
1 Copyright © #### by ASME

Proceedings of _______:
Conference Name
Date and Location

Reference ID

DYNAMIC ITEMSET COUNTING IN PC CLUSTER BASED ASSOCIATION RULE
MINING

Ferenc Kovács
Department of Automation

and Applied Informatics
Budapest University of

Technology and Economics
kovacsf@aut.bme.hu

Renáta Iváncsy
Department of Automation
 and Applied Informatics
Budapest University of

Technology and Economics
renata.ivancsy@aut.bme.hu

István Vajk
Department of Automation

and Applied Informatics
Budapest University of

Technology and Economics
vajk@aut.bme.hu

ABSTRACT
One of the most important problems in data mining is

association rule mining. It requires very large computation and
I/O traffic capacity. For that reason there are several parallel
mining algorithms, which can take advantage of the
performance of the cluster systems. These algorithms are
optimized and developed on supercomputer platforms, but
nowadays the capacity of PC keeps the possibility to build
cluster systems cheaper. Usage of PC cluster systems raises
some issues about the optimization of the distributed mining
algorithms, especially the cost of the node to node
communication and cost of the synchronization. The
communication costs of currently used main distributed
association rule mining algorithms depends on the number of
nodes with O(n2) complexity. The node synchronization is also
a very important issue. The current algorithms contain too
many synchronization points and this can cause performance
decrease, especially in PC cluster environment.

In this paper a new distributed association rule mining
algorithm is introduced, which is based on dynamic itemset
counting. The communication costs of this newly developed
algorithm is O(n) and the nodes can work asynchronously.

1 INTRODUCTION
The association rule mining (ARM) is very important task

within the area of data mining [1]. Many algorithms were
developed finding association rules, but the Apriori is the best-
known [2]. The main disadvantage of the Apriori algorithm is
its I/O costs and the Dynamic Itemset Counting (DIC)
algorithm [3] tries to reduce these costs. The paper [4]
introduces an algorithm for I/O cost cutting, but it has higher
memory requirements than DIC.

Because of the complexity of the ARM task several
parallel algorithms have been developed. The main part of the
distributed algorithms is based on the Apriori algorithm. The
count distribution (CD) based algorithms [5] generate the
smallest network traffic, because they send only their own

counters to the other nodes. The data distribution (DD) based
algorithms [5] generate higher network traffic, because the
nodes send not only their local counters, but their own database
as well. There are some distributed algorithms, which are not
based on Apriori, for instance [6] contributes such an
algorithm.

The distributed algorithms were developed and evaluated
in supercomputer environment, but the PC cluster systems have
several differences compared to traditional cluster systems. The
traditional supercomputer clusters contain uniform nodes,
which mean each of the nodes has the same performance. But a
PC cluster can contain different node types due to the short
development cycle of PC. In this case the synchronization
points can extremely decrease the performance of the
algorithms.

The paper [7] is concerned with the behavior of HPA
algorithm [8] in PC cluster environment. The node
synchronization and possibility of different types of nodes can
cause serious performance decrease in PC clusters. The PC
cluster-based modification of CD and DD algorithms were
discussed in [9]. The algorithm synchronization problem was
examined in [10].

Both synchronization and network traffic issues of PC
cluster-based algorithms are investigated in this paper. In the
interest of the asynchronous behavior and the reduction of
network traffic, a new PC cluster distributed algorithm is
introduced, which is based on the CD and the DIC algorithms.

This paper is organized as follows: first of all the widely
spread sequential ARM algorithms are described. Afterwards
the basic distributed ARM algorithms are summarized. Then a
novel algorithm is discussed with special regard to the
asynchronous communication and to the benefit of the DIC.
Then the I/O cost of the distributed algorithms is deduced and
finally we outline some test result of the new algorithm.

2 Copyright © #### by ASME

2 ASSOCIATION RULE MINING
In this section the formal definition of the association rule

is provided [1] and some basic sequential algorithm is
described, which can be used for generating association rules.

2.1 ASSOCIATION RULE
First we elaborate on some basic concepts of association

rules using the formalism presented in [1]. Let I={i1,i2,…im} be
set of literals, called items. Let D={t1,t2,…tn} be set of
transactions, where each transaction t is a set of items such that
t⊆ I. The itemset X has support s in the transaction set D if s%
of transactions contains X, here we denote s= support(X). An
association rule is an implication in the form of X�Y,
where , , and X Y=X Y I⊆ ∅∩ . Each rule has two measures of
value, support and confidence. The support of the rule X�Y is
support(X∪Y). The confidence c of the rule X�Y in the
transaction set D means c% of transactions in D that contain X

also contain Y, which can be written in
()
()

S X Y
c

S X
=

∪
form.

The problem of mining association rules is to find all the rules
that satisfy a user specified minimum support and minimum
confidence. If support(X) is larger than a user defined
minimum support (denoted here min_sup) then the itemset X is
called large itemset. The association rule mining can be
decomposed into two subproblems:

• Finding all of the large itemsets
• Generating rules from these large itemsets

The second subproblem is much easier than the first one, that is
the reason why the ARM algorithms are different from each
other only in the method handling the first subproblem. The
table 1 contains the notations that are used in detailed
descriptions of the sequential algorithms.

k itemset An itemset having k items
L Set of the large itemset
Li Set of large i itemset
Ci Set of candidate i itemset (potentially large

itemset)
|A| Number of elements in set A
active- The candidates are being counted and the current

counting does not exceed the minimum support
active+ The candidates are being counted and the current

counting exceeds the minimum support
Table 1. Notations in the sequential algorithms

2.2 APRIORI ALGORITHM
The Apriori algorithm use the following theorem to reduce

the search space: if an itemset is large then all of its subsets are
large as well. This means it is possible to generate the
potentially large i+1 itemset using large i itemset. Each subsets
of candidate i+1 itemset must be large itemset. Hereby it is
possible to find all large itemset using database scan repeatedly.
During the ith database scan it counts the occurrence of the i
itemset and the end of the pass i, it generates the candidates,
which contain i+1 item. The figure 1 shows the pseudo code of
the Apriori algorithm. The main disadvantage of this algorithm
is the multiple database scan. There are many solutions to

reduce the multiple database scan, but lots of them have
extremely high memory requirements. The DIC algorithm tries
to reduce the I/O costs by increasing the memory usage to
medium size.

{ }
()

()

()

()

()

1

2 1

1

1 freq u e n t ite m se ts

2

{

{
,

}
. m in _ su p p

1

}

i

i

i i

i i

i
i

L
C G e n era teC a n d id a te L
i
w h ile L

fo rea c h t D

In cre m en tC o u n te r C t

c c o u n terL c C
D

i i
C G e n era teC a n d id a te L

L L

−

←
←

←
≠ ∅

∈

 ← ∈ ≥

← +
←

← ∪
Figure 1. Apriori algorithm

2.3 DIC ALGORITHM
The DIC algorithm scans the database continuously and it

can generate new candidates, which have more elements,
earlier than the Apriori algorithm. It reads the database from
checkpoint to checkpoint and it generates new candidates at the
checkpoints. If it founds new large itemsets these can be the
basis of the new candidates. But of course it is also necessary to
maintain the old candidates, which were generated one pass
before and they are not become large. The maintenance and the
candidate generation are complex tasks; therefore the distance
of the checkpoints is an important issue. The optimum was
reached about 10,000 read transactions as described in [3].
Figure 2 shows the pseudo code of the DIC algorithm.

{ }

()

()

-

-

-

- -

 ()
{

{
(,)

 checkpoint
 {

}
}

(

active items
active
L
while active and active

foreach t D

IncrementCounter active active t
if then

break

active active GenerateCandidate

+

+

+

←
←∅

←∅
≠∅ ≠ ∅

∈

←

∪

∪
()

()

)

{
(was introduced at the same checkpoint one round before)

 {

\
}

}

{
(was intr

active
foreach c active

if c then

L L c
active active c

foreach c active

if c

+

+

+ +

+

∈

←
←

∈

∪

- -

oduced at the same checkpoint one round before)
 {

\
}

}
}

then

active active c←

Figure 2. The DIC algorithm

3 Copyright © #### by ASME

3 PARALLEL ALGORITHMS
Several parallel algorithms were developed due to the

complexity of the ARM task. These algorithms try to benefit
the power of the parallel computation. The sequential
algorithms are the basis of distributed mining algorithms. In
fact, the main part of the parallel algorithms is the parallelized
versions of the Apriori algorithm, which try to distribute the
counting task in different ways. The used notations of the
parallel algorithms are shown in table 2.

N Number of the nodes
i
jC The local candidate set on node i, which contains j

item
iD Local dataset on node i

Table 2. Notation in the distributed algorithms

3.1 COUNT DISTRIBUTION ALGORITHM
The basic idea of this algorithm is that each of the nodes

keep large itemsets and counters of candidates locally, which
are related to the whole database. These counters are
maintained in accordance with the local dataset and incoming
counter values. They locally run the Apriori algorithm and after
reading through the local dataset they broadcast own counters
to the other nodes then on the basis of the global counter
values, so each of the nodes can generate the new candidates.
Therefore each of the nodes has the candidates for the whole
database and the globally large itemsets.

{ }

()
()

()
()

()
()

()

1

1

1

{

{
,

}

1 ,
{
Re

 ,
}

. min_supp

1

}

j

j

j
i

j
i

k
i

j k
i i

j
i i

j
i i

C items
i
do

foreach t D

IncrementCounter C t

Broadcast C
for k to N k j

ceive C
ComputeCounters C C

c counterL c C
D

i i
C GenerateCandidate L
whil

−

←
←

∈

= ≠

 ← ∈ ≥

← +
←

()1i

i
i

e L
L L

− ≠ ∅
←∪

Figure 3. The Count Distribution algorithm

This algorithm keeps the possibility of low data
transmission, but each of the nodes is synchronized after each
of the database scan. The other disadvantage of previously
mentioned algorithm is that if there are too many candidates

then it does not take the opportunity that there could be enough
memory in whole cluster to keep all the candidates in the
memory. Figure 3 shows the pseudo code of the CD algorithm
and figure 4 gives an overview of the CD algorithm.
.

Figure 4. The overview of the count distribution algorithm

3.2 DATA DISTRIBUTION ALGORITHM
Data distribution algorithm gives a solution for a situation,

when one of the nodes does not have enough memory for all of
the candidates. In this case each of the nodes is responsible for
only a part of the candidates. Each of the nodes counts the
occurrence of its own candidates in the whole dataset. But all of
these nodes have to broadcast their own local database to the
other nodes. Figure 5 shows the pseudo code of the algorithm.

{ }

()
()

()
()

()
()

()

()

1
1

{

{
,

}

1 ,
{

Re

{
,

}
}

j

j

j
i

j

k

k

j
i

j
i

C items
i
do

foreach t D

IncrementCounter C t

Broadcast D
for k to N k j

ceive D
foreach t D

IncrementCounter C t

Broadcast C

←
←

∈

= ≠

∈

()

()

()
()

1

1

1 ,
{

Re

}
. min_supp

1

}

j
i i

k
i

k
i i i

i i

j
i i

i

i
i

C C
for k to N k j

ceive C
C C C

c counterL c C
D

i i
C GenerateCandidate L
while L

L L

−

−

←
= ≠

←

 ← ∈ ≥

← +
←

≠∅
←

∪

∪
Figure 5. Data Distribution algorithm

4 Copyright © #### by ASME

The disadvantage of the algorithm is that it generates very
large network traffic, because it does not use any kind of
optimization to reduce the network traffic. It can be noticed that
the huge number of the candidates are decreasing during the
later iteration step. Figure 6 gives an overview of the DD
algorithm.

3.3 HPA ALGORITHM
The HPA algorithm is an improved version of the data

distribution algorithm, it uses a hash function to determine the
owner node of the candidate. With the help of this hash
function it is possible to decide where to send each of the read
itemsets. In this way the network traffic can be reduced.

Figure 6. Overview of the Data Distribution algorithm

4 MESSAGE-BASED CONNECTION
The current distributed algorithms use synchronous

communication model, and they have synchronized behavior.
The recently developed algorithm uses asynchronous
communication model. The benefit of the asynchronous
communication is that each of the nodes can continue the data
processing, while the actual communication is being done in
the background. In this way time spent with communication
and with data processing overlap.

The message-based connection can be used to separate data
processing and communication in an asynchronous way. In this
case each of the nodes has own message queue, where they can
receive the incoming messages. Receiving of the messages is
done in the background, in parallel with the main working
process. The incoming messages are placed into a queue from
where the owner of the queue can take it out, if it is needed.
The process of the outgoing messages are similar, each of the
nodes has own outgoing message queue where it can place its
messages. There is a sender process, which takes out the
outgoing messages and sends them to the appropriate node.
Figure 7 shows an overview of the message based architecture.
Steps of the message sending are the following:

1. During the communication a node creates a message and
set the destination node and place it into an outgoing
message queue

2. A background thread takes out the messages respectively
and sends them to their destination node.

The processing of the incoming messages is similar:
1. A background thread receives the incoming messages and

places them into their destination queue.
2. The main processing thread takes out the messages from

the message queue when it needs them.

Figure 7. Message based architecture

5 DYNAMIC ITEMSET COUNTING IN THE
DISTRIBUTED ALGORITHMS

The basis of the newly developed distributed algorithm is
dynamic itemset counting, which keeps the possibility of
asynchronous cooperation. In this way each of the nodes can
work independently and they do not have to wait to each other.
The asynchronous behavior can improve the efficiency of the
system, especially in case of PC clusters where the nodes can
have different performance. Naturally if there is a huge
difference in the performance of the nodes, then the
asynchronous behavior is not enough to reach the optimal
performance. The improved algorithm uses the above
introduced message based communication model. Table 3
contains the used notations.

C Set of the active candidates
Cnew Set of the newly generated candidates
Cdelete Set of the erasable candidates
Lnew Set of the newly found large itemset
MQ Incoming message queue

Table 3. Used notation in distributed DIC algorithm

5.1 USAGE OF THE DISTRIBUTOR COMPONENT
There are two well separable tasks during generation of the

large itemsets:
1. Counting of the candidates in the local databases
2. Summarize of counters and generate new candidates

Because of the high communication costs in the PC
clusters environment, broadcasting local counters does not give
optimal solution [9]. Therefore, in case of reducing the network
traffic second task is done by a distinguished node in the
developed algorithm. As it is a complex task in a large
database, the distributor node does not have any other task.
According to the dynamics itemset counting the worker nodes
send the changes of their counters as checkpoints and their
status (under counting/ finished counting). The distributor
component collects this information then generates new
candidates. A candidate is removed from the list of candidates
when all of the nodes finished its counting and its summarized
support count does not exceed the given minimum support.
Figure 8 shows the algorithm of the distributor component.

5.2 GENERATION OF THE NEW CANDIDATES
Considering the issue of generation the following question

arises: when to start generating new candidates? It is a

5 Copyright © #### by ASME

significant point, because generating candidates needs a lot of
computation. Currently the generation of the new candidates is
done when each of the nodes sent their changes of their
counters.

To increase the performance of the candidate generation
the distributor node uses the following accelerations:

1. It stores the candidates in “trie” data structure in
accordance with [3].

2. On summarizing of the counters it collects the itemsets,
becoming large into a list. Hereby it lists potential sources
of the new candidates.

3. An itemset can only be a candidate if all of its subsets are
large. That is why the potential candidates are the new
large itemset supplemented with the large items.

4. Of the potential candidates those become real candidates,
whose all subsets are large.

{ }

()
()

()

()
()

()

()

{

1 1
{

Re

 ,
}

,

new
delete

new
new

delete

k

k
new new

new new
delete

C items
C C
C
Broadcast Start
do

L
Broadcast C
Broadcast C
for k to N

ceive C
L L ComputeCounters C C

C GenerateCandidate L L
C Delete

←
←
←∅

←∅

= −

←

←
←

∪

()

()

}
()

new
new

NonfrequentItemsets C
C C C
L L L
while C

Broadcast Stop

←
←

≠∅

∪
∪

Figure 8.The algorithm of the distributor component

5.3 ITEMSET COUNTING
The task of the itemset counting nodes is really simple.

They scan continuously their database, when they reach a
checkpoint they send the changes in the counters to the
distributor node. Then they read their incoming messages and
process them by deleting old candidates and by inserting new
ones. If there is not any incoming message for them they still
can continue their work, if they have any candidates, which
they have not finished counting. Therefore nodes do not have to
wait for each other. Figure 9 shows the algorithm of the counter
nodes.

6 I/O COSTS OF THE ALGORITHMS
The ARM algorithms are working with huge amount of

data, therefore it is possible to estimate the running time by the
I/O costs of algorithm. The I/O cost of algorithm contains two
parts:

1. Reading database from the disk
2. Network communication

In this model every node has own disk, where it keeps the
local database. The nodes are interconnected by a shared
communication channel. There can be only one source and one
drain on this channel at the same time. We suppose that the data
is distributed uniformly among the nodes. Table 4 contains the
notations used for modeling the running time.
BD Bandwidth of the disk
BNW Bandwidth of the network channel
||D||: Size of the database in bytes
||Cj||: Size of the set of the j itemset candidates in bytes
k The number of items in the largest large itemset
m Number of checkpoints

Table 4. Notation in the I/O cost modelling

()

{
(0)

 {
 ()
 (.)
 .

(.)

WaitFor Start
do

while MQ

msg GetMessage MQ
if msg Id NewCandidate then

C C msg NewCandidate
else if msg Id DeleteCandidate then

≠

←
=

←
=
∪

()
()

 \ .
 (.)

}
()

 {
, till the next checkpoint

{
,

}

j

C C msg DeleteCandidate
else if msg Id Stop then

exit

if C

foreach t D

IncrementCounter C t

SetStatusLoca

←
=

≠ ∅

∈

()

()
 (,)
 }

{
()

 }
}

lCounters C
PostMessage C DistributorNode

else

WaitForNewMessage

while true

Figure 9. Algorithm of the itemset counter node

6.1 EVALUATION OF THE COUNT DISTRIBUTION
ALGORITHM

The I/O cost evaluation of CD algorithm is very simple due
to the simplicity of the algorithm. The algorithm works like a
sequential algorithm. First of all each of the nodes scans their
own database, this means that it must read the whole database
form the disk. Then the nodes broadcast own counters to each
other using the network channel. These steps are repeated while
the nodes find new candidates. According to this consideration
the following deduction contains the I/O costs of the CD
algorithm:

6 Copyright © #### by ASME

()

()

()
1 1

1

1

1

1

read DB
D

NW pass j j
NW

k k

NW NW pass j j
NWj j

k

I / O read DB NW j
D NW j

D
T k

NB
N N

T C
B

N N
T T C

B
D N N

T T T k C
NB B

= =

=

=

−
=

−
= =

−
= + = +

∑ ∑

∑
It is possible to see that the complexity of the I/O costs of

the count distribution algorithm is O(n2). It is also very
important to realize that the database is not sent through the
network channel.

6.2 EVALUATION OF THE DATA DISTRIBUTION
ALGORITHM

The modeling of the DD algorithm is not too difficult due
to its simple behavior. This algorithm is also synchronous;
therefore each of the nodes has to wait for the result of the other
nodes. The algorithm works as follows: first each of the nodes
reads own local database and increments own counter values,
after all of the nodes broadcast own database to the other nodes,
finally the each of the nodes broadcasts their own counter
values. These steps are repeated while new candidates are
generated. The consequence of these steps the algorithm has to
read twice the local database: once in the counting and once in
the broadcasting step. The following deduction contains the I/O
costs of the DD algorithm accordance with these
considerations.

() () () ()

() ()

() ()
1 1

1

1 1 1 1

1 1

1 1
2 2

read DB
D

j
NW pass j j

NW NW NW NW
k k

NW NW pass j j
NW NWj j

k

I / O read DB NW j
D NW NWj

D
T k

NB
CN N N N D N N

T C D
B N B N B B

N N
T T C k D

B B
D N N

T T T k C k D
NB B B

= =

=

=

− − − −
= + = +

− −
= = +

− −
= ⋅ + = ⋅ + +

∑ ∑

∑
However the complexity of this algorithm is O(n), but it

also depends on the size of the database in O(1) time. Hence it
has worse performance than count distribution algorithm. It is
also possible to see why the performance of this algorithm is so
bad.

6.3 EVALUATION OF THE ASYNCHRONOUS DIC
ALGORITHM

The evaluation of the asynchronous DIC algorithms can be
done via the synchronous case. The worker nodes scan own
databases, when they reach a checkpoint they send their
counters to the distributor node. It is easy to prove that each
frequent itemsets are sent through the network channel m+1
times, and a non frequent itemsets are sent through the network
channel m+2 times, where m is the number of checkpoints. The
following deduction contains the I/O costs estimation of the
synchronous case.

()

() ()

() () ()
1

1

1
1

2

1
2

1

read DB
D

k

NW j
NW j

k

I / O read DB NW j
D NW j

D
T l , l k

N B
N

T m C
B

D N
T T T l m C

N B B

=

=

= ≤
−

−
= +

−
= + = + +

−

∑

∑
During this deduction we did not take it into consideration

that the I/O operations can overlap. If we look at the

possibilities of the usage of asynchronous behavior and we can
keep the system in that state, where the counting does not stop.
This means there is no significant differences among the nodes.
Then the I/O costs of the algorithm will be equal to the costs of
the database scanning. But in this case it is possible that the
database is scanned multiple times than in synchronous case.

()

()

1

1

' '
read DB

D

'
I / O read DB

D

D
T l , l l k

N B
D

T T l
N B

= ≤ ≤
−

= =
−

It is possible to see,as well, that in the worst case, the I/O
costs of the algorithm is O(n), and database will not be send to
the other nodes.

7 SIMULATION RESULTS
The asynchronous DIC-based algorithm has been

implemented in ANSI C++ language (using STL), on MS
Windows XP platform. The simulation took place in the PC
laboratory of the department, where nodes have P4 2.2Ghz
processor, 256 MByte RAM and the nodes have been
interconnected by 100Mbit network. The introduced algorithm
was tested on several synthetic databases [2]. The parameters of
the synthetic databases were as follows:

Name T I D S
T15I8D500K 15 8 500 35.6
T15I8D750K 15 8 750 53.3
T15I8D1000K 15 8 1000 71.2

Table 5. Parameters of the synthetic databases

Where the meaning of the parameters are as follows:
T Average transaction length
I Average size of frequent itemsets
D Number of transactions
S Database size in Megabytes

Table 6. Meaning of the synthetic database parameters

Figure 10 shows the response time of the algorithm in
different number of nodes. It can be realized that there is a
hyperbolic effect in the function of response time. The reason
of this effect can be found in the I/O costs evaluation: the
reduction of the local database.

Response time

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10

Number of working nodes

Ti
m

e
(s

) T15I8D500K
T15I8D750K
T15I8D1000K

Figure 10. Response time in different number of working nodes

Figure 11 shows the relative speed up of the algorithm. The
response times of the algorithm are normalized as follows: the
response time of the algorithm run for several nodes is divided

7 Copyright © #### by ASME

by the one of the single working node case. The speed up ratio
is intuitively acceptable because it exhibits almost linear
tendency influenced by a subtle saturation effect.

Relative speed up

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Number of working nodes

Sp
ee

d
up

ra
tio

T15I8D500K
T15I8D750K
T15I8D1000K

Figure 11. Relative speed up.

8 CONCLUSION
In this paper an algorithm has been introduced, which can

take advantage of the PC clusters in field of ARM. The
generated network traffic is moderate on PC cluster
environment. Using a computation model the I/O costs of the
basic ARM algorithms have been shown and the I/O cost of the
novel algorithm has been also deduced. It has been also pointed
out that in an optimal case I/O costs can be much lower but,
taking the worst case into consideration, it has lower I/O costs
than the referenced basic algorithms.

ACKNOWLEDGMENTS
This work has been supported by the fund of the Hungarian

Academy of Sciences for control research and the Hungarian
National Research Fund (grant number: T042741).

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami: “Mining

association rules between sets of items in large
databases”, proc. ACM-SIGMOD Conference, 1993

[2] R. Agrawal and R. Srikant: “Fast algorithms for
mining association rules”, proc. 20th Very Large
Databases Conference, 1994

[3] S.Brin, R. Motawani, J.D. Ullman and S. Tsur:
“Dynamic Item set counting and implication rules for
market basket data”, proc. ACM-SIGMOD
Conference, 1997

[4] J. Han J. Pei and Y. Yin: “Mining Freuent Patterns
without Candidate Generation” proc. ACM SIGMOD
International. Conference on Management of Data,
2000

[5] R. Agrwal and J.C. Schafer: “Parallel mining of
association rules”, IEEE Trans. Knowledge and Data
Engineering, vol. 8, no 6, 1996

[6] O. R. Zaïne, M. El-Hajj and P. Lu: “Fast Parallel
Association Rule Mining Without Candidacy

Generation”, proc. IEEE International Conference on
Data Mining , 2001

[7] M. Tamura and M. Kitsuregawa: “Dynamic load
balancing for parallel association rule mining on
heterogeneous PC cluster system”, proc. 25th Very
Large Databases Conference, 1999

[8] T. Shintani and M. Kitsuregawa: “Hash based parallel
algorithms for mining association rules”, proc.
Parallel and Distributed Information Systems
Conference, 1996

[9] T. Shimomura and S. Shibusawa: “Performance
Evaluation of Distributed Algorithms for Mining
Association Rules on Workstation Cluster”, proc.
IEEE Inernational Workshops on Parallel Processing
(ICPP’00- Workshops), 2000

[10] J. Zhang, H. Shi and L. Zheng: “A Method and
Algorithm of Distributed Mining Association Rules in
Synchronism”, proc. IEEE International Conference
on Machine Learning and Cybernetics, 2002

