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Abstract

Human inference of melodic structure is seemingly innate and intuitive, yet little is known about the
cognitive processes that lead to such inference. Subsequently, computer modelling of melodic structure
remains a difficult problem. Successful inference of the structure in musical data can provide insight into
the process which created the data (e.g. the style of a composer) and result in data compression. Music
is structurally rich data, with structure present at several levels, ranging from short term (e.g. note level)
to long term (e.g. theme level). To systematically investigate melodic structure, we first begin with short
term structure, that is, the structure of individual music notes. This paper provides eight new pitch models
and one duration model for musical notes. These models are based upon the Minimum Message Length
(MML) principle. Using MML, we discover which models best fit the test melodies and show that the best
MML-based models compare favourably to existing compression techniques. We discuss limitations of the
proposed methods and, finally, offer possible directions towards improving the MML-based models.

1 Introduction

The human mind is capable of intuitively inferring
structure in melodies; a person may hear a melody
for the first time and yet seemingly know what is to
come next as they listen. However, how such models
are built in our minds is unknown and thus, efforts
to automatically model music have had limited suc-
cess [5]. Potential applications of accurately inferring
melodic structure remain many and varied. For ex-
ample, a large online database of world folk songs
could be compressed efficiently if repeated structure
is identified in the songs. Furthermore, melodic an-
imal calls such as bird and whale songs may also
be modelled. The inferred structure of animal calls
could potentially reveal syntactic and semantic infor-
mation about animal communication. Clearly, the
impact of such a discovery would be significant on
a world-scale. The statistical approach used here to
model melodies could also be used for other data
types such as text, images, and video.

Statistical models for the melodic attributes of
pitch interval and duration interval are used as the
basis of the research presented here. Modelling
melodies using the statistical distribution of various
attributes (e.g. note pitch, duration, etc.) has long
been used in the study of ethnomusicology [4, 5]. Re-
search has shown that listeners are particularly sensi-
tive to pitch distribution and frequency information

within cognitive processes [8]. Hence, we claim that
our statistical approach is certainly logical.

Eight distinct pitch interval models were devel-
oped alongside a single duration interval model. Us-
ing the principle of Occam’s Razor in the form of
Minimum Message Length (MML) (see Section 2)
[9, 10], the “best” models for the test melodies were
found. The level of structure captured by the model
is compared to GNU compression utilities gzip and
bzip. Better inference of melodic structure will re-
sult in a higher data compression rate and, in this
way, we determine how much underlying structure is
being captured by each model.

Section 2 of this paper details MML, whilst pitch
and rhythm models are defined in Section 3. A dis-
cussion of results is given is Section 4, while limi-
tations and concluding comments are made in Sec-
tions 5 and 6 respectively.

2 MML Modelling

Statistical inference concerns data that has been gen-
erated by some process which, in turn, can be de-
scribed by a probability distribution with parame-
ters. Inference involves discovering what the distri-
bution is and finding estimates of the distribution pa-
rameters. In other words, given some data, we wish
to discover something about how the data came to be
[13]. For a melody, our inference involves discovering



the musical structure of the piece. Successful infer-
ence of melodic structure can lead to a more concise
representation for the melody, that is, a compressed
version.

Developed by Wallace and Boulton in 1968 [9],
MML has proven a powerful Bayesian framework for
statistical inference and modelling. MML features a
two part message, where the first part is a statement
of the hypothesis, H , and the latter part is an en-
coding of the data, D, given the stated hypothesis
(see Figure 1) [9, 12, 10].

Length:

Hypothesis Data given hypothesis

−log Pr(D|H)−log Pr(H)

Figure 1: A Two-Part Message

The general MML message length formula for a
model with parameters ~θ and data x is [12]
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and where X is the dataspace. Fisher information
indicates the sensitivity of the likelihood function to
parameters. Within the MML framework, the Fisher
information is used to determine how accurately the
model should be stated. Should the second deriva-
tives of the likelihood function be small, the param-
eters may be stated less precisely. Alternately, large
valued second derivatives indicate that the parame-
ters must be stated more accurately.

Given a model of some data, MML can evaluate
how well that model explains the data in terms of a
message length (i.e. transmission bit-cost). The en-
coding is assumed to be known to both the transmit-
ting and receiving entities, where transmission occurs
over a noiseless transmission channel. In the con-
text of music analysis, MML gives shorter message

lengths for more predictive models, and such models
can be used to generate new melodies that are more
similar to the original melodies. This behaviour re-
lates to Occam’s Razor which, loosely paraphrased,
is:

If two theories explain the facts
equally well then the simpler theory is
to be preferred.

In fact, MML is a quantitative form of Occam’s
Razor [6]. Wallace’s approach gives a trade-off be-
tween hypothesis complexity and the goodness of fit
to the data. In this way, MML is resistant to over-
fitting data. MML models the underlying general
structure of the data rather than the specifics of any
particular data set.

3 Pitch and Rhythm Models

Two significant melodic attributes are modelled:
pitch interval and duration interval. A pitch inter-
val is the difference in pitch between two successive
notes, measured in semitones. Musical rests are mod-
elled as a special case of a musical note; a rest has an
associated duration, but has a fixed, reserved pitch
of C7 (two octaves above Middle C). Importantly,
C7 does not occur naturally in the test data set. A
duration interval is the ratio between the duration of
a note and the duration of the immediately preced-
ing note. Duration intervals are measured as rational
numbers.

Since we are using relative encoding, the pitch
and duration of the first note of each melody must
be absolutely encoded. The bit-cost of the first pitch,
Cp1

(x), is calculated using
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where x is the difference between the first pitch and
Middle C (C5), measured in semitones, and where L

returns the bit-cost of the log∗ integer encoding [7] of
x. The first duration is transmitted as two integers,
m and n, where the duration is given by m × 2−n

and where m is odd. The cost of the first note du-
ration is given by Cd1

= log∗
(

m+1

2

)

+ log∗(n) + 1.
We transmit m+1

2
to map m = 1, 3, 5, ... to 1, 2, 3, ....

This model permits note ties.

As the true distribution of pitch intervals and du-
ration intervals is unknown, a variety of models were



constructed from commonly used statistical distribu-
tions. Multinomial, geometric, Poisson, and Gaus-
sian distributions were used to create the models de-
scribed in Section 3.1. MML message length formu-
lae for these distributions were taken from [12, 11]
or hand-derived. The total message length for each
model is given by the sum of the message lengths
of each component distribution. Eight unique note
pitch interval models were constructed, along with a
single model for duration intervals.

3.1 Pitch Interval Models

To encode a pitch interval, we must first encode
whether the pitch interval is negative, positive, or
zero. Then, given that a pitch interval is non-zero, we
must also encode the amount by which the pitch has
changed, conditional on whether the change was neg-
ative or positive. We can either encode this amount
directly or by encoding it in two parts; as an oc-
tave and a semitone within the octave. The manner
in which this encoding is achieved is identical for
positive and negative intervals; illustration of nega-
tive interval encoding is often omitted simply due
to diagram space constraints. While models that
feature the two-part non-zero interval encoding are
more complex than models that use direct encoding,
the principle of MML will indicate whether the added
complexity is warranted.

Pitch Model 1 features geometric distributions to
directly encode negative and positive intervals (see
Figure 2).

1 2 3 4 5 6 1 2 3 4 5 6

Trinomial:

Geometrics:

(semitones)

Positive Zero Negative

Figure 2: Pitch Interval Model 1

Numbered segments of figures indicate the pitch in-
terval value measured in semitones. Pitch Model 2
replaces the geometric distributions with Poisson dis-
tributions.

Pitch Model 3 (see Figure 3) uses a geometric
distribution to model the octave in which the pitch
interval falls (noting that there are twelve semitones
to an octave). For each octave range there is a 12th

order multinomial to encode the individual intervals
of that octave.

1 12 13 24 25 36 37 48 49

Trinomial:

Geometric:

1 2 3 4 5 6 7 8 9 10 11 12 26 27 28 29 30 31 32 33 34 35 3625

Multinomials:
12−state

Positive Zero Negative

Figure 3: Pitch Interval Model 3

Model 4 is identical to Model 3 except that it features
a single 12th order multinomial to model the individ-
ual intervals. Here, intervals are recorded mod12;
since the octave is already specified, the exact pitch
interval value can be decoded. Model 3 is more gen-
eral than Model 4.

Model 5 (see Figure 4) models non-zero intervals
using Poisson distributions on a per-octave basis, un-
like Model 3, where a geometric distribution is used.
For each octave range modelled by the Poisson dis-
tribution, a 12th order multinomial encodes the spe-
cific interval value within the octave. Pitch Model 6
is identical to Model 5 except that it features a sin-
gle multinomial distribution to model the intervals
mod12. Model 5 is more general than Model 6.

1 2 3 4 5 6 7 8 9 10 11 12

Multinomials:

12−state

Trinomial:

1 12 13 24 25 36 37 48 49

25 26 27 28 29 30 31 32 33 34 35 36

Poisson:

Positive Zero Negative

Figure 4: Pitch Interval Model 5

Model 7 (see Figure 5) utilizes a 12th order multi-
nomial to encode intervals mod12. That is, the first
event of this multinomial accounts for intervals 1, 13,
25, etc., and the second event accounts for intervals
2, 14, 26, etc. Geometric distributions then model
the multiples of the multinomial events.

Trinomial:

4230186 48362412

Geometrics:

3725131

121110987654321

Multinomial:
12−state

Positive Zero Negative

Figure 5: Pitch Interval Model 7
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Figure 6: Comparison of MML-based Models

Model 8 is identical to Model 7 except that the ge-
ometric distributions are replaced by Poisson distri-
butions.

3.2 Duration Interval Model

Each duration ratio, dr, is recorded as log2(
di

di−1

)

where di is the current note duration and di−1 is
the previous note duration. This encoding applies to
all notes and rests following the first note/rest of a
melody.

The logarithm of the ratio is taken since stan-
dard music note durations are logarithmic in nature
(i.e. whole note, half note, quarter note, etc.), and
the resulting values are modelled using a Gaussian
distribution. The MML message length formula for
Gaussian distributions can be found in [11].

4 Results and Discussion

The models of Section 3 were implemented in C++
using Donncha O’Maidin’s “Common Practice No-
tation View” (CPNView) library. CPNView is ob-
tainable via private correspondence (email: Don-
ncha.OMaidin@ul.ie). Test data originates from
an online archive of music copyright infringement

maintained by Columbia University’s Law Library
[1]. This archive details legal cases regarding mu-
sic plagiarism, with pieces ranging from pre-1900s to
the present time. A total of 50 randomly selected
melodies were hand-transcribed by the first author
and used for model comparison. All melodies are
monophonic.

Figure 6 gives a direct comparison of the MML-
based pitch models described in Section 3, each cou-
pled with the Gaussian-based note duration model.
Pitch Models 3-8 ranked very closely to one another
in terms of transmission efficiency, showing negligi-
ble differences in transmission costs per note. Subse-
quently, the bit-costs per note of these pitch models
have been plotted as the average of values to im-
prove the readability of Figure 6. Pitch Model 2
ranks closely to the average of Models 3-8. On aver-
age, Model 2 is within 1 bit per note of Models 3-8.
Generally, Pitch Model 1 produces the highest bit-
cost per note, with the exception of test melodies 1,
6, 9, 15, 17, 30, 32, 35, 44 and 47 (20% of test cases).
However, for these exceptional cases, the transmis-
sion cost using Model 1 is within approximately 0.8
bits per note of the next best model. Interestingly,
there are three obvious local minima on the graph; all
pitch models provide very similar transmission costs
per note for melodies 20, 36, and 39. Upon inspec-
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Figure 7: MML-based Model vs. Standard Compression Tools

tion, it was discovered that these melodies contain
very few unique pitches and durations, and that they
all contain highly repetitive bars of notes.

Pitch Models 1 and 2 feature higher transmis-
sion costs than Models 3-8 for the majority of test
melodies. Hence, the extra complexity of stating
pitch intervals in two parts (octave, interval within
octave), as seen in Pitch Models 3-8, is justified. We
claim that Pitch Models 3-8 are preferable to Pitch
Models 1 and 2, and that the differences between
Models 3-8 are negligible.

Figure 7 shows the average transmission costs of
Pitch Models 3-8 (the preferable pitch models, as
discussed above) versus standard GNU compression
tools gzip and bzip, run with default parameter set-
tings. As before, each pitch model was coupled with
the Gaussian-based duration interval model and used
to model each test melody. Lempel-Ziv (LZ) [14]
based gzip performs slightly worse than bzip, which
is based on the Burrows-Wheeler block sorting text
compression algorithm [2] and Huffman coding. gzip
gives an average transmission cost of 13.65 bits per
note, which equates to an average compression rate
of 2.98 : 1. bzip provides an average transmission
cost of 12.80 bits per note and yields an average com-
pression rate of 3.10 : 1. These transmission costs are
reasonable given that a pitch-duration pair must be

transmitted to specify each note.

Clearly though, the MML-based models are far
more efficient than both GNU compression tools.
With an average cost of only 4.29 bits per note, the
MML models achieve an excellent average compres-
sion ratio of 9.31 : 1. Hence, the MML models are
capturing more of the underlying structure of the
melodies than the GNU compression tools. Whilst
both gzip and bzip must learn that there is a re-
stricted alphabet of symbols, the MML models were
constructed with this knowledge a priori.

5 Limitations and Future Work

Perhaps the most obvious limitation of the research
presented here is that only low-level sequential prop-
erties of melodies are modelled. Furthermore, many
of the low-level musical attributes that may occur in
melodies are not included in the models presented
here. Attributes such as note accents, slurs, stac-
cato, volume, etc., are to be included in future mod-
els. The discrete memoryless models detailed in Sec-
tion 3 are zero-order Markov models; experiments
with increased Markov order are also planned.

High-level structure such as the repetition of mu-
sic bars and repetition of sequences of bars is not



currently modelled. Modelling higher-level structure
is likely to increase the compressibility of melodies
which feature recurring themes. Accounting for
higher-level structure is not only likely to increase
compressibility but will also assist in the generation
of “musical” sounding melodies using inferred mod-
els.

6 Conclusion

This paper has described a statistical method for
modelling melodies using the MML principle. New
pitch and duration models have been developed and
examined for goodness of fit to musical data. Pitch
Models 3-8 performed better than Pitch Models 1
and 2 for the majority of test melodies. Using MML,
we have shown that the added complexity of stating
the octave range in which the interval falls is justified
when modelling melodies.

All MML-based models consistently produced
lower transmission bit-costs than standard GNU
compression tools. This indicates that MML more ef-
fectively captured underlying melodic structure than
traditional compression approaches. The inference of
structure in melodies has far-reaching applications
including, but not limited to, the inference of struc-
ture in bird and whale songs, amongst other animal
calls. Importantly, the MML approach could also be
applied to infer structure and style in text, and to
compress text. Clearly, other data types as images
and video may also benefit from MML analysis.
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