
Perceptron Learning versus Support Vector Machines

Bernd-Jürgen Falkowski and Silvio Clausen
University of Applied Sciences Stralsund

Zur Schwedenschanze 15
D-18435 Stralsund

Germany
Email: Bernd.Falkowski@fh-stralsund.de and Silvio.Clausen@fh-stralsund.de

Abstract In this paper the performance of perceptron
learning is compared with that of support vector
machines if the pertinent Vapnik-Chervonenkis (VC-)
Bound is small, thus complementing some known
results. To this end the creditworthiness of bank
customers is evaluated using real-life (anonymous) data
and a so-called scoring system. Since in practical
situations there is usually a shortage of available
learning data as well as a lack of sophisticated software
a comparatively small number of data is used for fault
tolerant perceptron learning implemented in Excel using
VBA. In order to justify the tests it is shown that the
VC-Bound of the raw data is indeed small. The
significance of experimental results with respect to
applying perceptron learning as opposed to SVMs is
discussed since it allows the use of cost functions. This
is of particular relevance within the banking context.
Key words: support vector machines, perceptron
learning, scoring systems

1 Introduction
Ever since the Basel II central banks agreement of the
G10-states, cf. e.g. [4], the individual objective rating of
the creditworthiness of customers has become an
important problem To this end so-called scoring
systems, cf. e.g. [8], have been used for quite some
time. Generally these sytems are implemented as linear
discriminants where customer characteristics such as
income, property assets, liabilities and the likes are
assigned points or grades and then a weighted average is
computed, where a customer is judged “good” or “bad”
according to whether the average exceeds a cut-off point
or not. In an extreme case the attributes are just binary
ones where 0 respectively 1 signifies that the property
does not hold respectively holds. This situation
frequently arises in pratice and will also apply here. The
all important weights can then either be computed using
classical statistical methods or more recently with the
help of artificial neural networks provided that suitable
bank records are available for “learning”.
Unfortunately though in practice often there are only
comparatively few records vailable and moreover, if one
wishes to equip a large number of banks with suitable
systems, there will be a shortage of sophisticated and
hence expensive software. Thus it seems preferable to

utilize a fault tolerant perceptron learning algorithm as
described in [7] and implemented in [6] as opposed to
the more sophisticated support vector machines. In
addition this has the advantage of allowing the use of a
cost function, cf. [6], which is very important for profit
maximization in a banking context. However, the
question remaining was of course, whether by adopting
this procedure the generalization capabilities of the
system would not be too severely restricted. Hence the
experiments described below were conducted using
comparatively few “real-life data”, having established
first that this could be justified by showing the VC
bound to be small (Incidentally, one may well ask why
it should have been desirable to keep the VC-Bound so
small by using a linear discriminant. The reason is
simply that it was thought necessary to keep the system
transparent to the banking experts in order to ensure
acceptance). The corresponding SVM was thus
implemented with a trivial kernel, since a more
sophisticated embedding in a higher dimensional space
would have obscured the significance of the weights.
This procedure made possible the use of the Excel
Solver to deal with the quadratic programming problem.
The results obtained complement some earlier ones
given in [11] where a much larger VC-Bound applied.
In addition they allow an interesting comparison
between a probabilistic algorithm (fault tolerant
perceptron learning) and a deterministic one (SVM)

2 The Raw Data and their Associated
VC-Dimension

The raw learning data (anonymous) available from a
large german bank were given as an Excel table whose
first column contained a number to identify the
individual data set whilst the other columns contained
ones and zeros only. Thus there were only binary
attributes with the last column indicating the rating of
the customer based on past experience (0 for a “bad”
customer, 1 for a “good” customer). These attributes
arise in a natural way if one partitions “compound
characteristics” as for example the age into several
intervals indicating that the age belongs respectively
does not belong to a certain interval by a one
respectively zero as the binary attribute value.

mailto:Bernd.Falkowski@fh-stralsund.de

The abstract set-up may then be described as follows:
Suppose that the compound characteristics are denoted
by c1, c2, ..., cn. Further assume that the binary attribute
values associated with compound characteristic ci are cij
and that the corresponding points scores (weights) to be
computed by perceptron learning respectively a SVM
are pij. If the (also to be computed) cut-off is t, then the
decision procedure is described by:
A customer will be classified as “good” if

Σi,j cij*pij > t ---------------------(*)
Thus one sees that the VC-Dimension of the set of
separating hyperplanes is bounded above by (1 +
number of binary attributes), cf. e.g. [5].
However, the decision procedure (*) given above may
be converted into an equivalent one as follows.
Suppose that the domain of the pij is described by

 mini ≤ pij ≤ maxi for all i,
and introduce the following abbreviations:

minav:= (1/n)*Σimini,
maxav:= (1/n)*Σimaxi,
 s:= maxav - minav.

Then affine transformations tij of the points scores pij
may be defined by:

qij = tij (pij): =
minav + [(pij – mini)/(maxi – mini)]*s.

Hence the following holds:
 qij ∈ [minav, maxav], and

 qij = βi* pij + αi where
 βi := s/(maxi – mini),

αi:=[1/(maxi–mini)]*(maxi*minav– mini*maxav)
Since tij is invertible with
 pij = (1/βi)*qij - αi /βi
it follows that
 Σi,j cij*pij > t ⇔

Σi,j cij*[(1/βi)*qij - αi /βi] > t
But if
 Σj cij = 1 holds for all i, one has

 Σi,j cij*[αi /βi] = Σi [αi /βi] = 0
and hence
 Σi,j cij*[(1/βi)*qij - αi /βi] > t ⇔

Σi,j wi *(cij *qij) > t --------------------(**)
where wi:= 1/βi is independent of j.

Note here that the condition Σj cij = 1 holds, of course,
for all i, since the binary attributes had been arrived at
by partitioning the domain of the compound
characteristics.
If one now embeds the vectors of binary attribute
values into ℜn by setting the corresponding entries to

xi := Σj cij *qij
then, because the decision procedure (*) is equivalent to
the procedure (**), the following holds:
2.1 Lemma:
If there are n compound attributes giving rise to the
binary attributes as described above then the VC-

Dimension of the set of separating hyperplanes is
bounded above by n+1.
As a consequence of this one immediately obtains from
the corollary to theorem 10.3 in [11] p. 408 the
following:
2.2 Lemma
If l is the number of training examples that are correctly
separated by the decision procedure (*) then with
probability 1-η one can assert that the error rate has the
upper bound

(2/l)*{(n+1)*[ln(2*l/(n+1))+1] – ln(η/4)}.
Remark: For the experiments conducted (see below) the
reduction in the bound of the VC-Dimension on the set
of separating hyperplanes possibly resulting from
choosing large margins of separation and from the
geometry of the binary vectors considered, cf. theorem
10.3 in [11] p. 408, could not be observed. Hence the
above transformations to show a (comparatively) low
VC-Bound seem all the more relevant.

3 Experiments
The experiments were carried out using 200 data sets of
the format described in section 2 for learning and 200
similar data sets (not seen) for testing. There were 160
“good” and 40 “bad” customers in either data set.
The number of binary attributes used was 44 whilst
there were only 14 compound attributes.
Assuming that perfect learning is possible for these
attributes (as turned out to be the case) it follows from
Lemma 2.2 that an upper bound on the error rate for the
unseen data is given by ≈ 0,68 with a probability of 0.9.
Of course, this is rather too large to give meaningful
results. Bearing in mind, however, that this bound is
thought to be far from tight in general, since it is
distribution-free, cf. e.g. [10], p. 45, experiments were
nevertheless carried out, since the nunber of examples
required for a theoretical justification could not be
obtained.
The algorithms compared were on the one hand a
version of the pocket algorithm (fault tolerant
perceptron learning algorithm), cf. e.g. [6] for some
pseudo code, and on the other hand the algorithm
implemented within the framework of the Excel Solver
applied to solve the quadratic programming given
below, thus constructing a SVM with a trivial kernel.
The main differences between these algorithms may be
summarized as follows:
Fault tolerant perceptron learning uses a probabilistic
algorithm whilst the Excel Solver employs a classical
Newton algorithm. The former’s complexity is not
known although in all practical applications it has
performed very well. The latter suffers from the Excel
implementation since there are uncontrollable side
effects created for example by cell updates. In both
cases, however, CPU times turned out to be negligible

(in the order of a few minutes at most) in view of the
small number of data.
The perceptron learning constructs a separating
hyperplane if possible (minimizing the number of
mistakes made, if a separating hyperplane does not
exist) by solving a system of linear inequalities, cf. also
[1].
The quadratic programming problem solved by the
second algorithm is given as follows:
Maximize
 Q(α):= Σi αi - Σij αiαjdidj<xi, xj>
subject to
 (1) Σi αidi = 0
and (2) 0 ≤ αi ≤ C
where <.,.> denotes the scalar product, the xi are the
Boolean vectors describing the bank customers, the di
are +1 or –1 according to whether a “good” or a “bad”
customer is being considered, and C is a constant whose
value has to be experimentally optimized, for further
details see e.g. [9], p. 324. If C is infinity then the
solution of the quadratic programming problem allows
one to construct a separating hyperplane fron the αis as
well. The difference to perceptron learning being that
this hyperplane is the unique optimal hyperplane
implementing a maximal margin of separation.
Theoretical results show that the use of this hyperplane
will generally lead to better generalization properties,
cf. e.g. [2], [11]. The question to be (at least
provisionally) anserwed by the experiments was: How
large is the differnce between the two algorithms if the
VC-Bound is rather small?

4 Results
The experiments were conducted on a standard Pentium
IV PC with 1.4 GHz and 1 GB RAM.
As mentioned above the CPU times used were within
the region of a few minutes although the fault tolerant
learning turned out (perhaps slightly surprisingly) faster
in all cases. Due to more or less unpredictable side
effects like cell updates there seemed to be little point in
comparing exact times.
The quadratic programming problem was tackled first
with various C values and it was only discovered after
lengthy computation that a perfect solution was possible
(even C = 30 still leads to 0.5 % errors if the
corresponding weight vector and cut-off is used to
implement the decision procedure (*) above.
In contrast perceptron learning found a perfect solution
if the number of iterations of the main loop of the
algorithm was set to 50 000.
Both error rates above refer to the learning data. For the
unseen data the error rate was of course significant as
was to be expected from the considerations using the
VC-Bound above.

In fact we obtained an error rate of 20.5% on the unseen
Data using the SVM and an error rate of 22% using
perceptron learning. Whilst this may seem disappointing
at first sight, a comparison with the results given in [3]
shows that error rates of this order of magnitude are by
no means unreasonable within the credit risk assessment
context considered.

5 Discussion
Consideration of the VC-Bound and in particular 2.2
above shows that the results obtained have to be treated
with a certain amount of caution. Nevertheless in the
light of other experimental results availble, cf. [3], they
do seem at least of practical significance. This is all the
more so, since there are, for obvious reasons, few results
concerning the kind of banking application considered,
publicly availble.
It is interesting to note that the improvement achieved
concerning the generalization ability of the system
whilst using an SVM seems to be comparatively small
in the presence of a small VC-Bound as shown by the
experimental results. Indeed, any differences observed
during the experiments described above are most
probably purely accidental.
Thus one might conclude that the disadvantages
resulting from the construction of a possibly suboptimal
separating hyperplane are outweighed by the
advantages. The most noteworthy of these in the
context considered are

(i) ease of implementation
(ii) few software requirements
(iii) possibility to use a cost function

Incidentally: The experiments showed that the
experimental optimization of the constant C is
somewhat unfortunate since one cannot know in
advance if an optimal solution to the quadratic
programming problem is possible.
It is hoped to conduct further experiments if additional
data become available in order to verify the results
obtained within a more reliable setting. In particular it
would be interesting to consider the situation where
perfect separation is no longer possible. The authors
suspect that then SVMs may have even less of an
advantage in a situation where the VC-Bound is already
small due to the influence of the geometry of the data.
Of course, one would expect the situation to be
somewhat different in view of the experimental results
given in [11], if higher order sepration surfaces (or
equivalently non-trivial kernels) could be utilized.
However, as pointed out before, in a banking context it
is rather difficult to gain acceptance for a system that it
is not as transparent as possible. These objections
arising entirely from psychological reasons must not be
neglected. In addition it should be pointed out that even
using linear systems combined with a cost function

quite impressive results can be achieved, for further
details the reader may consult e.g. [6].

6 References

[1] Block, H.D.; Levin, S.A.: On the Boundedness of an

Iterative Procedure for Solving a System of Linear
Inequalities. Proc. of the AMS, 26, (1970)

[2] Christianini, N.; Shawe-Taylor, J.: An Introduction

to Support Vector Machines and other Kernel-Based
Learning Methods. Cambridge University Press,
(2000)

 [3] Episcopos, A.; Pericli, A.; Hu, J.: Commercial

Mortgage Default: A Comparison of the Logistic
Model with Artificial Neural Networks. Proceedings
of the Third Intl. Conference on Neural Networks in
the Capital Markets, London, England, (1995)

[4] Europäische Zentralbank: Die neue Basler

Eigenkapitalvereinbarung aus Sicht der EZB.
Monatsbericht, Mai, (2001)

[5] Falkowski, B.-J.: On Scoring Systems with Binary
Input Variables.In: Proceedings of the 6th World
Multiconference on Systemics, Cybernetics and
Informatics, Vol. XIII, International Institute of
Informatics and Systemics, (2002)

[6] Falkowski, B.-J.: Assessing Credit Risk Using a

Cost Function. In: Proceedings of the Intl.
Conference on Fuzzy information Processing, Vol.
II, Tsinghua University Press, Springer-Verlag,
(2003)

[7] Gallant, S.I.: Perceptron-based Learning Algorithms.

IEEE Transactions on Neural Networks, Vol. I, No.
2, (1990)

[8] Hand, D.J.; Henley, W.E.: Statistical Classification

Methods in Consumer Credit Scoring: a Review.
J.R. Statist. Soc. A, 160, Part 3, (1997)

[9] Haykin, S.: Neural Networks,.2nd edition, Prentice

Hall, (1999)

[10] Schölkopf,B.; Burges, C.J.C.; Smola, A.J.:

Advances in Kernel Methods. MIT Press, (1999)

[11] Vapnik, V.N.: Statistical Learning Theory. John

Wiley & Sons, (1998)

	Abstract In this paper the performance of perceptron learning is compared with that of support vector machines if the pertinent Vapnik-Chervonenkis (VC-) Bound is small, thus complementing some known results. To this end the creditworthiness of bank cu
	Introduction
	The Raw Data and their Associated VC-Dimension
	Lemma:
	Lemma

	Experiments
	Results
	Discussion
	References

