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Abstract

Looking in a database for interesting patterns of attri-
butes (the columns) or groups of objects (lines) that
verify some properties is a classic task in data mi-
ning, today well mastered. Nevertheless, some difficult
contexts such as the data provided by gene analysis re-
main intractable, because of a disproportionate num-
ber of attributes, compared to the number of objects.
In these conditions, it is naturally tempting to trans-
pose the matrix of data to carry out more efficiently
the pattern mining. This article exposes this new me-
thod and shows its interest but also the difficulties
to solve so that this approach is fruitful. With using
the Galois connection, the extraction achieved in the
transposed base allows to infer results on the initial
data. We detail the contributions of this practice on
data containing a big number of attributes, such as
data of genome, as well as its possible application to
the mining under monotonous constraint and the ob-
taining of the totality of the closed patterns.
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1 Introduction

The search for interesting patterns in a database is to-
day a well mastered task. Since the creation of the first
algorithm APRIORI [1], techniques have refined them-
selves and we now use other tools such as the conden-
sed representations and closed patterns [17, 2]. We do
no more worry about the treatment of databases whose
classic configuration includes a big number of lines (se-
veral millions) compared to the number of columns (a
few thousand) The extracted patterns are constituted
of the attributes corresponding to columns.

On the other hand, some specific data context coming
from biology and genes sequencing still did not find
any algorithm allowing to efficiently extract the know-

ledge. It is the case for databases including few lines
and big quantity of columns (at the time of genes
sequencing, lines are often the achieved experiences
and columns genes expressions). In this situation, it is
tempting to apply the data mining techniques to the
transposed data matrix. The new database has now
compatible measurements with a pattern mining on
numerous lines (genes) and few columns (experiences).
Unfortunately, the results are relative to patterns of
experiences, what fascinates biologists little. The dif-
ficulty of the problem is reduced, but other problems
emerge : interpretation of results, conversion of mining
parameters, etc.

We intend in this article to study a new mining me-
thod that take fully advantage of geometric features
of the database. We study the extraction of informa-
tion from the transposed database, then use the Ga-
lois connection to infer results in the initial database.
This connection defines concepts as a unique associa-
tion between an attributes pattern and objects that
contain them, or while transposing, between a group
of objects and the attributes they share. When the for-
mat is favorable (few objects, a lot of attributes), the
transposition of matrix allows to work on data whose
exploration will be facilitated by a reversing tenden-
cies lines / column.

We think that this method is new, even though it in-
tegrates classic tools of the learning community (pat-
terns mining, Galois connection, concepts lattice). Its
novelty resides in solutions that it provides to pro-
blems up to here inaccessible, and this by an clever
combination of conventional methods in a particular
data-mining context.

We start with describing the theoretical foundations
of pattern research, which satisfy a given property in
the database, and in particular the Galois connection.
Then we define the transposition of a patterns mi-
ning and show how to exploit this connection to infer
results on the original base. The last section is dedi-



Attributes
Obj. | a1 | az | as | ag | a5 | as | a7 | as | ag | a1
01 1] 1] 1 11 0| 1| 1] 0] O 0
02 1] 1] 1 11 0| 0O 0| O] 1 1
03 1] 1] 1 11 0| 0O 0| O] 1 1
oo | 0] O O] O 1| 1} 1| 1 1 1
05 1| 0] 1| 0| 1| 1| 1] 1|0 0

TAB. 1 — Running example re of a database

cated to the survey of possible developments for this
method : mining the totality of closed patterns, mono-
tonous constraint and common border processing, and
applications on biologic data.

2 Pattern mining

In this section are recalled the theoretical foundations
that allow us to develop the method of pattern mining
founded on the transposition. We describe the patterns
lattice and the specialisation relation that link them,
according to Mitchell’s context [19]. Then we detail
the contribution of anti-monotonous constraint in the
search algorithms and specify borders of theory that
allows to compare mining, in the framework described
by Mannila and Toivonen [18]. We finish with the Ga-
lois connection, necessary to the understanding of our
method.

2.1

Table 1 presents a database denoted re for five objects
of survey (in lines) and indicates for each the absence
or presence of 10 binary attributes (in columns). One
can notice that the group of objects 01, 02, 03 shares
the same attributes a1, as, a3, a4, and that o4 and o5
share as, ag, a7, ag, etc. We will use more precisely the
term of attributes pattern or objects pattern rather
than of group.

Let O be a set of objects and A a set of attri-
butes. On our example, O = {01,02,...05} and A =
{a1,as,...a10}. Data to explore are represented by
the matrix of the binary relation R € O x A bet-
ween every object and every attribute (cf. Table 1).
Thus, (0;,a;) € R means that the object 7 has the
attribute j. A database bd, also named a context, is
a triplet (O, A, R) associating two sets of objects and
attributes with the help of a binary relation.

The set A of attributes allows to construct the lan-
guage L 4 = 2 of patterns on .A. We then look among
L 4 for patterns that verify in bd a property or predi-
cate ¢. For example, we want to know the frequent at-
tributes patterns (when the number of objects contai-
ning this pattern, called support, pass a certain thre-
shold). On our running example, attributes patterns
{a1,a2,as,a4} and {ag,a1p} are present at least three
times, on the contrary {az,ag} is never present.

Patterns lattice

The set £ 4 of attributes patterns is naturally represen-
ted by a lattice (cf. Figure 1). At the top, patterns of
length 1: {A1}...{a10}. Next level, patterns of length
2 : {Ay, a2}, {a1, a3}, {a1, a4}, .. {a1, 010}, {a2, a3},
...{ag,a10}. Then patterns of length 3, etc. The before
last level contains the ten patterns of length 9 and the
last contains the unique pattern of length 10.

pattern
length

al} {a2},...{ald
ata?} {al,as}..{al,al0} {a2,a3},.

..{agad

specialization

Fi1Gc. 1 — Pattern lattice

The lattice is oriented from the top (patterns of mini-
mal length, the singletons) downwards to the bottom
(the longest possible patterns) according to a speciali-
sation relation (Mitchell’s context [19]), that provides
a method for their production, starting with the sin-
gletons. A pattern X of attributes of A, is more speci-
fic than another pattern Y if Y C X. The lattice can
then be generated methodically, level by level, shor-
test to longest patterns, with the help of a progressive
specialisation by addition of attribute. For example,
from Y U {a} and Y U {b}, one produces by fusion
X =Y U{a,b}. It only remains to browse the lattice,
searching for interesting patterns.

2.2 Mining under anti-monotonous

constraint

We try to calculate Th(bd, L ,q), the theory or set
of patterns belonging to £ 4 that satisfy a predicate ¢
(we indifferently will write constraint). A very classic
choice for ¢ is : is the pattern frequent in the database
bd? (does its support pass a fixed threshold ~?), is it
rare? (the opposite), but one will also wonder if the
pattern contains a certain fixed pattern, if it is free (ie.
does not contain any association), closed, etc.

Some predicates have better properties than others in
order to search in the lattice, and in particular those
that respect the specialisation relation, or dual relation
of generalisation. Generating the space to browse, it
maintains a link between the patterns that guides the
search for the predicate.

With regard to the support constraints, the spe-
cialisation of a rare pattern can only be rare. It
is indeed a monotone constraint, that is preserved
by the specialisation relation. Symmetrically, an
anti-monotonous constraint (such as be frequent) is
preserved by generalisation : qu, iS anti-monotonous
if (qem(X)AY C X) = ¢om(Y). It means that when



a pattern of the lattice verifies ¢um, then all those
that are higher in the lattice verify also g4.,. On the
contrary, when a pattern does not verify ¢, its
lower specialisations neither.

The anti-monotonous constraints provide two pruning
criterions :

Definition 1 (Criterion 1) If a pattern X does not
VeTifY Gam, 1ts specialisations can not verify qqm : it s

useless to examine them and the lattice can be pruned
under X .

Definition 2 (Criterion 2) If the candidate X to
the verification of qum contains a pattern that does
not verify the predicate, then this candidate must be
rejected : the lattice is pruned above X.

Y
/ \
Y U{a YU{b} ---+,

- (criterion X”i‘x (criterion ﬂ

- X=Y U{ab}

Fi1G. 2 — Pruning criterions

Figure 2, the two generators Y U {a} and Y U {b} are
represented, as well as their fusion, X =Y U {a, b}. If
one detects that YU{b} does not verify the constraint,
then the branch coming from Y U {b} is cut (criterion
1). Besides, X contains an incorrect pattern Y U {b} :
it does not agree either (criterion 2).

The levelwise algorithm by [18], popularised in the
particular case of the anti-monotonous constraint of
frequency, is as follows : from the singletons (level
1), produce every pattern for a level with the help
of patterns from the previous level, under condition
that it verifies the two pruning criterions of the anti-
monotonous constraint.

2.3 Galois connection

Up to here, we essentially spoke of attribute patterns.
By the way of the relation R of the database, these
patterns are connected to the objects patterns. On
bd = (O, A, R), one defines that for operators f and g
of Galois connection between a pattern X of attributes
from A and a pattern T of objects from O :

Definition 3 (Galois connection) f(7T) = {a €
A | Yo e T, (o,a) € R} and g(X) = {o € O | Va €
X, (0,a) € R}. [ represents the set of all common at-
tributes to a group of objects t (one says intention) and
g the set of objects sharing the same attributes X (ex-
tension). The couple (f,g) defines the Galois connec-
tion [5] between A and O, h= fog and b’ =go f are
the Galois closure operators.

So, if we know how to represent the lattice of attri-
butes patterns, we can represent the lattice of objects
patterns. The patterns of the two lattices are connec-
ted by operators f and g. Concepts symbolise the link
and associate two closed patterns :

Definition 4 (Closed patterns) A pattern X of at-
tributes is closed iff h(X) = X. A pattern T of objects
is closed iff M (T) = T. A concept (X,T) associates
two closed patterns X of attributes and T of objects,
such that X = f(T) (or T = g(X)).

In the context of the data mining, the closed patterns
are well known, among others because their properties
are multiple : they allow to efficiently calculate sup-
ports [2], to determine the minimal sets of association
rules [20, 23, 16], encourage the clustering [10], etc. We
use them here for the link that they define between ob-
jects and attributes. In facts, one notes that operators
f and g preserve the property of closing (if X is closed,
9(X) as well, in the same way for T and f(T")). These
invariance properties by closure operators provide a
strong bi-directional link between a pattern of attri-
butes and a pattern of objects : the Galois connection.
Besides, this invariance assures that a closed pattern
will be connected to another closed pattern. Knowing
a closed attributes pattern, it is possible to pass to a
closed objects pattern and vice versa. This link will be
used Section 4, applied on the complete collection of
the closed patterns of a type (attributes or objects) to
infer closed patterns of the other type.

The theory relative to a predicate in a database can
be restrict from attribute patterns to concepts :

Definition 5 (Concepts theory) The concepts
theory relatively to a data base bd, the associated
language L, and a constraint q, noted The(bd, L, q),
is the set of concepts (X,T) such that X belongs to
Th(bd, L4, q).

{al,a3}
{01,02,03,05}

{a6,ar}
{01,04,05}

{a9,a10}
{02,03,04}

{al,a2,a3,a4} {al,a3,a6,a7}
{01,02,03} {o1,05}

T

{al,a2,a3,a4,29,a10}
{02,03}

{ab,86,a7,a8}
{o4,05}

attributes spedhalizati

F1¢. 3 — Galois lattice

We represented Figure 3 the same lattice that Figure
1, restricted to closed patterns. This lattice is ordi-
narily called concepts lattice [22]. Every element is a



concept, labelled both by an attributes pattern and
an objects pattern. One remark that the specialisa-
tion relation of attribute, that downwards orients the
lattice, is now accompanied by the dual specialisation
relation, on objects this time, but in inverse sense. In-
deed, the connection reverses the inclusion direction :
if X C T then g(X) 2 g(Y).

3 New mining method by way of
transposition

We propose in this section a new mining method, that
takes advantage of the Galois connection between the
attributes patterns and objects patterns. We give de-
finitions of the database and predicate transposition
and finish by expressing the central result of comple-
mentarity between a pattern mining and its transpo-
sed.

3.1 Database transposition

With the Galois connection, the double lattice repre-

sents at the same time attributes patterns and objects

patterns, with both different sense of specialisation (cf.

Figure 3). It is therefore possible to achieve two mi-

nings :

— on attributes, with beginning at the top of the lat-
tice and according to the specialisation relation of
attributes,

— on objects, with beginning at the bottom of the lat-
tice and according to the relation specialisation of
objects.

If bd = (0,A,R), the first mining computes

Th(bd, L 4,q) where L4 is the language of attribute

patterns. The second mining computes the theory re-

lative to the transposed database of bd on the language
of objects patterns :

Definition 6 (Transposed database ) Let bd =
(O, A, R) a database. The transposed database is 'bd =
(A, O,'R) where (a,0) € 'R <= (0,a) € R.

3.2 Transposition of predicate

If the database transposition is relatively natural, it is
not in the same way for the predicate that constraints
the search. In the case of the frequency constraint,
the dual notion for attributes patterns support is
the length of the corresponding objects pattern. For
example Figure 3, the pattern {ag,a10} is present
in objects 09,03,04 : its support is 3, the length of
{02, 03,04 }. We specify this notion by using the Galois
connection to go from attributes formalism to objects
formalism :

Definition 7 (Transposed predicate) Let q be a
predicate on the language L. The transposed predi-
cate tq is defined on Lo by (f is the Galois operator) :

VT € Lo, 'q(T) <= q(f(T))

For example, if ¢ indicates that the attributes pattern
has a support above the threshold ~y, the transposed
predicate 'q will indicate that the objects pattern is
longer than ~.

Relatively to the attributes specialisation, g will be
monotonous (resp. anti-monotonous) if ¢ is monoto-
nous (resp. anti-monotonous). The objects specialisa-
tion however follows the inverse sense of attributes;
so ¢ is anti-monotonous w.r.t. attributes, ¢ is mono-
tonous w.r.t. objects and it is necessary to take its
negation, in order to recover an anti-monotonous pre-
dicate that can guide our search. We get the following
property :

Property 1 If q is anti-monotonous w.r.t. the attri-
butes specialisation, then —'q is also anti-monotonous
w.r.t. the objects specialisation.

Proof : The Galois connection reverses the sense of in-
clusion : ¢, anti-monotonous w.r.t. attributes provides
a transposed predicate g, that is monotonous w.r.t.
objects : its negation is anti-monotonous.

To illustrate this property, let us come back to the
frequency constraint on attributes patterns. One will
for example have interest for patterns which are at
least present three times. The transposed predicate is
a constraint on the length of objects patterns, that
requires therefore objects patterns to be longer than
three. This new constraint is monotonous relatively
to the objects specialisation (the specialisations of
an objects pattern having more than three objects
contains also more than three objects). The negation
of the transposed constraint, that requires patterns
to contain less than three objects, is therefore anti-
monotonous.

3.3 Transposed Mining

We now have an operation of database transposition
data and a new anti-monotonous predicate relatively
to the specialisation of objects : we are able to apply
the classic levelwise algorithm. Nevertheless, getting
the new predicate requires to transpose the original
predicate but especially to deny it in order to guaran-
tee its anti-monotonicity. The new mining will then
produce the complementary of the theory provided by
the original mining.

Definition 8 (Transposed theory of concepts)
On bd with the constraint —tq, the levelwise al-
gorithm levels will extract the theory of concepts
The(tbd, £,-q), transposed of The(bd, L, q).

The property immediately follows :

Property 2 (Complementarity of theories)
Relatively to the entirety of concepts, the theory
of concepts The(bd,L,q) and its transposed
The(tbd, £,-'q) are complementary.



Proof : On attributes or patterns, ¢ and its transposed
constraint *q are equivalent (their theories contain the
same concepts). The theories relative to ¢ and fq are
therefore identical : relatively to ¢ and —!q they are
complementary.

attributes with support > 3
(objetswith length > 3

= =
i=) S
g {a1,83} {e6,a7} {a9,a10} e
N {01,02,03,05} {01,0405}  {02,0304} N
s ]
& {al,a2,23,a4) {al,a3,6,a7} {a5,86,a7,38}

{01,02,03} {ol,05} {o4,05}

attributes

{al,a2,a3,a4,29,a10} . N
{02,038} objects with length <

(attributs with frequency < 3)

NS

Fi1G. 4 — Complementarity of theories

On our running example, closed patterns of mini-
mum support 3 are {a1,as}, {a1,a2,as,a4}, {as,ar}
and {ag,a10}. With transposing and denying this
constraint, one will search for objects patterns of maxi-
mal length 3 : one finds patterns {01, 05}, {04, 05} and
{02, 03}. One verifies that the two sets of concepts are
complementary (see Figure 4).

This property of complementarity justifies our new
method of mining with working on the transposed
base, because it is possible, while transposing, to get
the complementary of the initial searched theory, and
therefore to get easily the theory itself. One can also
take advantage of the duality of borders, exposed at
the end of the section 2, because the border of the
theory of the original base coincides, thanks to comple-
mentarity, with the border of the transposed theory.
The efficient [11] algorithms of direct mining of the
border [19, 12, 4] can be used, and the negative border
in the transposed base provides directly the positive
border in the original base. The different aspects of
this method are discussed in the section following.

4 Applications

In this section, we detail the use of the transposed
mining, and present several examples of application.
The first interesting operation consists in extracting
entirely the closed objects patterns, to deduct for a
null cost the closed attributes patterns. Interesting for
situations where the normal mining fails due to the
width of the database, this approach is validated on
the biologic data. Then, we show the improvement of
performances relatively to the pruning criterion 2, and
we finish with a method of mining under monotonous
constraint.

4.1 Entirely mining closed patterns

An algorithm calculating the set of closed patterns
provides attributes patterns, and the Galois connec-

[

Ire re
long. || success | failures || success | failures
1 32 13 9 1
2 24 22 4 4
Total 56 35 13 5
free 38 14
closed 10

TAB. 2 — Success/failures of the pruning criterion 2 on
running example re

tion deducts corresponding closed objects patterns.
Reciprocally, the transposed mining provides closed
objects patterns, which the Galois connection trans-
lates to closed attributes patterns.

It is therefore possible to get the same set of concepts
with extracting in the base or its transposed. The
choice of one or the other method will be guided by
measurements of the database : between the number
of attributes or objects, one chooses the smallest, the
one that will generate the less vast lattice.

On our running example, the smallest dimension
is the one of objects : 5 patterns that generate
2° = 32 patterns. Among these 32 patterns, only
10 are closed. But the original database contains 10
attributes or 2'° = 1024 patterns, and it has always
only 10 closed patterns. It is clear that it is more
efficient to extract them with choosing the smallest di-
mension. These data are given in the summary table 2.

Different techniques exist to get the set of closed pat-
terns. We use the free [7] or key patterns [3] to ge-
nerate closed patterns (a free pattern is a pattern on
which there is no association rule, cf. [6]). Besides, the
freeness constraint is anti-monotonous, what is not the
case of the closure constraint, and therefore provides
a pruning criterion for the levelwise algorithm. But
one closed pattern can be generated by several free
patterns. On our example, the mining of free patterns
provide 38 patterns that generate the 10 closed pat-
terns, whereas the mining in transposed contents itself
with 14 free patterns. The gain is immediate.

We also applied our method to the database sain8,
coming from an experience achieved to the unit
INRA/INSERM U449 [21]. It relates the transcrip-
tome analysis of human muscular biopsies, before
and after three hours of euglycemic-hyperinsulinemic
clamp. The resulting expression matrix contains 6 lines
and 1065 columns. In this disposition of the data, the
mining provides in some minutes 667 831 free patterns
but only 41 closed patterns. In the transposed data-
base, the mining only takes some hundredth of seconds
and satisfies itself with 42 free patterns, for the same
41 closed patterns.

This example is quite symptomatic of the efficiency of



sain8 'sain8
long. success failures || success | failures
1 7 0 6 0
2 172 548 128 928 15 0
3 2315383 | 4713114 16 4
4 2965726 | 9371325 6 9
5 0| 1544 485 0 2
Total || 5 454 434 | 15 757 852 43 15
free 667 831 42
closed 41

TAB. 3 — Success/failures of the pruning criterion 2 on
sain8

the transposed mining. For the biologic contexts and
their pathological measurements, this improvement is
spectacular.

More generally, the use of the transposition to get the
totality of closed patterns is justified in all contexts
where the number of examples is weak compared to
the number of describers. This situation forbids often
the use of classic algorithms, historically conceived to
treat databases including numerous lines. But in me-
dicine and in biology, experiences are expensive and
it is necessary to be content with a small number of
situations. Let us notice that even though the mining
of text handles more examples, it can be embarrassed
by too numerous attributes. The transposed mining
of concepts offers an opportunity to palliate a classic
problem of measurements. Finally, as condensed re-
presentation of patterns, the collection of concepts al-
low multiple uses : calculation of supports, association
rules, classification rules, clustering, etc.

4.2 Pruning criterion

Table 3 presents for sain8 and its transposed the num-
ber of patterns by level of the algorithm that satisfied
the two pruning criterions and that should be exami-
ned after, and the number of failures to criterion 2.
At every level, candidates are generated. Those that
successfully pass the test will rejoin the free patterns
after query of the base, others lead to a failure because
of one not satisfying ¢ sub-patterns.

The mining in *sain8 is exceptionally efficient : it pro-
duces less patterns to test in the base (37 against
5 453 657) and it leads to refuse infinitely less :
13 against 14 213 367.

In the biologic contexts, this argument is especially re-
levant. A mining on few lines but numerous columns
will fail for lack of memory or time resource. Even
though there are few lines, the number of failures to
criteria 2 degrades performances and too numerous
candidates are generated, for a very weak output.

All in all, the complexity result [18] specify that mi-
ning algorithms will examine at least as many pat-

terns that there are in the theory and its border. This
number of predicate tests is crucial, particularly in the
huge volumes of data, where querying the database is
slow. The lower bound on database request is there-
fore precious : it measures data access savings, directly
consecutive to the pruning criterions. If the first cri-
terion is easy to verify, the second can reveal to be
the bottleneck of the algorithm [13], and this since the
first levels.

4.3 Mining
constraints

under monotonous

The anti-monotonous constraints provide an impor-
tant class of constraint that allows minings. But there
are also very useful others, and of course monotonous
constraints ! For example, looking for rare patterns in
a database [9, 15] uses a monotonous constraint. The
mining under any constraint is self a domain of re-
search [14] and algorithms extracting simultaneously
under the two types exist [8]. A method can consist
in breaking out the constraint in conjunction and dis-
junction of monotonous, anti-monotonous constraints.
We must therefore have methods for handling the ba-
sic two types : monotonous and anti-monotonous.

If ¢ is monotonous, it forbids the classic algorithms,
founded on anti-monotonous constraints, which prune
the search space. But with the property of comple-
mentarity, Th(bd, L, q) and Th(*bd, L, —q) provide the
theory for ¢ and its complementary. According to
the proprety 1, —'q is also monotonous, therefore
Th(*bd, L,—tq) is not calculable with levelwise algo-
rithm either. On the other hand, ?q is anti-monotonous
for the specialisation relation of objects, and the fol-
lowing property holds :

Property 3 The(bd, L, q), the concepts theory rela-
tive to a monotonous predicate q is :

The("bd, L' q)

According to a monotonous constraint, the mining of
patterns can therefore be led with simply using the le-
velwise algorithm, with the transposed constraint from
attributes to objects, in the transposed database. For
example, if one looks for the rare patterns, which sup-
port is lower than 3, it is well a monotonous constraint.
Its transposition requires that objects patterns are
shorter than 3. It is an anti-monotonous constraint,
relatively to objects specialisation. The mining on the
transposed database is feasible with the levelwise al-
gorithm and provides the searched concepts.

5 Conclusion - Perspectives

We explained that the mining of theory relative to a
constraint in a database is an arduous task in very
large volumes of data (many attributes), a classic case
in biologic datas. We proposed then a new method



of mining, founded on the exploitation of the data
base and the constraint transpositions. Then we have
shown the utility of this technique to get more easily
all closed patterns, and save the cost of the algorithm
with minimising the space to to browse and failures
of pruning criterias. At the end we have proposed
a new process of mining under monotonous constraint.

Perspectives of application are numerous, precisely in
the domains of genome biology. It remains however
to complete the tools that can exploit this method.
In particular, the depth-first mining algorithms that
directly provide the common border can be adapted
to take advantage of this property.

In short, it will be very useful to study constraint
transposition. If the translation from support
constraint to objects length is easy, it is not such natu-
ral for the freeness constraint (no association present
in the pattern) for example.
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