14
16
18
20

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

tim
e

(s
ec

)

Not restricted

Restricted

Figure 10. The execution time of the FP-growth algorithm,

T20I5D10K

0

2
4

6
8

10
12

14
16

18

0.5
%

0.6
%

0.7
%

0.8
%

0.9
%

1.0
%

1.1
%

1.2
%

1.3
%

1.4
%

1.5
%

minimum support

tim
e

(s
ec

)

Not restricted

Restricted

Figure 11. The recursive pattern growth time, T20I5D10K

T20I5D10K not restricted, minsup = 0.01

0
10
20
30
40
50
60
70
80

1 163 325 487 649 811 973 1135 1297 1459 1621 1783

ordinal number of trees

n
u

m
b

er
 o

f
n

o
d

es
 in

 t
h

e
tr

ee

Figure 12. The size of the created trees during the pattern

growth phase in not restricted mining

T20I5D10K restricted, minsup = 0.01

0
10
20
30
40
50
60
70
80

1 156 311 466 621 776 931 1086 1241

ordinal number of trees

n
u

m
b

er
 o

f
th

e
n

o
d

es
 in

 t
h

e
tr

ee

Figure 13. The size of the created trees during the pattern

growth phase in restricted mining

Figure 1 shows two executions times of the Apriori

algorithm on the dataset T20I5D10K as a function of the
minimum support. The difference between the two executions
is that the first was accomplished without restriction, and the
second was restricted to 3. It is fully visible, that the restricted
algorithm is faster, especially by lower minimal support
threshold. In Figure 3 there are four times represented for each
minimum support. The first three are the execution time for
mining the 1-frequent, the 2-frequent and the 3-frequent
itemsets. The fourth time is for the rest of the algorithm. It
shows, how many time can be saved restricting the itemset size
to 3. One can see that from 1% down to 0.5% the time saving
keeps increasing. Figure 4 presents the sizes of the candidates in
each level. In Figure 5 are the times depicted for processing the
candidates in each level and finding the frequent itemsets. We
can draw a conclusion that the Apriori algorithm spends most
of its time generating and checking the 2-candidates.

Figure 6, 7, 8, and 9 represents the same as the figures
before but for the dataset T20I7D10K. We can see that the time
gain by lower support is longer than that of dataset
T20I5D10K.

Figure 10 shows the execution times for the original and the
restricted FP-growth algorithms as a function of the minimum
support. It can be seen that in the restricted case the execution
time is not significantly smaller than in case of the original
algorithm in contrary to our expectations. For the explanation
let us divide the execution time of the FP-grow algorithm in the
following three parts:
(1) Time for counting the 1-frequent items
(2) Time for building the first tree

(3) Time for the recursive pattern growth process that includes
the construction of further trees

Considering the way for restriction outlined in the previous
section we can realize that the times for the first two parts are
the same in the original and in the modified algorithms. The
difference is only in the third part that is the recursive pattern
growth time. Figure 11 represents the recursive pattern growth
time for both the original and the restricted algorithm. We can
see that there is hardly any difference between the two cases.
The reason for this is depicted in Figure 12 and Figure 13. Figure
12 illustrates the size of the trees (that is the number of nodes in
the tree) built during the recursive pattern growth part of the
original algorithm. The first tree is not shown because the
building time for it is the same in both cases and its size is
significant higher (162190 nodes in this case) than the size of
the further trees. Figure 13 illustrates the size of trees of the
restricted algorithm. Apparently the restricted algorithm
generates fewer trees in the pattern growth phase than the
original algorithm does. Comparing the two figures it is
obvious that the two algorithms differs only in the number of
the small trees that is the restricted algorithm generates all the
big trees that the original algorithm generates, the saving is
rather by the trees having between 1 and 20 nodes.

Apparently, restricting the Apriori algorithm results in
significant time savings especially at lower minimum support,
but restricting the FP-growth algorithm produces no significant
time saving.

 7

7. CONCLUSION
In this paper we have covered some of the efficiency issues of
the algorithmic association rule mining. The aim of our
examination was to classify the most commonly known
frequent itemset discovering algorithms. We have established a
system of aspects for classifying these algorithms. We divided
the algorithms in two main classes namely the class of
algorithms that use candidates and of those that do not. Within
these two classes we defined another three classes based on the
types of the discovered frequent itemsets (FI, FCI, and MFI).

In the second part of the paper we have introduced a new
category, the restricted itemset. This means that the algorithm
does not have to discover all frequent itemsets only those have
smaller size than a given threshold. We presented how the two
of the main frequent itemset discovering algorithms – the
Apriori and the FP-growth – should be modified for this
purpose. Experimental results show that the algorithms are
faster restricting the itemset size. In the case of the Apriori
algorithm, the time saving in lower support threshold is
significant, but in the case of FP-growth, the gain is very small.
This phenomenon has been explained by the size and number
of the trees generated by the recursive pattern growth part of
the algorithm.

ACKNOWLEDGMENTS
This work has been supported by the fund of the Hungarian
Academy of Sciences for control research and the Hungarian
National Research Fund (grant number: T042741)

REFERENCES
[1] R. Agrawal, T. Imielinski and A.Swami: „Mining

association rules between sets of items of large databases”.
Proc. of the ACM SIGMOD Intl’l Conf. On Management
of Data, May 1993.

[2] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
“Discovering frequent closed itemsets for association
rules” In Proc. of Intl. Conference on Database Theory
(ICDT), January 1999.

[3] D. Burdick, M. Calimlim, and J. Gehrke: “MAFIA: a
maximal frequent itemset algorithm for transactional
databases” In Intl. Conf. on Data Engineering, Apr. 2001.

[4] R. Agarwal, C. Aggarwal, and V. Prasad. “A tree
projection algorithm for generation of frequent itemsets.”
In Proceedings of the High Performance Data Mining
Workshop, Puerto Rico, 1999.

[5] J.Han, J. Pei and Y. Yin: „Mining frequent patterns
without candidate generation” In Proc. of the 2000 ACM-
SIGMOD Int’l Conf. On Management of Data, Dallas,
Texas, USA, May 2000

[6] J. S. Park, M. Chen, and P. S. Yu: “An effective hash
based algorithm for mining association rules” Proc. of the
1995 ACM Int. Conf. on Management of Data, San Jose,
California, 1995

[7] S. Brin, R. Motwani, J. D. Ullman and S. Tsur: „Dynamic
itemset counting and implication rules for market basket
data“ SIGMOD Record, 1997

[8] H. Toivonen: “Sampling large databases for association
rules” In the VLDB Journal, pages 134-156, 1996

[9] R. Agrawal and R. Srikant: „Fast algorithms for mining
association rules”, Proc. of the 20th Int'l Conference on
Very Large Databases, Santiago, Chile, Sept. 1994

[10] S. Orlando: “High performance mining of short and long
patterns” 2001.

[11] P. Shenoy, J. Haritsa, G. Bhalotia, S. Sudarshan, G.
Bhalotia, M. Bawa, and D. Shah, “Turbo-charging Vertical
Mining of Large Databases” Proceedings of the ACM
SIGMOD, Dallas, TX, May 2000, pp. 22-33.

[12] M. J. Zaki: “Scalable algorithms for association mining”
IEEE Transaction on Knowledge and Data Engineering.
Vol 12. No 3. May/June 2000.

[13] V. S. Ananthanarayana, D. K. Subramanian and M. N.
Murty: “Scalable, distributed and dynamic mining of
association rules” High Performance Computing (HIPC)
2000.

[14] J. Pei, J. Han, and R. Mao: “CLOSET: An efficient
algorithm for mining frequent closed Itemsets”. In Proc. of
the 2000 ACM-SIGMOD Int’l Conf. on Management of
Data, Dallas, Texas, USA, May 2000.

[15] M. J. Zaki and C.-J. Hsiao: “CHARM: An efficient
algorithm for closed association rule mining.” TR 99-10,
CS Dept., RPI, Oct. 1999.

[16] R. J. Bayardo: “Efficiently mining long patterns from
databases” In ACM SIGMOD Conf., June 1998.

[17] Q. Zou, W. W. Chu, B. Lu: “SmartMiner: A depth first
algorithm guided by tail information for mining maximal
frequent itemsets” IEEE ICDM 2002.

[18] K. Gouda, M. J. Zaki: "Efficiently mining maximal
frequent itemsets” ICDM’01, San Jose, California, Dec.
2001.

[19] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad:
“Depth first generation of long patterns” In Proc. Sixth
ACM SIGKDD, 2000.

[20] Qinghua Zou, Wesley Chu, David Johnson, and Henry
Chiu “Pattern Decomposition Algorithm for Data Mining
Frequent Patterns” J. Knowledge and Information
Systems(KAIS), 2002

