

Proceedings of _______:
Conference Name
Date and Location

Reference ID: 1071

EASE – A SOFTWARE AGENT THAT EXTRACTS FINANCIAL DATA
FROM THE SEC’S EDGAR DATABASE

Özkan Cetinkaya, Detlef Seese, Ralf Spöth, Thomas Stümpert
Institute AIFB, University Karlsruhe (TH), 76128 Karlsruhe, Germany

{seese, stuempert}@aifb.uni-karlsruhe.de
(+49)721/608-0, Fax:(+49)721/693717

ABSTRACT
In this paper we discuss text mining approaches for
financial data from the Electronic Data Gathering,
Analysis and Retrieval (EDGAR) database of the
Securities and Exchange Commission (SEC) which
contains filings including financial statements of
about 68,000 companies. The structure of these
filings varies between companies, and changes over
time for individual companies as well. Moreover,
their technical specification is comparably weak.
Altogether, this makes automated data extraction a
great challenge for software agents.

The focus of this paper was the recognition of
balance sheets, that is, how to find relevant sections
in a large document. A filing consists of HTML or
plain text. With respect to this distinction, we
followed two different approaches for the
respective types.

Regarding HTML encoded content the agent builds
a DOM (Document Object Model) instance on top
of non-standard filing, which allows very
convenient data access. This DOM-based approach
revealed additional potential for navigation in these
filings in order to detect financial information faster
and more reliably even when filings do not adhere
to syntactical conventions strictly. For plain text, a
modified vector space model has been developed.
We succeeded to extract key financial information
at a reasonably high level for conventional text
files.

INTRODUCTION
Since financial statements are vital for decision
makers in the professional investment world, quick
access and automated import of this data is essential
for the finance industry. Unfortunately, the data
available in the SEC EDGAR database (see [SEC])
is weakly structured in technical terms. Filings
contain mixed content of natural language text and
semi-structured financial tables (for data extraction
methods in general, see e.g. [HFAN98]).

The SEC is the regulatory authority for securities
markets in the United States established for the
protection of investors and to maintain fair, honest
and efficient markets. Registered companies are
required to submit certain financial reports in
prescribing formats. Form 10-K is the annual report
that most reporting companies file with the SEC,
containing annual financial statements. Filings
consist of plain text and/or HTML. As long as these
filings are the standard and most up-to-date source
of information for professional and private
investors, software agents (see [Klu99]) that
transform them into an exchangeable format are of
greatest interest.

We continued prior explorations of data extraction
using agents, formerly named Edgar2xml (see
[LSSS01]), leading to two different approaches that
take into account the changing document formats
(see EDGAR Filer Manual, [SECFM]). Before we
delve into the details of our EASE (Extraction
Agent for SEC’s EDGAR database) project, we
take a look at existing implementations with similar
objectives.

Currently several EDGAR agents exist, e.g.
EDGAR online (see [FREDG] and [EDGOL]), 10-
K Wizard (see [10KW], no free online services
available) and FRAANK (Financial Reporting and
Auditing Agent with Net Knowledge, see
[FRAANK], cf. [KNSVL98], and cf. [KNSVL00]).
EdgarScan (see [EDGSC]) from PriceWaterhouse
Coopers pulls filings from the SEC's servers and
parses them automatically to find key financial
tables and normalize financial positions to a
common set of items that is comparable across
companies. The normalization makes EdgarScan
superior compared to other implementations. When
filings are available as HTML flavored only,
EdgarScan obviously converts the HTML
documents into plain text and parses these
documents. The most important effort in
standardizing exchange of financial information is
the Extensible Business Reporting Language
(XBRL, see [XBRL]), which is comprised of a set
of XML schemas, describing how to present items,
and taxonomies, describing which items make up a
certain type of financial report. Traditional EDGAR
agents do not always detect a balance sheet in a
10K filing correctly. We describe an algorithm
which extracts key financial information at a high
level for conventional text files.

The paper is organized as follows: The first section
describes content and structure of SEC 10-K
filings. In the following main part we describe our
text mining approaches for extraction of financial
data from these filings. It is divided into two
subsections, one of which is dedicated to the
traditional, textual filings, and the other for the
newer HTML encoded documents. The final section
contains results and conclusion.

STRUCTURE OF 10-K FILINGS
A filing is a text document that contains tags in
order to structure the parts it contains. The
specification for filings can be found in the filer
manual (see [SECFM]). These tags are special to
SEC filings, but similar to HTML tags in terms of
syntactical rules. A filing consists of a single root
element named “SEC-DOCUMENT”, which
contains a single child named “SEC-HEADER” and
one or more children named “DOCUMENT”.

Structure of document elements

The common structure of all embedded documents
is a sequence of named properties followed by a
single text node. An example:

<TYPE>10-K
<DESCRIPTION>ANNUAL REPORT
<TEXT>
 actual contents
</TEXT>

In this example, the first two lines specify two
document properties “TYPE” and
“DESCRIPTION”. The text node encloses the
actual contents which is an embedded document of
type HTML, plain text with tags, or even some
graphical type. Parsing filings in order to obtain the
structure up to this level is comparably easy.

Embedded documents which contain financial
information are nearly always either HTML or plain
text, and sometimes a mixture. The format of these
documents varies a lot between companies, and
may change over time for a single company.

Embedded Plain Text

Plain text documents are best viewed with browsers
that display the contents formatted with a
monospaced font. Line and page breaks as well as
the length of character runs including white space
are significant for the visible structure of sections,
paragraphs and tables. The following excerpt
illustrates this.

 2001 2000

<S> <C> <C>
ASSETS
Cash 27 85

Representing this example using a true type font,
not respecting line breaks, produces something like

 2001 2000 ---------------------------------
<S> <C> <C>ASSETSCash 27 85

which clearly illustrates the importance of the
properties stated above. That said, we could easily
draw a table using pipe character immediately in
front of the “smaller than” characters of the
columns, and would obtain this visible result:

 |2001 |2000
----------|--------|----
ASSETS | |
Cash |27 |85

We refer to documents with embedded plain text of
this kind as text flavored documents hereinafter.

Embedded HTML

Embedded HTML documents are in no way special
to SEC filings when compared to other real-world
HTML content published on the web. They are
enclosed in HTML tags, using “HEAD” and
“BODY” tags, “TABLE” tags and others. These
documents should be viewed with contemporary
HTML browsers only. The following figure shows
the beginning of a balance sheet.

The tabular structure is clearly visible. As in the
textual example before, we can identify three

Figure 1: Balance Sheet in HTML

columns with item names on the left and financial
numbers in the second and third column. In contrast
to the visible three columns, this document consists
of as much as nine table columns in the HTML
source, some of which are used for alignment and
spacing purposes only. Formatting is targeted
towards human readers, not machines. – We refer to
documents with embedded HTML simply as
HTML documents hereinafter.

PROCEDURES IN MORE DETAIL
Information Extraction (IE) is a technology
dedicated to the extraction of structured information
from texts to fill pre-defined templates. While most
contemporary work focuses on either machine
learning for IE patterns or wrapper generation (cf.
[AS99], [HFAN98] and others), and is geared
towards web search engines, we deal with a pre-
defined structure for the information, namely the
financial statements of US-GAAP compliant
financial reports. The guidelines in the filer manual
(cf. [SECFM]) specify what information must be
present, but the technical specification is
comparably weak.

Text Mining in Traditional Filings

Here is an example of how a balance sheet should
appear in a filing (we call this well-formed or
standard):

...
<PAGE>
...
<TABLE>
 CONSOLIDATED BALANCE SHEET
<CAPTION>
IN MILLIONS OF DOLLARS,
EXCEPT PER SHARE AMOUNTS

 2001 2000

<S> <C> <C>
ASSETS
Cash 27 85
Investments 0 1,487
...
Total Assets 9,456 9,154

LIABILITIES
Debts 812 756
Treasury stock (1.2) (.8)
...
Total Liabilities 9,456 9,154
<FN>

notes to the consolidated balance sheet at
p 16
</TABLE>
...

This example illustrates a kind of canonical table in
a traditional document. First of all, the document
uses page tags to separate pages. Second, the table
is enclosed in an opening and a closing table tag.
Third, the table uses the caption to identify its
purpose. Fourth, it uses a sequence of S and C tags
which determines the column specification. Finally,
the table entries are placed correctly within the text,
that is, they are starting at the their respective
horizontal position. Filings often deviate in a series
of points from the example above, and some tags
are frequently omitted. This makes it difficult to
generalize the parsing process.

We introduce a modified version of the vector
space model (cf. [Sal68]) for the purpose of the
identification of financial tables. We will refer to
the following three text excerpts from real-world
filings in order to compare the results of the
standard vector space model to our extended
version. The second excerpt contains the balance
sheet.

d1:

<page>
The status of the pension plans follows.

<table>
 Assets exceed
 accumulated
 benefit obligation

 1997 1996

Assets, primarily
stocks and bonds at
market $ 5,074.5 $ 4,327.6
...

d2:

<page>
Balance Sheet

<table>
 1997 1996

Assets
Current assets:
Cash and cash equivalents 800.8 598.1
...

d3:

<table>
 1998 1997 1996
 ------- ------- -------
Assets:

 Current assets $1,569 $1,949 $1,995
...
</table>

Balance Sheet from December 31, 1998 is on
page 12.

The standard vector space model creates a weighted
mapping of terms to documents so that similarity of
documents and search queries can be measured. We
split a filing into segments, which we use as
document equivalents. This is necessary since we
are dealing with a single document, the parts of
which need to be valuated. The query is defined as
the search for the balance sheet, the formal details
will be explained below. Aim of our modifications
is to obtain a value which ranks the document
segments in terms of likelihood for the contention
of a balance sheet (or other financial table).

First, we define a set of search terms T = (t1, …tn),
each of which is a literal term like “balance
sheet” or “assets” or a tag like <table> or
<page> etc. Document segments are defined as set
D = {d1, … dm}. Vector q = (q1,…, qn)’ is the vector
of query weights associated with the terms of T, and
wj = (wj,1, …, wj,n)´ ∈ Rn a binary vector with
components wj,k = 1 if term tk exists in dj, or 0
otherwise.

The similarity measure sj for document dj is defined
as

∑
=

=

n

k
kkjj qws

1
, .

Higher values of similarity sj indicate a higher
probability that a segment contains the balance
sheet. The weights used for the terms in this model
are taken based on observations of dozens of tests.
Examples with an arbitrary sample of weights are
shown below:

Query Term Weight
q <page> 10
 <table> 15
 balance sheet 55
 Assets 20

Figure 2: Example for term weights for the query

Calculating the similarity measure, we get:

s1 = 1·10 + 1·15 + 0·55 + 1·20 = 45
s2 = 1·10 + 1·15 + 1·55 + 0·20 = 80
s3 = 0·10 + 1·15 + 1·55 + 1·20 = 90

The highest similarity d3 does not lead to a
successful detection of the balance sheet. We
observed that the order of the occurrence of the
individual terms matters. To take the order into
account we replace the vectors of the equation with
matrices, where the components of the matrix

reflects the order of the terms. This leads to the
following modification:

Be Q an n×n term-term-matrix:

















nnn

n

qq

qq

,1,

,11,1

�

���

�

where qi,k denotes the weight of subsequent
occurrences of term ti and tk. Wj denotes the matrix
of occurrences in document j,

Wj =
















nnn

n

ww

ww

,1,

,11,1

�

���

�

 ∈ Rnxn ,

where wi,k equals 1 if term ti precedes tk, or 0
otherwise.

As similarity measure for dj we use the sum of
weighted occurrences, i.e.

∑∑
= =

=

n

i

n

k
kikijj qws

1 1
,,, .

A high value for the similarity measure again
represents a high likelihood for the occurrence of a
balance sheet. We apply the modified model to the
document segments above (see below).

Q <page> <table>
balance
sheet assets

<page> 25 65 30
<table> 70 35
balance
sheet 70 75
assets

W1 <page> <table>
balance
sheet assets

<page> 1
<table> 1
balance
sheet
assets

W2 <page> <table>
balance
sheet assets

<page> 1
<table> 1
balance
sheet
assets

W3 <page> <table>
balance
sheet assets

<page>
<table> 1
balance
sheet
assets 1

We get a similarity measure of s1 = 60 for segment
d1, s2 = 95 for segment d2, and s3 = 70 for segment
d3. As stated before, the valuation performs better
in terms of identification. As you can see in section
Results, observations indicate a high degree of
suitability for the identification of document
segments.

The extraction algorithm now tries to capture
individual items by their names, and by splitting
rows into columns based on both column
specification, number of consecutive separating
white space characters, and appearance of isolated
numbers. First we identify the relevant table and
determine the start of the table. Next we extract
multiplier and currency of the numbers. After that
we start extracting the data for the different item
labels. The extraction of the details is beyond the
scope of this document.

Extraction of HTML Documents

Since SEC filings consists of HTML parts and other
predefined tags mixed up with plain text, the filing
is not conform to the XML specification and for the
extraction of HTML flavored documents requires
the use of absolute HTML paths that point to the
data item to be extracted. The extraction process of
HTML flavored documents is two fold: In the first
stage, a parser builds a document tree based with
an HTML DOM root node for each embedded
HTML document. This structure is used by the
extractor in the second stage to locate financial
statements and extract them into the target object.

Input for the document builder is the raw character
sequence containing the entire document. Output is
an object which contains a reference to the raw text
and a root node, which represents the root of the
document hierarchy.

As stated before, a filing consists of multiple parts
with varying syntax. The main parser splits the
document into a header and a number of documents
first, and delegates the actual parsing to specialized
parsers for headers and documents, a header parser
and a document parser, respectively. The header
and each document are added as nodes to the root
node.

Splitting the entire document into its constituent
parts is realized with simple regular expressions,
searching the respective opening and closing tags of
“SEC-HEADER” and “DOCUMENT” in a single
call.

The header can be split into lines, and these lines
can be split into a property name and its value
simply finding the first occurrence of a colon. Each
property is added as a single node to the document
tree. The document parser uses a single regular

Figure 4: Screen of DOM Tree

expression in order to split the document contents
into the leading property values and the final text
element. The former are put as properties to the
document node, and the text node is added as the
only child to the document node. The content of
this text element is then passed on to an
implementation of an HTML parser the details of
which need to be explained in more detail. That
parser adds the document as child named “HTML”
to the text node. The resulting document tree can be
viewed with a special end-user application
implemented for demonstration purposes (see
screenshot in figure 4).

Navigation through the entire document is possible
using the methods which the node implementation
allows for, among them searching by content and/or
attribute values, and addressing nodes using path
expressions. The address of the “CONFORMED
SUBMISSION TYPE” for example would be
“/SEC-DOCUMENT/SEC-
HEADER/CONFORMED SUBMISSION TYPE”.
Moreover, the entire document can be processed in
consistent way regardless of the input type.

The main challenge for the HTML parser stems
from the fact that most real world HTML
documents do not follow the W3C
recommendations strictly. In contrast to XML,
which enforces strict adherence to standards,
HTML documents have always been quite sloppy
in terms of standardization. Web browsers have
been very tolerant towards incorrect syntax since
their invention, which lead to the proliferation of
HTML editors that produce code not in compliance
with recommendations.

From a theoretical point of view, XML is a type-2
grammar in Chomsky’s hierarchy. As such, it
requires a finite state engine with a stack and thus
exceeds the capabilities that pure regular
expressions provide. HTML is only a special
incorporation of XML or SGML when perfectly in

compliance with HTML recommendations. In
practice, most HTML documents violate the
recommendations frequently. Capturing the
document tree reliably despite potential violations
almost certainly requires a Turing-complete engine.
And in fact, writing such a parser proved to be
challenging.

The basis for the HTML parser is a skeletal XML
parser with special precautions for various expected
and unexpected violations. The parser contains two
regular expressions. The first expression is used to
find comments, opening tags, closing tags, and
character data tags in the parsers main loop. The
second is used to parse attributes in opening tags.

The parser keeps a reference to the node which has
been opened most recently. Every time an opening
tag is detected, a new node is created. This node
will become the current top node. When a closing
tag is detected, the current top node is closed, and
its parent is made the current top.

The reference to the current top node resembles the
stack required for type-2 parsers. The current top
node is the top element of the stack. Creating a new
node and making it the current top node resembles
the “push” operation of a stack, and making the
current top nodes’ parent the current top node
resembles the “pop” operation of a stack.

As stated before, this approach must fail for real-
world HTML documents. First of all, the broken
tags (opening tags without a closing pendant) must
not become the top node. Second, in some cases
closing tags are omitted. An opening tag then forces
previously found opening tags to be closed. Third, a
closing tag may be misplaced at some later position
in the document, in which case it will be ignored.

The extraction process is similar to the concept of
XPath, which describes how to address a node in an
XML document. For example, in order to find out
the type of a filing (10-K or 10-Q), the extractor
searches for the header node, and in this the node
named submission type. The following code
illustrates this:

Node root; // given
Node header = root.find(“SEC-HEADER”);

Node submissionType =
 header.find(“CONFORMED SUBMISSION TYPE”);
String typeName = submissionType.getText();

The path and search expressions vary from
company to company, while there is still a set of
default or standard methods of how to identify a
certain node. The extractor looks into its
configuration database whether it finds a
specialized path for a given item and company, and
defaults to a generic implementation if not
available. This procedure makes it possible to

extend the range of covered companies by simply
adding specialized entries to the configuration
database for that particular company. Our
implementation differs from XPath in that it
supports regular expressions, a feature which is
scheduled for a future version, not earlier than
version 2.0 accompanied with XSLT 2.0.

CONCLUSION
Basis for the following observations was a sample
of 10-K filings for the 30 Dow Jones Industrial
Average companies for at least the last 3 years.
Performance benchmark was the former Edgar2xml
(see [LSSS01]) implementation, which used about

 YEAR

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

CIK
1001039 ok ok ok ok ok ok
831001 ok ok ok ok ok ok ok ok
789019 ok ok ok ok ok ok
773840 ok ok ok ok ok ok ok ok
764180 ok ok ok ok ok ok ok
732717 X ok ok ok ok ok
354950 ok ok ok ok ok ok ok ok
200406 ok ok ok ok ok ok ok ok
104169 ok ok ok ok
101829 ok ok ok ok ok ok
80424 ok ok ok ok ok ok ok
66740 ok ok ok ok ok ok ok ok
64978 N ok ok ok ok ok ok
63908 ok ok ok ok ok ok
51434 ok ok ok ok ok ok ok ok
51143 ok ok ok ok ok ok ok
50863 ok ok ok ok ok
47217 ok ok ok ok ok ok ok
40730 X ok ok X ok ok ok ok
40545 ok ok ok ok X ok ok ok
34088 ok ok ok ok ok ok ok
31235 ok ok ok ok ok ok ok ok
30554 ok ok ok ok ok ok ok ok
21344 ok ok ok ok ok ok ok ok
19617 ok ok ok ok ok ok
18230 ok X ok ok
12927 ok ok ok ok ok ok ok

5907 ok ok ok N N ok ok ok
4962 ok ok ok ok ok ok ok ok
4281 ok ok ok ok ok ok ok

Table 1: Overview of investigated balance sheets

X = balance sheet not found
N = no balance sheet in filing

2 minutes to extract financial data from comparable
filings. This package utilized the GNU regular
expression implementation.The DOM parser was
able to create the DOM instance for all filings in the
sample which contained embedded HTML.

Addressing individual items in financial statements
needs a lot of configuration work still to be done,
yet the results are promising since extraction works
incredibly fast and reliably. Experiments show that
items can be extracted provided that a proper
configuration has been defined. The parsing process
took only about 1.5 seconds for an average 1 MB
filing on a 1.5 GHz single processor machine with
512 MB of RAM. Navigation within the document
tree proved to be very fast.

The plain text parser recognizes 201 balance sheets
of 206 text-based filings of the sample (see table
below). Processing took about 0.5 seconds per
filing with an average size of 400 kB.

The filing for CIK 732717 in 1996 contained no
tags at all. The occurrence of consolidated balance
sheets for CIK 40730 included those of
subsidiaries, which confused the agent. The filing
for CIK 40545 for year 2000 contained a mix of
HTML and plain text formatting means, which the
agent cannot deal with. For CIK 18230 in year
1997, the agent found too similar patterns in other
segments of the filing.

REFERENCES
[10KW] http://www.tenkwizard.com, last

visited at Oct 8th, 2003
[AS99] Azavant, F., Sahuguet, A. 1999,

“Web Ecology: Recycling HTML
pages as XML documents using
W4F”, in WebDB'99.

[EDGOL] http://www.edgar-online.com, last
visited at Oct 8th, 2003

[EDGSC] http://edgarscan.pwcglobal.com, last
visited at Oct 8th, 2003

[Fri02] Jeffrey E.F. Friedl, “Mastering
Regular Expressions”, 2nd Edition,
O‘Reilly, pp. 365

[FRAANK] http://fraank.eycarat.ukans.edu, last
visited at Oct 8th, 2003

[FREDG] http://www.freeedgar.com, last
visited at Oct 8th, 2003

[HFAN98] Huck, G., Fankhauser, P., Aberer,
K., Neuhold, E. 1998. “JEDI:
Extracting and Synthesizing

Information from the Web.”, in
Michael Halper (Ed.), Proc. 3rd
IFCIS Intl. Conf. on Cooperative
Information Systems, Los Alamitos,
California, IEEE Computer Society
Press, pp. 32-43

[Klu99] Klusch, M. 1999, “Intelligent
Information Agents - Agent-Based
Information Discovery and
Management on the Internet”,
Berlin-Heidelberg, Springer.

[KNSVL00] Kogan, A., Nelson, K., Srivastava,
R., Vasarhelyi, M., Lu, H. 2000.
“Virtual Auditing Agents: The
EDGAR Agent Challenge.” in
Decision Support Systems, Vol 28
(3), pp. 241-253.

[KNSVL98] Kogan, A., Nelson, K., Srivastava,
R., Vasarhelyi, M., Lu, H. 1998.
“FRAANK: Financial Reporting
and Auditing Agent with Net
Knowledge.” In Collected Abstracts
of the American Accounting
Association Annual Meeting.

[LSSS01] Leinemann, C., Schlottmann, F.,
Seese, D., Stuempert, T., 2001,
“Automatic Extraction and Analysis
of Financial Data from the EDGAR
database” in South African Journal
of Information Management, Vol 3
No. 2.

[Sal88] Salton, G. 1988., “Automatic Text
Processing: The Transformation,
Analysis, and Retrieval of
Information by Computer.”,
Addison Wesley, pp 313.

[SEC] http://www.sec.gov, last visited at
Oct 8th, 2003

[SECFM] http://www.sec.gov/info/
edgar/filermanual.htm, last visited
at Oct 8th, 2003

[Sko91] Skousen, F. 1991, “An introduction
to the SEC”, Cincinnati: South-
Western Publ.

[XBRL] http://www.xbrl.org, last visited at
Oct 8th, 2003

