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Abstract In this paper the performance of perceptron 
learning is compared with that of support vector 
machines if the pertinent Vapnik-Chervonenkis (VC-) 
Bound is small, thus complementing some known 
results. To this end the creditworthiness of bank 
customers is evaluated using real-life (anonymous) data 
and a so-called scoring system. Since in practical 
situations there is usually a shortage of available 
learning data as well as a lack of sophisticated software 
a comparatively small number of data is used for fault 
tolerant perceptron learning implemented in Excel using 
VBA. In order to justify the tests it is shown that the 
VC-Bound of the raw data is indeed small. The 
significance of experimental results with respect to 
applying perceptron learning as opposed to SVMs is 
discussed since it allows the use of cost functions. This 
is of particular relevance within the banking context. 
Key  words: support vector machines, perceptron 
learning, scoring systems 

1 Introduction 
Ever since the Basel II central banks agreement of the 
G10-states, cf. e.g. [4], the individual objective rating of 
the creditworthiness of customers has become an 
important problem To this end so-called scoring 
systems, cf. e.g. [8], have been used for quite some 
time. Generally these sytems are implemented as linear 
discriminants where customer characteristics such as 
income, property assets, liabilities and the likes are 
assigned points or grades and then a weighted average is 
computed, where a customer is judged “good” or “bad” 
according to whether the average exceeds a cut-off point 
or not. In an extreme case the attributes are just binary 
ones where 0 respectively 1 signifies that the property 
does not hold respectively holds. This situation 
frequently arises in pratice and will also apply here. The 
all important weights can then either be computed using 
classical statistical methods or more recently with the 
help of artificial neural networks provided that suitable 
bank records are available for “learning”. 
Unfortunately though in practice often there are only 
comparatively few records vailable and moreover, if one 
wishes to equip a large number of banks with suitable 
systems, there will be a shortage of sophisticated and 
hence expensive software. Thus it seems preferable to 

utilize a fault tolerant perceptron learning algorithm as 
described in [7] and implemented in [6] as opposed to 
the more sophisticated support vector machines. In 
addition this has the advantage of allowing the use of a 
cost function, cf. [6], which is very important for  profit 
maximization in a banking context. However, the 
question remaining was of course, whether by adopting 
this procedure the generalization capabilities of the 
system would not be too severely restricted. Hence the 
experiments described below were conducted using 
comparatively few “real-life data”, having established 
first that this could be justified by showing the VC 
bound to be small (Incidentally, one may well ask why 
it should have been desirable to keep the VC-Bound so 
small by using a linear discriminant. The reason is 
simply that it was thought necessary to keep the system 
transparent to the banking experts in order to ensure 
acceptance). The corresponding SVM was thus 
implemented with a trivial kernel, since a more 
sophisticated embedding in a higher dimensional space 
would have obscured the significance of the weights. 
This procedure made possible the use of the Excel 
Solver to deal with the quadratic programming problem. 
The results obtained complement some earlier ones 
given in [11] where a much larger VC-Bound applied. 
In addition they allow an interesting comparison 
between a probabilistic algorithm (fault tolerant 
perceptron learning) and a deterministic one (SVM) 
 

2 The Raw Data and their Associated 
VC-Dimension 

The raw learning data (anonymous) available from a 
large german bank were given as an Excel table whose 
first column contained a number to identify the 
individual data set whilst the other columns contained 
ones and zeros only. Thus there were only binary 
attributes with the last column indicating the rating of 
the customer based on past experience (0 for a “bad” 
customer, 1 for a “good” customer). These attributes 
arise in a natural way if one partitions “compound 
characteristics” as for example the age into several 
intervals indicating that the age belongs respectively 
does not belong to a certain interval by a one 
respectively zero as the binary attribute value. 
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The abstract set-up may then be described as follows: 
Suppose that the compound characteristics are denoted 
by c1, c2, ..., cn. Further assume that the binary attribute 
values associated with compound characteristic ci are cij 
and that the corresponding points scores (weights) to be 
computed by perceptron learning respectively a SVM 
are pij.  If the (also to be computed) cut-off is t, then the 
decision procedure is described by: 
A customer will be classified as  “good” if 

Σi,j cij*pij > t   ---------------------(*) 
Thus one sees that the VC-Dimension of the set of 
separating hyperplanes is bounded above by  (1 + 
number of binary attributes), cf. e.g. [5]. 
However, the decision procedure (*) given above may 
be converted into an equivalent one as follows. 
Suppose that the domain of the pij is described by 

 mini ≤ pij ≤ maxi  for all i, 
and introduce the following abbreviations: 

minav:= (1/n)*Σimini,     
maxav:= (1/n)*Σimaxi,    
 s:= maxav - minav. 

Then affine transformations tij of the points scores pij 
may be defined by: 

qij =  tij (pij ): =  
minav + [(pij – mini)/(maxi – mini)]*s. 

Hence the following holds: 
 qij ∈ [minav, maxav],     and 

 qij = βi* pij + αi   where 
 βi := s/(maxi – mini),      

αi:=[1/(maxi–mini)]*(maxi*minav– mini*maxav) 
Since tij is invertible with 
 pij = (1/βi)*qij - αi /βi 
it follows that 
 Σi,j cij*pij > t ⇔  

Σi,j cij*[(1/βi)*qij - αi /βi ] > t 
But if 
 Σj cij = 1 holds for all  i, one has 

   Σi,j cij*[αi /βi ] = Σi [αi /βi ] = 0 
and hence 
 Σi,j cij*[(1/βi)*qij - αi /βi ] > t  ⇔   

Σi,j wi *(cij *qij) > t  --------------------(**)  
where  wi:= 1/βi  is independent of  j. 

Note here that the condition Σj cij = 1 holds, of course, 
for all i, since the binary attributes had been arrived at 
by partitioning the domain of the compound 
characteristics.  
If one now embeds the vectors of  binary attribute 
values into ℜn  by setting the corresponding entries to 

xi := Σj cij *qij 
then, because the decision procedure (*) is equivalent to 
the procedure (**), the following holds: 
2.1 Lemma: 
If there are n compound attributes giving rise to the 
binary attributes as described above then the VC-

Dimension of the set of separating hyperplanes is 
bounded above by n+1.   
As a consequence of this one immediately obtains from 
the corollary to theorem 10.3 in [11] p. 408 the 
following: 
2.2 Lemma 
If  l is the number of training examples that are correctly 
separated by the decision procedure (*) then with 
probability 1-η one can assert that the error rate has the 
upper bound  

(2/l)*{(n+1)*[ln(2*l/(n+1))+1] – ln(η/4)}. 
Remark: For the experiments conducted (see below) the 
reduction in the bound of the VC-Dimension on the set 
of separating hyperplanes possibly resulting from 
choosing large margins of separation and from the 
geometry of the binary vectors considered, cf. theorem 
10.3 in [11] p. 408, could not be observed. Hence the 
above transformations to show a (comparatively)  low 
VC-Bound seem all the more relevant. 

3 Experiments  
The experiments were carried out using 200 data sets of 
the format described in section 2 for learning and 200 
similar data sets (not seen) for testing. There were 160 
“good” and 40 “bad” customers in either data set. 
The number of binary attributes used was 44 whilst 
there were only 14 compound attributes. 
Assuming that perfect learning is possible for these 
attributes (as turned out to be the case) it follows from 
Lemma 2.2 that an upper bound on the error rate for the 
unseen data is given by ≈ 0,68 with a probability of 0.9. 
Of course, this is rather too large to give meaningful 
results. Bearing in mind, however, that this bound is 
thought to be far from tight in general, since it is 
distribution-free, cf. e.g. [10], p. 45, experiments were 
nevertheless carried out, since the nunber of examples 
required for a theoretical justification could not be 
obtained. 
The algorithms compared were on the one hand a 
version of the pocket algorithm (fault tolerant 
perceptron learning algorithm), cf. e.g. [6] for some 
pseudo code, and on the other hand the algorithm 
implemented within the framework of the Excel Solver 
applied to solve the quadratic programming given 
below, thus constructing a SVM with a trivial kernel. 
The main differences between these algorithms may be 
summarized as follows: 
Fault tolerant perceptron learning uses a probabilistic 
algorithm whilst the Excel Solver employs a classical 
Newton algorithm. The former’s complexity is not 
known although in all practical applications it has 
performed very well. The latter suffers from the Excel 
implementation since there are uncontrollable side 
effects created for example by cell updates. In both 
cases, however, CPU times turned out to be negligible 



(in the order of a few minutes at most) in view of the 
small number of data.  
The perceptron learning constructs a separating 
hyperplane if possible (minimizing the number of 
mistakes made, if a separating hyperplane does not 
exist) by solving a system of linear inequalities, cf. also 
[1]. 
The quadratic programming problem solved by the 
second algorithm is given as follows: 
Maximize 
 Q(α):= Σi αi - Σij αiαjdidj<xi, xj> 
subject to 
 (1) Σi αidi = 0  
and (2) 0 ≤ αi ≤ C  
where <.,.> denotes the scalar product, the xi are the 
Boolean vectors describing the bank customers, the di 
are +1 or –1 according to whether a “good” or a “bad” 
customer is being considered, and C is a constant whose 
value has to be experimentally optimized, for further 
details see e.g. [9], p. 324. If  C is infinity then the 
solution of the quadratic programming problem allows 
one to construct a separating hyperplane fron the αis as 
well. The difference to perceptron learning being that 
this hyperplane is the unique optimal hyperplane 
implementing a maximal margin of separation. 
Theoretical results show that the use of this hyperplane 
will generally lead to better generalization properties, 
cf. e.g. [2], [11]. The question to be (at least 
provisionally) anserwed by the experiments was: How 
large is the differnce between the two algorithms if the 
VC-Bound is rather small? 
 

4 Results 
The experiments were conducted on a standard Pentium 
IV PC with 1.4 GHz and 1 GB RAM. 
As mentioned above the CPU times used were within 
the region of a few minutes although the fault tolerant 
learning turned out (perhaps slightly surprisingly) faster 
in all cases. Due to more or less unpredictable side 
effects like cell updates there seemed to be little point in 
comparing exact times. 
The quadratic programming problem was tackled first 
with various C values and it was only discovered after 
lengthy computation that a perfect solution was possible 
(even C = 30 still leads to 0.5 % errors if the 
corresponding weight vector and cut-off is used to 
implement the decision procedure (*) above. 
In contrast perceptron learning found a perfect solution 
if the number of iterations of the main loop of the 
algorithm was set to 50 000. 
Both error rates above refer to the learning data. For the 
unseen data the error rate was of course significant as 
was to be expected from the considerations using the 
VC-Bound above. 

In fact we obtained an error rate of 20.5% on the unseen 
Data using the SVM and an error rate of  22% using 
perceptron learning. Whilst this may seem disappointing 
at first sight, a comparison with the results given in [3] 
shows that error rates of this order of magnitude are by 
no means unreasonable within the credit risk assessment 
context considered.  

5 Discussion  
Consideration of the VC-Bound and in particular 2.2 
above shows that the results obtained have to be treated 
with a certain amount of caution. Nevertheless in the 
light of other experimental results availble, cf. [3], they 
do seem at least of practical significance. This is all the 
more so, since there are, for obvious reasons, few results  
concerning the kind of banking application considered, 
publicly availble. 
It is interesting to note that the improvement achieved 
concerning the generalization ability of the system 
whilst using an SVM seems to be comparatively small 
in the presence of a small VC-Bound as shown by the 
experimental results. Indeed, any differences observed 
during the experiments described above are most 
probably purely accidental.  
Thus one might conclude that the disadvantages 
resulting from the construction of a possibly suboptimal 
separating hyperplane are outweighed by the 
advantages. The most noteworthy of  these in the 
context considered are 

(i) ease of implementation 
(ii) few software requirements 
(iii) possibility to use a cost function 

Incidentally: The experiments showed that the 
experimental optimization of the constant C is 
somewhat unfortunate since one cannot know in 
advance if an optimal solution to the quadratic  
programming problem is possible. 
It is hoped to conduct further experiments if additional 
data become available in order to verify the results 
obtained within a more reliable setting. In particular it 
would be interesting to consider the situation where 
perfect separation is no longer possible. The authors 
suspect that then SVMs may have even less of an 
advantage in a situation where the VC-Bound is already 
small due to the influence of the geometry of  the data. 
Of course, one would expect the situation to be 
somewhat different in view of the experimental results 
given in [11], if higher order sepration surfaces (or 
equivalently non-trivial kernels) could be utilized. 
However, as pointed out before, in a banking context it 
is rather difficult to gain acceptance for a system that it 
is not as transparent as possible. These objections 
arising entirely from psychological reasons must not be 
neglected. In addition it should be pointed out that even 
using linear systems combined with a cost function 



quite impressive results can be achieved, for further 
details the reader may consult e.g.  [6]. 
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