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ABSTRACT 
In this paper we present drug-reaction relations in the form of 
weights which indicates the “probability” of occurrence of 
reactions. The comparison of two different methods for 
establishing such representations are made: one uses all drugs 
involved and the other method uses only suspected drugs 
reported. 

 
INTRODUCTION 

 
An Adverse Drug Reaction (ADR) is defined by the WHO as: “a 
response to a drug that is noxious and unintended and occurs at 
doses normally used in man for the prophylaxis, diagnosis or 
therapy of disease, or for modification of physiological function” 
[10]. The authors of this paper are developing an alternative 
approach to the ADR problem [3, 4]. Some of the problems 
concerning ADRs are discussed in the research report [3]. 
One of the main problems of ADR is the following: given a 
patient (the set of drugs and reactions occurred) to identify 
drug(s) which are responsible for these reactions. Such drugs are 
termed, in the ADRAC database, as “suspected” drugs. The 
accurate definition of suspected drugs for each report has a very 
important effect on the quality of the database for future study of 
drug-reaction relationships. 
The information collected in the ADRAC database consist of 
mainly two sets of information: Individual patient information, 
including “reason for use”, “history” and so on, and information 
about drug(s) and reactions observed. In this paper we will use 
only the second set of information, because the former requires 
more of a data mining approach to extract useful information. 
Therefore, we consider drug-reaction relationships not involving 
any other patient information. In other words we define for each 
drug a vector of weights which indicate the probability of 
occurrence of each reaction.  This problem can be considered as 
a text categorization problem, where each patient is considered as 
one document, and the set of drug(s) taken by this patient is 
considered as a text related to this document; that is, each drug is 
considered as a word. For a review of some of the issues in 
textcategorization (ee ([7, 11]). 

 
ADRAC Data  

 

TABLE 1: The Five Card2 Classes 
 
     
 1010 Cardiovascular 

general 28 13512

 1020 Myo endo card. 
& valve 37 674

 1030 Heart rate & 
rhythm 21 810

 1040 Vascular (extra 
cardiac) 24 5901

 

Non-
cardi
ovas
cular 
reacti
on(s)
‡ 

 6874

 

 Total 677 36394  
 
* Number of reaction terms in class  
† Total occurrence of reaction class  -- see text  
‡ Given any 10xx SOC + any non-cardiovascular reaction terms(s) – see 
text  
 
The Australian Adverse Drug Reaction Advisory Committee 
(ADRAC)database has been developed and maintained by the 
Therapeutic Goods Administration (TGA) with the aim to detect 
signals from adverse drug reactions as early as possible. The 
ADRAC data contains 137,297 records collected from 1971 to 
2001. A more detailed account of the ADRAC database is given 
in [3]. 
 In ADRAC there are 18 Systems Organ Class (SOC) reaction 
term classes, one of which is
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Cardiovascular. The Cardiovascular class consists of four sub-
classes. In this paper we will consider the part of ADRAC data 
related to the cardiovascular type of reactions. All records 
having at least one reaction from these four sub-groups were 
collected. We call this dataset Card20. In this dataset some 
records may have a reaction from outside Cardiovascular 
group. In order to group reactions into reaction classes we 
define four classes according to these four sub-groups and plus 
a fifth class that contains reactions belonging to the other 17 
SOCs. For some details seeTable 1 (for more details refer to 
[3]).  
 
Statement of the problem 
 
Let  
X  denote the set of all patients and  
D denote the set of all drugs used by these patients. Let c be a 
finite number of possible reactions (classes). Given patient  
x∈ X  we denote by  
D( x)  the set of drugs taken by this patient. In ADRAC data the 
number of drugs reported for a patient is restricted to 10. We also 
denote by

  
Y ( x) = ( Y 1, Y 2, …, Y c)  a c -dimensional vector of 

reactions observed for the patient  
x;  where  
Yi = 1 if the reaction i has occurred, and  
Yi = 0 if it has not. 
The goal of the study of drug-reaction relationships is to find a 
classifier 

 
 where given drug  

d∈ D the components hi of the vector h(d)=(h1, h2, …, hc) 
associate the “probabilities” of the occurrence of the reactions i = 
1, 2, …, c. Here  

 is the set of all c -dimensional vectors with non-negative 
coordinates. 
In the next step, given a set of drugs  
∆⊂ D,  we need to define a vector H=(H1, H2, …, Hc), where 
the component Hi indicates the probability of occurrence of the 
reaction i after taking the drugs ). In other words, we need to 
define a function 

 
 where   

S( D) is the set of all subsets of  
D.  The function H can be defined in different ways and it is an 
interesting problem in terms of ADR(s). We will discuss this 
problem below. 
Given patient  
x∈ X  and a set of drugs  
D( x) ,  we will use the notation  

H( x) =H( D( x) ) . 
In this statement, this problem is a multi-class, multi-label text 
categorization problem, but there are some interesting points that 
should be mentioned in relation to ADRs. One of the main 
characteristics is that the number of drugs (i.e. words in the 
context of text categorization) for each patient is restricted to 10, 
and for majority of patients just one drug was used. This 
sparseness of data complicates learning and classification, but on 
the other hand, this allows us to introduce simple and fast 
algorithms.. 
 
Potential Reactions 
  
The vectors h(d) show what kind of reactions are caused by the 
drugs  
d∈ D( x) .  Therefore the vector H(x) can be considered as 
potential reactions which could occur with the patient x. But what 
kind of reactions will occur? This will depend upon the 
individual characteristics of the patient as well as external 
factors. Different patients can have different predispositions for 
differentreactions. Some reactions which have potentially high 
degrees may not be observed because of the strong resistance of 
the patient to developing these reactions. The function H can be 
defined in different ways. The study of more sensible definitions 
of the function H is an interesting problem for future 
investigations. This problem is also related to the study of 
Interaction of Drugs [3]. In this paper we will not study this 
problem.  
In the calculation below we will use the following linear function 
H [3]: H = (H1,…,Hc); where, for each subset ) ⊂ D the 
components Hi are defined as follows: 

 

 In this case, for each 

patient x ∈ X, we have H(x) = (H1(x),…,Hc(x)), where 

  (1.1) 

The use of this function means that, we accumulate the effects 
from different drugs. For example, if hi(dn) = 0.2 (n=1,2) for 
some reaction i, then there exists a potential of 0.4 for this 
reaction; that is, the two small effects (i.e., 0.2) become a geater 
effect (i.e., 0.4). This method seems a more natural way because 
physically both drugs are taken by the patient, and could even be 
worse if there are interactions. 
 
Evaluation measure 
 
To evaluate the accuracy of established drug-reaction relations 
by a given classifier (h,H); that is, to evaluate the closest of the 
two vectors H(x) (predicted reactions) and Y(x) (observed 
reactions) we will use the following two measures considered in 
[7]. 
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1. Coverage. This measure evaluates the performance of a 
classifier for all the reactions that have been observed. 
Given x ∈ X , we denote by T(x) the set of all ordered reactions τ 
= {i1,…,ic} ⊂ {1,…,c} satisfying Hi1(x) ∃…∃ Hic(x). Then 
according to a reaction vector (Y1(x),…,Yc(x)),we define rank and 
the error as: 

 

 

Obviously, the number rankϑ,(x) and errorϑ(x) depend on the 
order ϑ  One way to avoid the dependence on ordering is to 
take the middle value of maximal and minimal ranks. In this 
paper we will use this way. We define the rank as 

 

where 

 

and   
 

 

The numbers rankmax(x) and rankmin(x) associated to the “worst” 
and “best” ordering, respectively. 
To define the average error – coverage, we will use the formula: 

 

Note that, Ecov = 0 if a classifier makes a prediction such that 
for all x ∈ X the ranks for observed reactions are placed in the 
top of the ordering list of weights Hi(x). The smaller the value 
of Ecov the better. 
 
2. Average Precision. One-error and coverage do not 
completely describe multi-label classification problems. In [7] 
the average precision was used to achieve more completely 
evaluation. We also will use this measure. Similar to the 
average error, the average precision depends on a given order ϑ 
= {ϑ1…, ϑc} ∈ T(x). So we define the average precision as a 
midpoint of average precisions obtained by the “worst” and 
“best” ordering. Let Y(x) = {l ∈ {1, …, c} : Yl(x)= 1} be a set of 
reactions that have been observed for the patient x. Given order 
ϑ = {ϑ1, …,  ϑc} ∈ T(x), (that is, Hτ1(x) ∃ … ∃ Hϑc(x)), we 
define the rank for each reaction l ∈ Y(x) as rankϑ(x;l) = k, 
where ϑk = l.  Then, Average Precision will be defined as: 

 

where 

 

 

 

 

Pav is expressed as a percentage; the larger the value of Pav, the 
better. 
 
Optimization problems 
 
The algorithm A(p), that described below, aims to minimize the 
distance between predicted reactions H(x) and observed reactions 
Y(x). We will consider the following distance functions: 

 

 

where 
 

 

 the number of reactions for the patient x, and the 

sign “bar” indicates a normalization: 

 

In the distance dist0 a normalization is made such that the sums 
 

are equal to the number of reactions. In  

dist2, after multiplying by 
 

 we get the corresponding sums are equal to 1. 

dist1 can be considered as a middle version. These distance 
functions are slightly different from the Linear Least Squares 
Fit (LLSF) mapping function [11,12]. 
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It would be interesting to consider the Euclidian distance. But 
some preliminary analysis showed that this distance does not 
provide us a reasonable evaluation. 
 Given a classifier (h,H), the average distance error will be 
calculated as 

 

Here |X| stands for the cardinality of the set X.  
Therefore, we have the following optimization problem: 

 
subject to: 

 

 
In this paper we will describe algorithm A(p) which aims to 
minimize the average distance error  

. This aim changes by taking different numbers p = 0,1,2, 
which provides different classifiers A(p),  p = 0,1,2. 
 
A solution to the optimization problem 
(1.4),(1.5) 
 
The function in (1.3) is non-convex and non-linear, and 
therefore may have many local minimum points. We need to 
find the global optimum point. The number of variables is 
|D|Αc. For the data Card20, that we will consider, |D| = 3001 
and c =5. Thus we have a global optimization problem with  
15005 variables, which is very hard to handle using existing 
global optimization methods. Note that, we also tried to use 
local minimization methods which were unsuccessful. This 
means that there is a clear need to develop new optimization 
algorithms for solving problem (1.4),(1.5), taking into account 
some peculiarities of the problem. 
In this paper we suggest one heuristic method for finding a 
“good” solution to the problem (1.4),(1.5). This method is 
based on the proposition given below. We denote by S the unit 
simplex in Rc; that is, 

 

In this case for each h(d) ∈ S the component hi(d) indicates 
simply the probability of the occurrence of the reaction i.  
 Given drug d we denote by X(d) the set of all records in  X, 
which used just one drug – d. Simply, the set X(d)  combines all 
records where the drug d was used alone. 
 
 Consider  the problem: 

 

 
Proposition 1. A point h*(d) = (h*1(d), …, h*_c(d)) where 

 

 

(1.6),(1.7). 
 
Now, given drug d, we consider the set Xall(d) which combines 
all records that used the drug d. Clearly X(d) ⊂ Xall(d). The 
involvement of other drugs makes it impossible to solve the 
corresponding optimization problem similar to (1.6), (1.7). In 
this case, we will use the following heuristic approach to find a 
“good” solution. 
We denote by Ndrug(x) the number of drugs taken by the patient 
x.  Then, we set: 

 

 

This formula has the following meaning. If Ndrug(x) = 1 for all x 
∈ Xall(d), then (1.9) provides global minimum solution. Let 
Ndrug(x) > 1 for some record x ∈ Xall(d). In this case, we assume 
that all drugs are responsible to the same degree; so we associate 
only the part 1/Ndrug(x) of the reactions Yj(x) to this drug. 

 
Algorithm A(p) 
 
We will consider three versions of the algorithm A(p), 
corresponding to the distance functions distp, p = 0,1,2, 
respectively. Each of these versions tends to minimize the 
average distance calculated by its own distance measure. 
 For each drug d we define the sets X(d) – the set of all cases 
where drug d was used alone and Xall(d) – the set of all cases 
where drug d was used. The set X(d) carries very important 
information, because here the drug d and reactions are observed 
in a pure relationship. 
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Therefore, if the set X(d) contains a “sufficiently large” number 
of records, then it will be reasonable to define the weights hj(d), 
(j = 1,…,c) by this set. 
 
We consider two numbers: |X(d)| – the number of cases where 
the drug is used alone, and P(d) = 100 |X(d)| / |Xall(d)| – the 
percentage of these cases. To determine whether the set X(d) 
contains enough records we need to use the both numbers. We 
will consider a function φ(d) = a |X(d)| + b P(d) to describe how 
large the set X(d) is.  
Therefore, we define h(d)=(h1(d), … hc(d)) as follows:. 

 

where h*(d) and h**(d) are defined by (1.8) and 
(1.9),respectively. 
 
New drugs and new events 
 
We define a new drug (in the test set) as a case when this drug 
either is a new drug which has not occurred in the training set or 
has never been considered as a suspected drug in the training set. 
For all such a new drug d, we set hi(d) = 0, I = 1, …,c. It is 
possible that for some new (test) example all suspected drugs are 
new. We call this case as a new event. This situation is, mainly, 
related to the fact that, new drugs are constantly appearing on the 
market. Obviously, to make prediction for such examples does 
not make sense. Therefore, in the calculations below, we will 
remove all new events from test sets. For details see Table 2 
 
The results of numerical experiments 
 

TABLE 2:  Card20. The training and test sets.  
  

 Year Number of Records 
 

 Training 
 

Test Removed* 
 

1996 12600 1049 98 

1997 13747 1091 163 

1998 15001 1418 265 

1999 16684 1746 169 

2000 18599 1988 158 

2001 20745 1054 65 
*’Removed' means how many records were removed from test set. For 
example, in 1996 there are 1147 records and 98 of them are new 
events. Then, the number of records in the test set for this year is 1049 
(=1147-98) 
We make calculations in two versions: in the first version we 
consider all drugs that have been taken by patients as suspected 
drugs, in the second we use only those drugs which are reported 
as suspected in the ADRAC data.  
In the calculations below we take as a test set records 
sequentially from each year, starting from 1996 until 2001. For 
example, if records from 1999 are taken as a test set, then all 
records from years 1971-1998 form a training set. In the Table 2 
we summarized the number of records in test and training sets, 
and, also, the number of new events removed (new events are 
defined by suspected drugs only).  

 

TABLE 3 The results obtained by the algorithm A(p), p = 0,1,2.*  
 

Year  Evaluation Measure 
 

A(0)  A(1)  A(2) 

   Training Test Training Test Training Test 

1996  Ecov All drugs 0.553 0.605 0.510 0.586 0.450 0.562 

  Suspected drugs 0.507 0.588 0.464 0.571 0.415 0.556 

 Pav All drugs 81.36 79.81 82.61 80.05 83.72 79.79 

  Suspected drugs 82.86 80.21 83.94 80.03 84.49 79.75 
    

     1997  Ecov All drugs 0.552 

  Suspected drugs 0.509 0.613 0.464 0.589 0.417 0.570 
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 Pav All drugs 81.41 78.94 82.63 79.42 83.78 79.24 

  Suspected drugs 82.80 79.69 83.95 80.23 84.51 79.95 

1998  Ecov All drugs 0.551 0.679 0.512 0.650 0.454 0.621 

  Suspected drugs 0.509 0.672 0.465 0.641 0.417 0.625 

 Pav All drugs 81.45 77.83 82.58 78.68 83.68 78.40 

  Suspected drugs 82.79 78.01 83.89 78.58 84.47 78.41 

1999  Ecov All drugs 0.556 0.585 0.517 0.573 0.461 0.545 

  Suspected drugs 0.515 0.569 0.471 0.562 0.424 0.543 

 Pav All drugs 81.39 80.46 82.46 80.63 83.48 81.03 

  Suspected drugs 82.66 80.92 83.75 80.92 84.35 80.88 

2000  Ecov All drugs 0.549 0.691 0.512 0.668 0.457 0.647 

  Suspected drugs 0.512 0.682 0.470 0.651 0.423 0.633 

 Pav All drugs 81.57 77.54 82.60 77.88 83.58 77.23 

  Suspected drugs 82.70 77.77 83.73 78.23 84.37 77.60 

2001  Ecov All drugs 0.561 0.712 0.520 0.685 0.467 0.672 

  Suspected drugs 0.525 0.713 0.480 0.683 0.435 0.667 

 Pav All drugs 81.22 76.89 82.39 77.50 83.35 77.55 

  Suspected drugs 82.29 76.92 83.49 77.38 84.07 77.58 
 
*“All drugs" means that the drug-reaction weights are calculated assuming all drug(s) suspected, “Suspected drugs" means that we use only suspected 
drug(s) reported in ADRAC data 
 
We apply the algorithm A(p) using a function φ(d) = |X(d)| + 
P(d) to describe the informativeness of the set X(d). We also 
need to set a number p* The calculations show that the results 
are not essentially changed for different values of p* in the 
region p* ∃ 30. We set p* = 80 in the calculations. The results 
are presented in Table 3. 
The comparison of the results obtained for training sets show 
that using information about suspected drugs reported in the 
ADRAC data provides much better results. We also see that the 
drug-reaction relations established only by suspected drugs 
provide more precise prediction: in almost all cases the results 
obtained for test sets are better if we use suspected drugs only 
(“Susp. Drug” rows in Table 3). 
One more important fact should also be noted. In all cases 
above the results obtained are much better than the default 
values (we define default values assuming that for each record 
all reactions can occur with the same weight). This emphasizes 
that it possible to study drug-reaction relations, not involving 
other information about patients. The drug-reaction 
relationships could then be used, together with the patient 
information, to enhance the prediction of reactions that could 
occur. 
 

Conclusion 
 
In this paper we have studied drug-reaction relations in 
thedomain of the Cardiovascular group of reactions from 
ADRAC data. These relations are presented in the form of a 
vector of weights. The results show the possibility of studying 
drug-reaction relations, not involving other information about 
patients. In all cases above the results obtained are much better 
than the default values. We demonstrated that by removing 
drugs not “suspected” of causing reactions, that an improvement 
in accuracy was obtained. 
To develop new algorithms taking into account the peculiarities 
of ADRs is an important problem. The development of these 
algorithms should help us to extract more useful information 
from ADRAC data. In particular, the study of drug-reaction 
associations, drug-drug interactions and the influence of other 
data fields contained in the ADRAC data are interesting 
problems for future investigation. 
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