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Abstract 
 
The need for the analysis of the behavior of users on the 
World Wide Web motivated the use of data mining 
techniques for the discovery of traversal patterns. These 
patterns are usually expressed in the form of association 
rules. In this paper, we suggest a graph representation of 
the transactions database to assist with its division into a 
set of databases each containing fewer transactions and 
items. The runtime of the Apriori algorithm was compared 
when run on both the original and the divided databases. 
The division of the database was shown to improve the 
runtime by an average of 43.45% while maintaining the 
same results. Interestingness measures were also 
introduced as a way to improve the quality of the resulting 
rules. Introducing interestingness measures to the division 
process improved the average precision of the algorithm 
by a minimum of 15.5%. 
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1. Introduction 
 
The need for the analysis of the users’ click- stream data 
emerged from the reliance of many organizations on the 
World Wide Web to conduct business. As the number of 
users accessing a Web site grows the volume of click-
stream data also grows. This fact motivated the use of data 
mining techniques for the analysis of this type of data.  
 
One interesting type of patterns induced from click- 
stream data is association patterns, indicating which web 
pages are accessed together frequently. These patterns 
could be used for restructuring web sites, developing 
caching policies, or developing marketing promotions [1]. 
 
Generating association patterns from users’ click-stream 
data stored in server logs goes through a set of steps. First, 
converting click-streams into sessions then, converting 

these sessions into transactions and finally, applying 
known association rule mining algorithms (such as the 
Apriori algorithm) on these transactions. 
 
The basic problem with association rule mining 
algorithms is the runtime of such algorithms specially the 
frequent itemsets generation step. This step is very I/O 
intensive since it requires multiple passes on the 
transactions database for support count. Most of the 
contributions in the field of association rule mining [2, 3, 
4] were targeted towards reducing the complexity of the 
frequent itemsets generation step. For example, the 
Apriori Algorithm [3] made use of the downward closure 
property of the support to reduce the number of candidate 
itemsets at each step of the algorithm. The downward 
closure property states that if an itemset is infrequent then 
all its supersets are also infrequent. In [4] a comparison of 
existing association rule mining techniques was presented.  
 
Another problem with association rule mining algorithms 
is the quantity and quality of the resulting rules [5]. These 
algorithms produce a large number of rules a significant 
percentage of which is not interesting to the user. 
Interestingness measures [6] were introduced as a way to 
evaluate the quality of the resulting rules, and to restrict 
the results to rules that are interesting to the user.    
 
In this paper we make use of the unique characteristics of 
web transactions to reduce the runtime of the frequent 
itemsets generation step of the Apriori algorithm when 
applied to web data. The contributions of our work 
include: 
• Suggesting a graph representation of the 

transactions database to reflect the associations 
between pairs of web pages and the support of 
these associations; 

• Using the previous graph representation to assist 
with the division of the transactions database into a 
set of smaller databases each containing fewer 
items in fewer transactions; and  

• Introducing interestingness measures to the division 
process in an attempt to restrict the output of the 
algorithm to patterns interesting to the user. 



The remainder of the paper is organized in the following 
way; in section 2, we present an overview of the 
association rule mining problem. An introduction to the 
characteristics of web transactions is given in section 3. 
The suggested graph representation is introduced in 
section 4. Our method for dividing the transactions 
database is described in section 5. In section 6 we 
introduce interestingness measures for further 
improvement. Performance results are presented in section 
7. Section 8 contains the conclusions.   
 
2. Association Rules 
 
The problem of discovering association rules was first 
introduced in [2].  This problem could be stated as follows: 
let I  be the set of all items in the database, given a set of 
transactions T  where Tt∈∀ , It ⊆ , association rule 
mining algorithms seek to find rules of the form A→B (or, 
If A then B) where A and B are itemsets, IBA ⊂, , and 

φ=∩ BA . The metrics used to evaluate the significance 
of the resulting rules are support and confidence. Support 
is defined as the joint probability P(A,B), i.e. the 
percentage of transactions containing both A and B from 
the total number of transactions. While confidence is the 
conditional probability P(B|A), i.e. the percentage of 
transactions containing both A and B from the total 
number of transactions containing A. Generating 
association rules goes through two steps: First, finding 
frequent itemsets i.e. itemsets with support above a 
minimum support threshold, minsupport, and second, 
generating rules from these itemsets with confidence 
above minconf, where minsupport and minconf are  
parameters supplied by the user. 
 
3. Web Association Patterns 
 
Web server logs store the history of user requests and are 
the main data sources for web usage mining. Table 1 
shows an example of typical server log entries which 
contains the host (user) accessing the page, time stamp, 
URL of the requested page, status, and size of each 
request. Entries in a web server log are sorted according to 
time stamp. 
 

The first step for mining association rules from web data 
is generating transactions from log data. The transaction is 
usually expressed as an ordered sequence of web page 
references, while an item is a single web page. Maximal 
Forward References (MFRs) [7] have been proposed as a 
way to represent user access sequences. A Maximal 
Forward Reference is defined as the chain of references 
from the first page in a user’s session until a backward 
reference is encountered. Dividing the sequence of 
references stored in a server log into sessions is required 
before identifying MFRs. A 30 minute timeout period has 
become a standard to perform this division [8]. The 
transaction database consists of the set of all MFRs 
generated from user sessions. Finally, known association 
rule mining algorithms would be applied to the transaction 
database to generate frequent itemsets. In our work we 
will use the Apriori algorithm for association rule mining 
and MFRs for transaction identification. 
 
Time Window [9] is another method for transaction 
identification. It simply divides the log entries for a single 
user into time intervals not larger than a specified 
parameter. If the time window is sufficiently large, a 
transaction will contain all the references for a certain user. 
 
The basic difference between web transactions and other 
types of transactions, like market basket data, is the 
significance of order. For market basket data the supports 
of the association patterns A→B and B→A are the same, 
which is not true for web data since visiting B from A is 
different than visiting A from B. Here we will use the 
definition of support used in [7]. The support of a web 
association pattern A→B will be defined as the percentage 
of transactions containing AB as consecutive references.  
 
Another difference is in the way the candidate itemsets are 
generated. For association rule mining algorithms Lk 
denotes the set of frequent k-itemsets and Ck denotes the 
set of candidate k-itemsets. In the Apriori algorithm Ck 
could be generated by joining Lk-1 with itself. Two 
itemsets r1, …,rk-1 and s1, …, sk-1 are joined to form a k-
itemset if they have k-2 items in common. But because of 
the significance of order in web patterns the join process  

Table 1. Example of a Web Server log 

Host Time Stamp URL Status Size 
199.72.81.55 [01/Jul/1995:00:00:01] /history/apollo/ 200 6245 

pm1-
5.america.net [01/Jul/1995:01:01:33] /images/NASA-logosmall.gif 200 786 

winnie.fit.edu [04/Jul/1995:00:02:21] /history/apollo/apollo-
10/apollo-10.html 200 3440 



is modified. For any two itemsets r1, …,rk-1 and s1, …,sk-1 
we join them to form a k-itemset only if either r1, …, rk-1 
contains s1,…, sk-2 or s1,…, sk-1 contains r1, …, rk-2 [7].  
 
4. Graph Representation of Web                        
Transactions 
 
In this section we suggest a graph representation of the 
transactions database to assist with its division. All the 
transactions in the database are represented in a single 
directed graph. The nodes in the transactions graph are 
the frequent web pages i.e. pages with support above 
minsupport. Arcs are represented as a triple (source, 
destination, sup), where source and destination are nodes 
in the transactions graph and sup is the support of the 
association pattern source → destination. 
 
Constructing the transactions graph is combined with the 
generation of 2-itemsets and hence, it does not introduce 
any additional computational overhead to the process. 
Support pruning is next applied to the transactions graph 
to remove links with support below minsupport and 
divide the original graph into a set of sub-graphs. Figure 
1 shows a simple illustration of the process. The shown 
graph is a representation of the following set of 
transactions {ACF, CF, ABDH, ABEI, DH, DGJ, DGJH, 
BEI}. The result of the previous process is a set of sub-
graphs each representing a subset of the transactions 
database. Next, the subset of the transactions database 
corresponding to each sub-graph is identified and the 
Apriori algorithm is applied on each of these subsets 
individually. 
 

 
Fig. 1. Transactions Graph Division 

 
It is important to note that the previous process is only 
applicable to web transactions. This is true because the 
users’ behavior in such an environment is constrained 
with the structure of the site [1]. On the other hand for 

data such as market basket data, users are free to select 
any items together. Therefore, if we use our graph 
representation for market basket data the result would be 
an almost fully connected graph. Pruning such a graph 
will result in a single large sub-graph which will not 
reduce the overhead incurred in the frequent itemsets 
generation step. To the contrary, it will add to the process 
the overhead of executing the transactions graph division 
algorithm. 

 
5. Dividing the Transactions Database 
 
In this section we describe the details of the graph 
division algorithm, and its overheads.  
 
5.1 Transactions Graph Division Algorithm 
 
Let G be the set of links l (source, destination, sup) 
selected from the constructed graph after pruning, 
subgraphi is the sub-graph currently being processed, and 
Ti is the subset of the transactions database corresponding 
to subgraphi. Figure 2 shows a formal description of the 
algorithm. A random link is selected from G and moved 
to the first sub-graph. Then all links connected to the 
current link are also moved to the same sub-graph. A link 
li is said to be connected to another link lj if source(li) = 
source(lj) or source(li) = destination(lj) or destination(li) 
= source(lj) or destination(li) = destination(lj). The 
process is repeated for each new link added to the sub-
graph, until there are no more links to add. Each link 
added to the sub-graph is removed from the original 
graph. The whole process is then repeated to construct 
the next sub-graph until there are no more links to be 
processed in G. 

 
Fig. 2. Transactions Graph Division Algorithm 

 
Note that moving a link to a sub-graph involves moving 
the subset of transactions corresponding to this link. The 
result of the previous process is a set of transaction 
databases each containing fewer transactions and items. 

1. while φ≠G  { 
2.     subgraphi = any link l in G 
3.     Ti = transactions corresponding to l 
4.     G = G – l 
5.      for each link l in subgraphi { 
6. L=all links in G connected to l 
7.  subgraphi = subgraphi  ∪ L 
8.           Ti = Ti ∪ transactions corresponding to L
9. G = G – L 
10.     } 
11.     Generate rules from Ti 
12.     Move to next sub-graph 
13. } 
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This reduces both the number of candidate itemsets and 
the number of transactions to consider when counting the 
support, and hence, reducing the runtime significantly. 
 
5.2 Space Requirements 
 
The Apriori algorithm stores candidate itemsets at each 
step of the algorithm in the main memory [3]. Our graph 
representation doesn’t involve any additional storage 
requirements because the graph replaces the set of 
candidate 2-itemsets and have the same size. Also the 
need to store sub-graphs does not involve any additional 
requirements because as shown in the algorithm we only 
store one sub-graph at a time (step 9). Moreover, links 
added to any of the sub-graphs are removed from the 
original graph. Additional requirements come from the 
need to store the subset of the transactions database 
corresponding to the currently processed sub-graph.  
 
5.3 Resulting Itemsets 
 
Our transactions graph represents all possible paths 
existing in the transactions database. Given the method 
for generating candidate itemsets described in section 3, 
if a link was deleted from a certain path this path is 
broken and there could never be candidate itemsets 
generated containing items from both parts of the path. 
From the previous we reach the conclusion that applying 
the Apriori algorithm on the divided transactions 
database will produce the same results as when applied 
on the whole database.     
 
6. Interestingness Measures 
 
Data mining techniques usually produce a large number 
of patterns, but only a few of these patterns are of interest 
to the user analyzing the data. Interestingness measures 
are techniques required to reduce the number of patterns 
that need to be considered [10]. They increase the utility, 
relevance and usefulness of discovered patterns. 
 
Interestingness measures are classified into two classes; 
objective and subjective measures. Objective measures 
depend on the structure of the pattern and underlying 
data, while subjective measures depend on the users’ 
belief in the data [11]. 
 
After introducing database division as a method to 
enhance the runtime of the Apriori algorithm for 
association rule mining, we will use interestingness 
measures to improve the quality of the results of this 
algorithm. It is known that support and confidence are 
not enough to judge the usefulness or interestingness of 
association patterns [5]. This fact motivated the use of 
interestingness measures along with support and 

confidence to evaluate association rules. In our work we 
will use interestingness measures along with support as 
weights on the graph. This will cause the elimination of 
poorly correlated patterns early in the mining process. By 
applying the previous method we avoid the generation of 
candidate itemsets that will not yield interesting rules and 
hence, further reducing the number of candidate itemsets 
and improving the quality of the resulting patterns.    
 
It was important to select the measures that best suite 
web data to be used as weights. In [12] a comparison of 
21 interestingness measures for association patterns was 
introduced, and some properties were suggested that 
might be desirable for any interestingness measure. Each 
measure was tested against all these properties. Some of 
the suggested properties are required for our application, 
some contradict its requirements, and others are 
irrelevant to the application. 
 
The selected measures are: 
 

)()|( BPABPAddedvalue −=  
 

))()|((),( BPABPBAPKlosgen −=  
 

These two measures were selected because they satisfy 
the following properties (for an association pattern 
A→B): 
 
1. The value of the measure = 0 if A and B are 

statistically independent.  
2. The value of the measure increases with P(A,B) 

when P(A) and P(B) are constant. 
3. Asymmetry under Variable Permutations, i.e. they 

do not treat the following patterns equally [(A→B) 
and (B→A)]. 

4. Not Inversion Invariant: Inversion is like flipping 
“presence” to become “absence” and vise versa. 
Inversion Invariant measures treat the presence and 
absence of an item equally. 

5. Not Null Invariant: Null Invariant measures produce 
the same result if we add more transactions that 
contain neither A nor B. Adding such transactions 
will reduce the support of the pattern.   

 
7. Experimental Results and Discussion 
 
Experiments described here were conducted on web 
server logs recorded from July 1st until July 7th 1995 at 
the NASA Kennedy Space Center WWW server in 
Florida [13]. The dataset contains a total of 542,509 
requests. Generating transactions from this dataset 
resulted in 81,234 transactions. The distribution of the 
support count values for single web pages is shown in 



Figure 3. The support count of and itemset is defined as 
the number of transactions containing the itemset. Web 
pages with very high support are usually navigational 
pages accessed only as means for exploring the web site 
and not for their content, or it could be the main page of 
the web site. Rules containing these pages are not 
interesting to the user because they contain information 
already known to him. Therefore, in our experiments we 
have pruned the candidate 1-itemsets using both 
minimum and maximum support thresholds to exclude 
such pages. A maximum support count of 1000 is used 
for all experiments. 
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Fig. 3. Distribution of Support Count  

 
7.1 Comparing Runtimes 
 
In this experiment we studied the effect of graph division 
on the runtime of the frequent itemsets generation step. 
The experiments where conducted on a PC with a PIII 
750 MHz processor and 256 MB of RAM.  

 
The frequent itemset generation step was run twice; once 
on the whole database before division and another on the 
subsets of the transactions database corresponding to the 
set of sub-graphs. The runtimes in both cases were 
recorded.  
 
The generation of the 1-itemsets and 2-itemsets is a 
common process in both cases. Therefore, the runtime of 
this process is added to all the previously recorded 
runtimes. Figure 4 shows the recorded runtimes for 
different values of minSupportCount. The improvement 
in the runtime is shown on the chart for each value. From 
the results we find that dividing the transactions database 
improves the runtime by an average of 43.45%. 
 
It is also to be noted from the chart that the improvement 
in the runtime decreases as the value of minSupportCount 

increases. This is true because as the value of 
minSupportCount increases the size of the pruned graph 
decreases and approaches the size of individual sub- 
graphs. This happens while the time required to perform 
the graph division almost remains the same. 
 
In section 5.2 it was shown that the storage overhead in 
our algorithm comes from the need to store the subset of 
the transaction database currently processed by the 
mining algorithm. Experiments have shown that the size 
of this subset does not exceed 5% of the size of the 
original transactions database. 
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Fig. 4. Comparison of Runtimes 

 
 
7.2 Using Interestingness Measures  
 
In this experiment we studied the effect of using 
interestingness measures as weights on the graph.  We 
use Precision as a metric to evaluate the quality of the 
results. Precision is defined as the percentage of 
interesting rules from the total number of rules retrieved. 
We will compare Precision values when using support 
only as weight on the graph or when using it along with 
an interestingness measure. Precision is compared for 
different values of minSupportCount and for different 
thresholds on the value of the interestingness measures. 
The threshold is chosen as a percentage of the range of 
values of the interestingness measure associated with the 
links in the graph. The experiments are repeated for the 
two measures chosen before (Added Value and 
Klosgen’s). The threshold is determined at the graph 
division step. The same threshold value used to prune the 
graph is used to identify interesting patterns form the 
results. Figure 5 shows the results of the experiments. As 
could be seen from the results the precision values when 
using interestingness measures as weights on the graph 
along with support are always higher than those recorded  



 
Fig. 5. Comparison of Precision Values (a) Using Added Value as Weight 

(b) Using Klosgen as Weight 

 
when using support only. That’s because using 
interestingness measures as weights eliminates non-
interesting patterns early in the mining process. Table 2
shows the improvements in the average precision of the 
algorithm for all cases. 

 
Table2. Improvements in Average Precision 

Interestingness 
Measure 

minSupport
Count 

Improvement in 
Average 

Precision(%) 
50 15.5 Added Value 
70 17.5 
50 135 Klosgen 
70 89.7 

 
It is worth noting that the values given in Table 2 do not 
mean that Klosgen is a better measure than Added Value, 
in fact the precision values for both measures are close. 
But what really happens is that when using Klosgen to 
judge the interestingness of the rules resulting from the 

mining algorithm while using support only as a weight, 
the precision values drop significantly. 
 
Note that )(),( AddedValueBAPKlosgen = . The values 
of P(A,B) for the dataset used in this paper are very small 
since the support count values does not exceed 1700 while 
the transactions database contains 81,234 transactions. 
Because of this fact the value of P(A,B) has the 
dominating effect on the value of Klosgen, and hence the 
distribution of the values of the measure is very similar to 
the distribution of support count values shown in Figure 3. 
From the chart we could see that most pages are located in 
the lower half of the support range, and the same applies 
for Klosgen. From the previous we could reach the 
conclusion that some patterns that are considered 
interesting by Added Value may be non-interesting 
according to Klosgen, and hence the precision values are 
lower when using Klosgen to judge the interestingness of 
patterns.  
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8. Conclusion 
 
In this paper, a graph representation of web transactions 
was suggested to assist with the association rule mining 
process. An algorithm was introduced to divide the 
previous graph into a set of sub-graphs and consequently 
divide the transaction database into a set of smaller 
databases using minimum support pruning. The mining 
algorithm was run on the original and the divided database 
for 4 different values of minSupportCount. The runtimes 
were compared for all cases. The experiments showed an 
average improvement of 43.45% in runtime when using 
the divided database. 
 
Also, interestingness measures were introduced as weights 
on the graph to both assist with the graph division and to 
eliminate non-interesting patterns early in the mining 
process. Two measures were selected for this task; Added 
Value and Klosgen’s. Precision values were compared for 
different values of minSupportCount and different 
thresholds on the interestingness measures. Experiments 
showed a minimum improvement for the average 
precision values of 15.5%.  
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