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ABSTRACT 

 
Technical applications where scene analysis is 

involved rely on a robust feature extraction. Feature 
extraction based on neural principles traditionally 
emphasize the analogue representation of information as 
well as analogue information processing at least to the 
level where simple cells are modeled. In contrast to this 
we will show in this paper how principles of correlation 
and detection of correlation can be used to extract features 
up to a level of complexity of at least that of simple cells. 
Using only two data-driven adaption rules for connection 
weights dependent on membrane potentials as well as on 
dendritic current simple networks can be implemented to 
detect gradients of intensity. By replicating of those 
detectors and defining densitiy of connectivity to the 
receptors of the retina complex detector-profiles can be 
implemented.     

 
INTRODUCTION 

 
It is widely accepted that feature detection in visual 

scenes form the basis for robust scene analysis and image 
processing. Especially the so-called simple cells in the 
mammalian visual cortex were extensively studied with 
regard to their response to different types of visual 
stimulus. Summarizing an important result the receptive 
fields of simple cells can be modeled by gabor functions. 
This was originally proposed by Daugman [5], [6] and 
Marcelja [7] whereupon Jones and Palmer [3,4] verified 
this hypothesis by successfully fitting experimental results 
to parameters of the theoretical characteristics. With this 
findings simple cells respond to local visual input by 
firing patterns and are sensitive to orientation as well as to 
specific spatial frequencies. The spatial frequency as well 
as the angle of orientation is fixed for a given neuron just 
as the location of the receptive field.  

The response of the simple cells is given by 
measuring the respective pulse rate of the cell. Since 
pulses are already used at that early stage of visual pre-
processing it is commonly accepted to consider averaged 
rates to emphasize an analogue representation of 
information here.  

While considering pulse rates only individual pulses 
of different neurons are to be considered to fire 
independently. In fact, in certain cases patterns generated 
by ensembles of neurons show ordered structures. Thus, 
the representation of  information in such networks has to 
be assessed in a different way. While ordered structures 
within firing patterns may result on one hand from the 
external input (for example pixel information) and on the 
other hand from the network dynamics the underlying 
principles for pattern generation have to be examined in 
detail. More precisely, we are interested in utilizing 
additional principles that influence the order within certain 
firing patterns in a defined way to encode information 
using measurable quantities different from pulse rates. 

One way to influence the pattern generation process is 
to introduce dynamic synapses to couple individual 
neurons [2]. We will show that simple feature detectors 
can be implemented using essentially two types of 
dynamic synapses only. Here, the features will be detected 
by generating and analyzing spatial-temporal structures of 
pulses using dedicated networks. Typical structures are 
correlated and decorrelated pulses as well as the order of 
incoming pulses. Then, more complex features are 
composed from replication, merging and spatial 
distribution of such simple feature detectors.  

The adaption of the synapses depends either on the 
membrane potential of the receiving neuron or on the pre-
synaptic current summed up on the dendrite. In both cases 
adaption is started by pre-synaptic pulses. Because of that, 
the dynamics of synapses is completely data-driven and 
depends on local quantities only.  
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The focus of the discussion here is the development 
of feature detectors similar in their behavior to those found 
in the visual cortex. Here, we present the architecture of 
an artificial simple cell. By repeating the experiments 
from Jones and Palmer [3,4] to sample the response 
profiles of biological simple cells we present the response 
profile of our artificial cell. 

Starting the discussion by reviewing a special type of 
dynamic synapse an architecture for a gradient detector 
will be presented. Then, by building a network of such 
gradient detectors we show how detectors having arbitrary 
response profiles can be  constructed. 

FEATURE DETECTION USING ADAPTIVE 
SYNAPSES 

 
The simplest feature found in visual scenes is 

intensity of light received by receptors on the retina. If we 
attach a single neuron to each receptor which converts the 
incoming intensity into pulses, a very simple 
representation of information about local light intensity is 
given. Normally, the pulse rate of the attached neuron will 
be a monotonous function of the input.  

For scene analysis information about single pixels is 
not useful in most cases. Instead, many pixels within a 
surrounding of a given position are included for analysis 
to gain information about the structure of the scene.  

 
Dynamic of the Spot-Detector 
 
If for instance, several neighboring pixels have nearly 

the same light intensity those pixels can be bound to so-
called spots. To bind several pixels to spots the principle 
of synchronization can be utilized [1]. Neurons belonging 
to the same spot should synchronize their pulses while 
neurons belonging to different spots are being 
desynchronized.   

In [1] synchronization is achieved by using dynamic 
synapses. To explain the dynamic of the proposed system 
we start with the dynamics of the neuron. 

For the neuron a simple integrate-and-fire-neuron 
(IAF) will be given. The neuron has two states while the 
neuron can be either in the sending state or in the 
receiving state. If NK is assumed to be a set of neurons 
connected to neuron K the membrane potential aK of 
neuron K changes in the receiving state accordingly to: 
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If aK exceeds a given threshold θ  neuron K sends out 
a pulse XK of a given duration td . While the pulse XK is 
sent the membrane potential aK is reset to an initial value 
and the integration of aK starts again if the pulse has been 
decayed.   

To achieve synchronization of neurons belonging to 
the same spot a so-called nearest-neighbor connection 
scheme was considered as architecture. If two neurons are 
connected through a synapse WKL the connection weight 

adapts if a pulse XL from neuron L is arriving at the 
synapse: 
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K is the index of the receiving neuron. After the pulse 
of neuron L has been decayed the weight relaxes to 0. 
        Consider the case where neuron L fires. If the 
membrane of the receiving neuron is close to θ the weight 
rises as well as the membrane potential of neuron K due to 
eq. (1). While a significant positive feedback is revealing 
here, neuron K will be forced to fire within a short time.  

Here, the quantity correlation can be used to quantify 
the pattern generation process. If we define the correlation 
CKL between neuron K and neuron L to eq.  (3) 
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the correlation will be maximized due to the dynamics 
of the synapse  if the condition for positive feedback 
initially  holds).  

In the other case, where aK is small WKL will not rise 
at all or rise only up to small values. Here, the feedback is 
less significant or has no effect on neuron K. 
Consequently, the correlation appears to be diminished. 

Effectively, neurons that are connected through these 
synapses and receive nearly the same input will be 
synchronized after a short period while neurons belonging 
to different spots appear to be desynchronized.  

Synchronization has two meanings: (i) synchronized 
neurons fire with the same pulse rate, (ii) synchronized 
pulses of connected neurons have a small phase difference 
and correlation becomes significant. Because of that, the 
dynamic coupling leads to collective actions of neurons 
belonging to a spot. The collective action results in so-
called pulse-waves running over the spot.  

 
Detection of gradients  
 
Spots are defined as regions where the local intensity 

distribution can be considered to be homogeneous. Of 
course, also information about non-homogeneous 
structures, for example edges or lines, is of interest. Here, 
gradients of intensity come into play.      

For now, the aim is the detection of intensity 
gradients between two pixels. If we consider two neurons 
receiving input from a light intensity sensor (figure 1) two 
cases are of interest.  

First, if neuron 1 and neuron 2 receive the same input 
both pulse rates will be equal. Here it is assumed that 
neuron 1 and neuron 2 are not connected to each other. 
Thus, the relative phase is of arbitrary but fixed magnitude 
and depends on the initial condition. If for instance neuron 
1 fires and we look back for foregoing pulses of both 
neurons, it is most likely that the last preceding pulse has 
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been sent out by neuron 2. This is independent from the 
relative phase since both neurons fire alternately.  

Then, if intensity for neuron 1 is increased, the pulse 
rate of neuron 1 increases as well.  If neuron 1 fires there 
is a certain probability that the last preceding pulse has 
also been sent out by neuron 1. This probability rises by 
the difference between the pulse rates of neuron 1 and 
neuron 2. Hence, if we find for certain pulses from neuron 
1 that the preceding pulses are not generated from neuron 
2 there must be a gradient of intensity from neuron 1 to 
neuron 2.  

To detect the gradient of intensity we propose an 
architecture showing a behavior described in the 
following. First, we mark individual pulses of neuron 1 if 
a particular preceding pulse was sent from neuron 2. This 
is done by a third neuron connected to neuron 1 and to 
neuron 2 by two adaptive synapses. If this neuron sends 
out a pulse synchronously to neuron 1 the pulse of neuron 
1 is labeled as marked. In a second step we detect all those 
pulses of neuron 1 that are not marked and let these pulses 
pass the network to an output layer. The remaining pulses 
will be strongly attenuated with respect to the effect on the 
receiving neuron. Both, marking of pulses as well as 
attenuating of pulses will be realized by a network of 
dynamic synapses described next below. 

 
Detection of preceding pulses 
 
The network used for marking individual pulses is 

shown in figure 1.  Neuron 1 as well as neuron 2 build up 
the input-stage receiving input from intensity sensors. 
Pulses from neuron 3 are used to mark pulses from neuron 
1, as described above. The connection from neuron 1 to 
neuron 3 (W31) as well as from neuron 2 to neuron 3 (W32) 
is adaptive having the dynamics eq. (1) while the sign of 
µ32 is negative and the sign of µ31 is positive. Thus, we 
expect W31 to increase correlation between neuron 1 and 
neuron 3 under certain circumstances, while the negative 
sign of µ 32 indicates that the correlation between neuron 2 
and neuron 3 can be neglected in most cases. 

In detail we assume that the membrane a3 of neuron 3 
is reset initially and W31 is relaxed to 0 due to γ. Pulses 
from neuron 1 will not affect W31 since a3 is less than Θ/2 
(we limit all weights W to be positive or zero) and a3 
remains unaffected. On the other hand if neuron 2 fires at 
least once (at t=t2) the weight W32 rises as well as a3 due to 
the positive synaptic current through W32. The 
characteristics of a3 can be approximated by eq. (5) as 
long as neuron 2 fires and W32 is positive: 
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Figure 1: Detector for preceding pulses of neuron 2 
 
 
From eq. (5) it can be shown that a3 never reaches θ 

for all cases but can be larger than θ/2 if µ has been 
chosen large enough.  Additional pulses from neuron 2 in 
turn will not affect a3 any further since it is necessary to 
have a3 < θ/2 initially for adaption of W32 . Note that W32 
relaxes very quickly to 0 after the pulse X2 of neuron 2 has 
been decayed.  

If a3 is precharged to a3(t2+td) and a3(t2+td)> θ/2 holds, 
a pulse of neuron 1 (at t=t1) causes W31 to adapt causing 
the membrane a3 to rise very quickly. As long as 
a3(t2+td)> θ/2 holds, a3(t) can be approximated by eq. (7): 
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If µ  is chosen sufficiently large a3 reaches θ while 

neuron 1 is still sending whereby neuron 3 fires. As a 
result, the correlation is maximized here.  

Here, we can specify the role of neuron 3. Pulses from 
neuron 3 result from specific pulse actions of neuron 1 and 
neuron 2 whereas the order of incoming pulses to neuron 3 
play a crucial role. In fact, neuron 3 acts as a detector 
which is sensitive to specific incoming pulse pattern. It 
encodes the detected pattern by sending out a pulse if and 
only if the input pattern matches exactly the intrinsic 
pattern of the detector.  

 
Detection of decorrelation 
 
Considering the pulse pattern from neuron 1 and 

neuron 3 a specific pattern is of interest to detect a 
gradient of intensity between the input of neuron 1 and 
neuron 2.  The more pulses of neuron 1 appear to be 
correlated to pulses from neuron 3 the higher the 
probability is that there is no gradient of intensity between 
the input of neuron 1 and neuron 2. As a conclusion, we 
can say that the more pulses of neuron 1 have no 
correlated pulses of neuron 3 the larger the gradient must 
be.  
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Here, the desired detector must be sensitive towards 
non-concurrency of pulses if uncorrelated pulses have to 
be detected. For this purpose a fourth neuron connected to 
neuron 1 and neuron 3 is introduced which encodes that a 
pulse of neuron 1 is not correlated to neuron 3 by sending 
out a pulse. The detection of non-concurrency will also be 
based on dynamic synapses but of different type as given 
by eq. (1). We consider the case where neuron 3 fires and 
charges the membrane a4 of neuron 4. We try to conclude 
a concurrent action of neuron 3 from observing a4. While 
the membrane potential a4 appears to be non-leaky in our 
model the magnitude of a4 represents the accumulated sum 
of previous and concurrent action at any time. Exactly, 
concurrent action can be detected if a4 changes while the 
change in a4 is caused by a synaptic current.  

Here, we propose a second type of dynamic synapse 
where the adaption depends on a synaptic current instead 
of a membrane potential. Consider the network shown in 
figure 2.  

 

 
Figure 2: Dendrite and adaptive synapse 

 
If neuron 3 is sending a pulse a synaptic current I41,pre 

is induced through W43 on the dendrite travelling to the 
receiving neuron 4. While W43 is kept small the membrane 
a4 charges only slowly and many pulses from neuron 3 are 
necessary to excite neuron 4. 

   

 
 
 
Figure 3: Architecture of the gradient detector 
 
Now presume synapse W41 to be adaptive in the 

following way: the adaption of synapse W41 will be 
initialized by a pulse from neuron 1 and should be 

dependent from activity of neuron 3 to detect non-
concurrency between pulses from neuron 1 and neuron 3. 

While the pulse of neuron 1 is active the synapse W41 

is sensitive to the pre-synaptic current. If there is no pre-
synaptic current because neuron 3 is inactive the weight 
W41 should rise very quickly to gain enough post-synaptic 
current to let neuron 4 fire.  

On the other hand, if pre-synaptic current results from 
activity of neuron 3 the weight W41 should decay rapidly 
to attenuate the effect of a pulse from neuron 1 on a4 
sufficiently. In general, this behavior can be achieved by 
using the following dynamic equation for the adaptive 
synapse assuming that neuron L is active, eq. (7): 
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IΘ is a given threshold-current. If neuron L is inactive 

the synapse relaxes according to 
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The pre-synaptic current IKL,pre results from summing 

up pulses from neurons attached to a sub-branch of the 
dendrite and represents the accumulated activity of the 
sub-branch that ends at synapse WKL. 
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Characteristic of the gradient detector 
 
The detector is given in figure 3. The network is 

arranged with two inputs and one output. While on the 
input side light intensity can be varied on the input, pulses 
occur on the output side. Since either neuron 1 or neuron 2 
may have the larger input-intensity the output does not 
behave symmetrically. Neuron+ fires if the input of 
neuron 1 is larger than the input of neuron 2. Otherwise, 
there is no pulse activity on neuron+. To get the input-
output characteristic the input for neuron 1 was fixed to 
50% (input weight WK0 = 0.08, θ = 1, td=1ms) while the 
input for neuron 2 was varied between 10% and 90%. For 
each input the system was simulated T=500ms. Figure 4 
shows the result. As long as the input of neuron 2 is larger 
than the input of neuron 1 the output neuron has no 
significant activity. While the input for neuron 2 is smaller 
than that for neuron 1 output activity for neuron+ can be 
observed. The larger the difference is the more pulses 
neuron+ sends. As an approximation the pulse rate of 
neuron+ can be seen as being equal to the difference to the 
pulse rates of neuron 1 and neuron 2.  

The pulse rate of the output neuron varies within a 
certain range if we measure the rate using small time 
intervals. In figure 5 the results for three different cases 
for different initial conditions are shown. The initial 
condition is given by a difference of the membrane 
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potentials of neuron 1 and neuron 2. For each initial 
condition the system was simulated T=10s while for each 
Tm=600ms the pulse rate of the output neuron was 
measured. From that, an empirical variance and mean of 
the pulse rate can be determined. If we look at figure 5 we 
see, that the mean pulse rate and the variance is nearly 
independent from the initial condition. The variance was 
not larger than 2 pulses/s in any case. Additionally, for 
small differences, i.e. the input of neuron 2 is nearly as 
high as the input for neuron 1 the mean rate is quite larger 
than the expected rate (solid line). This can be explained 
considering figure 3. Remember, that neuron 3 pulses if 
neuron 2 and neuron 1 fire alternately. The higher the rate 
of neuron 2 is the higher the rate of neuron 3 will be. 
Since for every pulse of neuron 3 a small current flows to 
neuron 4 there is a certain probability that neuron 4 fires 
after a certain amount of incoming pulses.  

 

 
Figure 4: Characteristic of the gradient detector 

DETECTION OF PROFILES 
 
Simple cells representing receptive fields show a 

specific behavior to a visual stimulus. If the shape of the 
local light intensity distribution is similar to the particular 
shape of the local receptive field of a simple cell this cell 
will respond to the stimulus with a noticeably higher pulse 
rate than for light intensity distributions that have a more 
dissimilar shape. The response is a function dependent on 
a specific shape. Specifically, simple cells respond to local 
edges of certain spatial wideness as well as to locally 
oriented lines. Those structures are given by sub-areas 
including a gradient of intensity along a particular 
direction and of characteristic length.  

If we are interested in detecting specific intensity 
distributions within a receptive field we can start by 
detecting a gradient of intensity between two pixels which 
are located within the receptive field. If the detector sends 
out pulses we are assured that a gradient having a certain 
magnitude as well as a certain direction exists between the 
tested pixels at least. Since only two pixels are tested there 
is still a certain uncertainty about the surrounding of the 
pixels.  To gain more confidence about the gradient we 
can test more pairs of pixels in the surrounding of the 
primarily chosen pair. The more detectors show pulse 
actions the more we are assured that a gradient spatially 

expanded as well as of certain direction exists in a certain 
spatial domain within the receptive field which is defined 
by all the tested pixel-pairs.   

 

 
Figure 5: Measured pulse rates and variances. T = 

10s, Tm=600ms ,neuron 2 has 90 % intensity, 
WK0=0.08,Θ=1 A: neuron 1 has 20 % intensity , B: 
neuron 1 has 65 % intensity, C: neuron 1 has 80 % 

intensity 
 

Because the detector response has to be encoded 
using pulses of a single neuron a very simple way to 
combine the individual pulse responses of several gradient 
detectors is to sum up all pulses on the dendrite connected 
to the output neuron. Here, the more gradient detectors 
respond to the stimulus the higher the pulse rate of the 
output neuron will be. Figure 6 shows the architecture 
resulting therefrom. 

 

 
Figure 6: Architecture of the detector 

 
While lines and edges can be detected with this 

architecture, there still has to be a correspondence to the 
experimental results from Jones and Palmer [3,4]. In [3,4] 
the assumption was made, that the response of a simple 
cell is due to a behavior similar to linear filters. The 
simple cell encodes the similarity between the attached 
filter kernel and the stimulus by taking a linear 
convolution between the input and the kernel.  

Under this assumption the coefficients of the filter 
kernel can be obtained by sampling the receptive field 
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using small spots of certain contrast to stimulate the 
receptive field (figure 7). Those spots were exposed to 
different locations of the receptive field for a certain time 
while the response of the simple cell to the stimulus will 
be observed.  

 

 
 

Figure 7: Stimulus to sample the receptive field  
 

If we expose a spot frequently on a region dA within 
the receptive field of the simple cell, eq.  (10): 
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where x and y are coordinates and ∆x and ∆y the 

dimensions of the spot, respectively, we find that the total 
number of pulses sent out from the cell due to this 
stimulus is  equivalent to the response of a linear gabor-
filter. 

From this we conclude that the response of the simple 
cell can be modeled by eq. (11):  
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In eq. (11) H is the intensity of the spot while B is the 

intensity of the background of the stimulus. Π+ is the pulse 
rate of the simple cell and G(x,y) models the gabor-
function with its respective parameters. Note that two 
different types of stimulus are distinguished. The filter 
responds to the bright spot only when G(x,y) is mainly 
positive in the area activated by the spot. On the other 
hand, the filter responds to the dark spot only when G(x,y) 
is mainly negative in the respective area where the dark 
spot is located. Hence, the response from activation by a 
dark spot has to be counted with a negative sign. Note, 
that the stimulation with dark spots is necessary to get the 
negative portion of G. 

In the following, we try to match this behavior to the 
behavior of the proposed architecture. As already 
mentioned, using the architecture shown in figure 6 we 
test at several locations of the receptive field if a gradient 
of intensity exists. While the output of the whole detector 
encodes the sum of all tests, we can predict the output if a 
certain stimulus as well as the distribution of the receptors 
used for the test is given .   

 

 
 

Figure 8: Receptors of the retina and an example for 
an assignment to neurons to the input-layer 

 
If we consider the region of the receptive field where 

the spot has been exposed (figure 8), certain receptors are 
used to test a gradient. While the gradient has a direction 
(neuron 1 has to have the higher intensity than neuron 2 to 
let the detector respond) some receptors are used to 
measure the gradient to the outside of the spot (pixels 
which are indexed “1”) and some receptors are used to 
measure the gradient from the outside to the spot (pixels 
that are indexed “2”).  

If the distribution of receptors, labeled either by “2” 
or “1” is given by two density functions ρ2(x,y) and 
ρ1(x,y),  respectively, we can calculate the number of 
activated neurons on the input-layer of the detector. We 
obtain: 
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N2(x,y) gives the number of connected neurons labeled by 
“2” while N1(x,y) gives the number of connected neurons 
labeled by “1” that are covered by the spot. Then, the 
output neuron has a pulse rate that is given by (W0 
represents the input-weight WK0 to the IAF-neuron and 
has been chosen to be equal for all neurons): 
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Note, that only neurons participate to the sum which 

are connected to receptors covered by the spot. Since the 
background is homogenous elsewhere, there is no 
response from those regions.  

If we want to achieve a similar output behavior 
compared to eq. (11), we have to choose ρ2(x,y) and 
ρ1(x,y) appropriately. Given G(x,y) we obtain ρ2(x,y) and 
ρ1(x,y) to: 
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W

yxyx ⋅Θ=− −+ ρρ  (15) 

This is the main result. Instead of using continuous 
weights representing filter coefficients we can realize a 
given filter kernel through a spatial density distribution of 
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connections that are used to test a gradient between each 
two pixels. Note, that G(x,y) has not necessarily to be a 
gabor-function. 
 

 
 

Figure 9: Distribution of connected receptors to the 
input-layer of the detector. A bright spot indicates a 

connection to a 1(n)-neuron while a dark spot 
indicates a connection to a 2(n)-neuron.  

 
 
As an example we tested an architecture that connects 

128 pixel to the input-layer of the detector. In figure 9 the 
chosen distribution of connections is shown.  

The profile of the detector was determined by 
sampling the receptive field using different stimuli shown 
in figure. The bright ones as well as the dark spots are as 
large as a region of 3x3 receptors. The contrast was 
chosen to be C=60%. While 256 different dark spots as 
well as 256 bright spots were exposed randomly on a 
16x16 grid which covered the receptive field, each 
stimulus was activated Tp=150ms.  

Figure 9 shows the results. The profile on the top 
represents the ideal profile from that the distribution 
shown in figure was derived. The bottom part of the figure 
shows the result from sampling.  

CONCLUSION 
 
Technical applications where scene analysis is 

involved rely on a robust low-level feature extraction. So 
far, feature extraction based on neural principles 
emphasize the analogue representation of information at 
least to the level where simple cells are modeled.  

In contrast to this in certain cases firing patterns 
generated by ensembles of neurons show ordered 
structures. Thus, the representation of information in such 
networks has to be assessed in a different way. We have 
shown how dynamic synapses can affect the pattern 
generation process of several neurons to encode additional 
information represented through high-order statistical 
quantities like correlation, for instance. It was shown that 
simple feature detectors can be implemented using 
essentially two types of dynamic synapses only. Here, the 
features will be detected by generating and analyzing 
spatial-temporal structures of pulses using dedicated 
networks. Typical structures are correlated and 
decorrelated pulses as well as the order of incoming 
pulses. Then, more complex features where orientation as 
well as spatial frequency is of interest are composed from 
replication, merging and spatial distribution of simple 

feature detectors. Only connectivity and a distribution of 
connectivity to the retina has to be defined appropriately 
to get an arbitrary complex characteristic. 

 

 
Figure 10: Top: ideal profile, Bottom: measured 

profile  
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