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ABSTRACT

We present a denoising algorithm for enhancing noisy
signals based on local independent component analy-
sis (ICA). We extend a noise reduction algorithm pro-
posed by Vetter et al. [11] by using ICA to separate the
signal from the noise. This is done by applying ICA to
the signal in localized delayed coordinates. The compo-
nents resembling noise are detected using estimators of
kurtosis or the variance of the autocorrelation. This al-
gorithm can also be applied to the problem of denoising
multidimensional data like images or fMRI data sets.
In comparison to denoising algorithms using wavelets
or Wiener filters the local PCA and ICA algorithms
perform considerably better especially ICA algorithms
which consider the estimation of higher order statisti-
cal moments like kurtosis.

INTRODUCTION

In many fields of signal analysis the examined signals
bear considerable noise which is usually assumed to
be additive and non-correlated. For example in ex-
ploratory data analysis of medical data such as EEG
or fMRI using statistical methods like ICA the preva-
lent noise greatly degrades the reliability of the algo-
rithms and the underlying processes cannot be identi-
fied. Therefore many denoising algorithms have been
proposed [2][5][9][11]. Vetter et al.[11] suggest an algo-
rithm based on local linear projective noise reduction.
The idea is to observe the data in a high-dimensional

space of delayed coordinates and denoise the data lo-
cally through a projection into the lower dimensional
subspace of the deterministic signals. For parameter
selection an minimum description length (MDL) crite-
rion is used to select optimal parameters. For an intro-
duction to the concept of minimum description length
see [13] and for a good description of the criterion see
[3].

The noise is assumed to be stationary (at least lo-
cally stationary) Gaussian white noise. The signal usu-
ally comes from a deterministic or at least predictable
source and can be described as a smooth function eval-
uated at discrete timesteps small enough to capture
the characteristics of the function. That implies, using
basic differential geometry, that the signal in delayed
coordinates resides within a submanifold of the space
of delayed coordinates. The task is to detect this sig-
nal manifold. In the following we call this manifold
the signal+noise subspace since it contains all of the
delayed signal as well as that part of the delayed noise
which extends in the same directions as the signal.

PCA AND ICA

Principal component analysis (PCA)[10] is one of the
most common multivariate data analysis tools. It tries
to linearly transform given data ~x(t) following the data
model

~x(t) = A~s(t) + ~N(t) (1)



into uncorrelated data (feature space) ~s(t). The new
orthonormal basis vectors ~s(t) are called principal com-
ponents. PCA can be performed by eigenvalue-decom-
position of the data covariance C = E[~x(t)~xT (t)]. The
components with the largest eigenvalues contain the
main signal information.

In independent component analysis (ICA), given a
random vector or sensor signal ~x(t) again following a
data model according to equn.(refeqn1), the goal is to
find its statistically independent components ~s(t). In
contrast to correlation-based transformations (PCA)
independent component analysis (ICA) renders the out-
put signals as statistically independent as possible by
evaluating higher-order statistics. The idea of ICA was
first expressed by Jutten and Hérault [4] while the term
ICA was later coined by Comon[1]. We will use the
FastICA algorithm by Hyvärinen and Oja [6], which
performs ICA by maximizing the non-Gaussianity of
the signal components.

LOCAL PROJECTIVE DENOISING ALGO-
RITHMS

The algorithm we will present represents a local projec-
tive denoising algorithm. The idea of these algorithms
is to embed the noisy signal into a high dimensional fea-
ture space by a method which adds the temporal infor-
mation to the signal. The denoising is then achieved
by locally projecting the embedded noisy signal vec-
tors onto a lower dimensional subspace which contains
the characteristics of the noise free signal. Finally the
signal has to be reconstructed using the various candi-
dates generated by the embedding.

Implementation of the algorithm

We now present a denoising algorithm based on local
ICA or PCA using an MDL criterion for parameter
selection. Consider the situation, where we have a sig-
nal x(t) at discrete timesteps t = 1, . . . , n. But only a
distorted signal is measured

xN (t) = x(t) + N(t) (2)

where N(t) are samples of a random variable with
Gaussian distribution, i.e. xN (t) equals x(t) up to ad-
ditive stationary white noise.

At first the noisy scalar signal xN (t)is transformed
into a sensor signal vector ~xN (t) in the m-dimensional
space of delayed coordinates

~xN (t) := (xN (t), . . . , xN (t + m− 1 mod n))

For computational simplicity we use the samples in
round robin manner. This leads to the problem of com-
patibility of the beginning and end of the signal and
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Fig. 1. Comparison of MDL selected parameters and
SNRs of denoised signals for different m and k. Delay
dimension ranges from 40 to 160 and k from 5 to 35.
Selected values by MDL m=60,k=35 SNR=2.7, but
best SNR=3.5.

is solved with some preprocessing as explained in the
last section.

Then we localize the problem by selecting k clus-
ters of the delayed time series { ~xN (t) | t = 1, . . . , n}.
This can for example be done by a k-means cluster
algorithm[7], which seems to be appropriate for noise
selection schemes based on the strength or the kurto-
sis of the signal since the statistical properties do not
depend on the signal structure. Using other methods
like considering the variance of autocorrelations it is
usually better to find an appropriate partitioning of
{1, . . . , n} into k successive parts since this preserves
the time structure of the signal.

Now we can analyze these k m-dimensional signals
~x(k)(t) using PCA or ICA. We used two different cri-
teria to estimate the number of signal+noise compo-
nents, i.e. the dimension of the subspace onto which
we project after using PCA or ICA. One criterion is
the MDL estimator for the data model in eqn.( 2) pro-
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where δj are the ordered singular values of the covari-
ance matrix of the signal and γ a parameter of the MDL
estimator and hence of the final denoising algorithm.
The MDL criterion is a maximum likelihood estima-
tor for the number of signal components for data with
additional white Gaussian noise.

Based on [8] and our observations we also used an-
other approach: We clustered the singular values of
the covariance matrix into two clusters using k-means
and defined pcl as the number of elements in the clus-
ter which contains the largest eigenvalue. This gives
a good estimation of the number of signal components
if the noise variances are not clustered well enough to-
gether but nevertheless are separated from the signal
by a large gap.

In the ICA case we apply ICA to extract pMDL +1
or pcl + 1 independent components of the signal (one
additional component for the noise). Like in all MDL
based algorithms the noise reduction is achieved by
projection of the signal onto a pMDL or pcl-dimensional
subspace. For PCA one applicable method is to select
the largest components in terms of signal variance. For
ICA we can apply several methods depending on the
nature of the data. For signals with a non-Gaussian

distribution we select the noise component as the com-
ponent with the smallest value of the kurtosis. For
non-stationary data with stationary noise we identify
the noise by the least variance of its autocorrelation.

To reconstruct the noise reduced signal xe(t) repre-
senting an approximation to the noise-free signal x(t)
we only have to reverse the clustering of the data to
get a signal

~xe(t) : {1, . . . , n} → Rm

and then average over the candidates in the delayed
data.

xe(t) :=
1
m

m−1∑

i=0

[~xe(t− i mod n)]i (3)

In experiments it has proven to be effective to weight
this sum such that the center has the strongest influ-
ence on the resulting signal.

Now we still have to find suitable values for the
global parameters m, k and γ. Vetter proposed to
base the selection of m and k also on a MDL crite-
rion for the reconstruction error corresponding closely
to the detected noise e(t) := xN (t) − xe(t) ≈ .N(t).
Again we represent these signals e(t) for the different
m and k in a high dimensional space of delayed coor-
dinates and choose the parameters m and k such that
the MDL criterion with respect to the singular values
of the correlation matrix

EXPERIMENTAL RESULTS

We will present some sample experimental results using
generated signals and artificial noise. In the following
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Fig. 3. Comparison between MDL and threshold denoising. The comparison was done with an artificial signal and
a known SNR of 0, m = 40 and k = 35. (MDL-SNR enhancement 8.9, Threshold-SNR enhancement 10.5)

the ICA based denoising algorithm uses the component
kurtosis for noise selection.

Discussion of MDL based selection of principal
or independent components

In our experiments we have noticed that the MDL cri-
terion often overestimates the number of components
of the signal+noise subspace. Therefore we also give a
comparison to a threshold based algorithm which re-
quires prior knowledge of the signal to noise ratio, see
also the next sections.

The MDL criterion is used a second time to select
the best dimension m for the delayed signal and k the
number of neighborhoods to use. This method for se-
lecting the best algorithm seems to be problematic for
some situations, see for example figure 1. Experiments
indicate that this is especially the case if the Signal to
Noise Ratio (SNR) defined by

SNR(x, xN ) := 20 log10

||x||
||x− xN || (4)

is very low i.e. in situations with strong noise.

As explained in [8] there are some situations where
using the MDL criterion can lead to a massive over-
modeling of the signal, i.e. underestimating the num-
ber of noise components. This is especially true if the
noise is not completely white. Since the overmodeling
mostly happens if the singular values of the covariance
matrix which describe noise components are not suffi-
ciently close together and are divided from the signal
components by a gap, the clustering criterion can yield
better results. For an actual example of this situation
see the last section.

Comparisons between local ICA and local PCA
for selection of the noise subspace

We use the artificial signal shown in figure 3 with vary-
ing additive Gaussian white noise. We apply the de-
noising algorithm which is described at the beginning
of this text as well as a wavelet based denoising algo-
rithm. The results are depicted in figure 2.

The first and second diagram compares the perfor-
mance, here the enhancement of SNR (see equation4)
and mean error, of the three different algorithms de-
pending on input SNR. Here a source SNR of 0 de-
scribes the case where the signal and the noise have
the same strength. The third graph shows the differ-
ence in kurtosis of the original signal and the source
signal again depending on the input SNR. All three di-
agrams correspond to the same data set, i.e. the same
signal and, for a given input SNR, the same additive
noise.

Our examples suggest that a local ICA approach is
more effective when the signal is infested with a large
amount of noise whereas the local PCA seems to be
better suited for signals with high SNRs. This might
be due to the nature of the our selection of subspaces
based on kurtosis or variance of the autocorrelation.
Also the comparison of higher statistical moments of
the restored data, for example the kurtosis, indicate
that the noise reduction can be enhanced if we are using
a local ICA approach.

Comparison between the MDL criterion and the
threshold criterion

Using a threshold instead of the adaptive MDL crite-
rion to select the dimension of the signal+noise sub-
space has proven to be more effective in some exam-
ples, although it requires knowledge about the strength
of the additive noise. In this case we can discard the
weakest components up to cumulative strength given



Noisy Image (SNR=4.091506) Wavelet Filtered (SNR=5.681974)

Wiener Filtered (SNR=8.271617) Local PCA Filtered (SNR=8.927056)

Fig. 4. Image denoising. Comparison of a wavelet based denoising filter, a wiener filter and a local PCA with
cluster criterion on a image infested with Gaussian noise.

by the known noise level.
The result of a simulation is displayed in figure 3.

For this simulation we used the same signal as in the
last section and additional noise with a SNR=0. There-
fore we chose for the threshold criterion the weakest
components whose cumulative strength was at least
half as strong as the complete noisy signal.

MULTIDIMENSIONAL APPLICATIONS

A direct generalization of the algorithm for multidi-
mensional data by simply looking at delayed coordi-
nates of vectors instead of scalars seems to be unpracti-
cal due to the computational effort. More importantly
this approach significantly lessens the number of sam-
ples yielding far less accurate estimators of important
aspects like MDL or the kurtosis in the ICA case.

Experiments seem to indicate a solution by arrang-
ing the data in the following way: Let S(x, y) for x, y =
1, . . . , n be a 2-dimensional signal. Define the 1-dimen-

sional signal with 2n2-samples by

s :=
(
S(1, 1), . . . , S(n, 1), . . .
. . . , S(n, 1), S(n− 1, 1), . . . , S(1, 1), . . .
. . . , S(1, 2), . . . , S(n, 2), S(n, 2), . . .

. . . , S(n, n), . . . , S(1, n)
)

This can be easily extended to higher dimensional data.
Then apply any ordinary 1-dimensional denoising algo-
rithm. This signal arrangement mirrors the row struc-
ture of the image. Applying the algorithm once more
to the transposed denoised image also uses the column
structure.

Depending on the nature of the signal another ap-
proach can be effective. Instead of converting the mul-
tidimensional data into 2-dimensional data prior to ap-
plying the algorithm, we can use translated versions
of the signal wrapped around at the corners and then
transform each of these to 1-dimensional data and us-
ing them as the delayed coordinates. For an image P
represented by a matrix P = (aij)i,j=1...10 that means



. . . , P−1−1, P−10, . . . , P10, P11 . . . with

P−1−1 =




a22 . . . a210 a21

...
...

...
a102 . . . a1010 a101

a12 . . . a110 a11




represent the delayed data for the local subspace algo-
rithm.

In figure 4 we see that this approach using the
clustering criterion to select the number of compo-
nents and PCA to identify the noise components com-
pares favourably to a wavelet denoising algorithm and
a Wiener filter.

CONCLUSIONS

We presented extensions to the local PCA noise reduc-
tion algorithm using local ICA and a kurtosis-based
selection of the noise subspace. We pointed out that
this can further enhance the signal reconstruction in
comparison to the original algorithm. Further we saw
that in some situations the MDL based subspace selec-
tion does not yield optimal results and we provided a
cluster criterion to replace the MDL criterion. In the
future we will investigate other methods of measuring
the noisiness of the independent components since the
kurtosis estimator seems to be inappropriate for low
noise situations. Possible extensions could by given
by a combination of kurtosis and variance based se-
lection. Also we want to investigate if we could use a
MDL based criterion to not only estimate the optimal
parameters of the algorithm but also to select the best
alternative approach (i.e. PCA or ICA, MDL or cluster
criterion) for the given situation.
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