
A Derivative-Free Kalman Filter for Parameter Estimation of Recurrent Neural Networks
and Its Applications to Nonlinear Channel Equalization

Jongsoo Choi, Martin Bouchard, Tet Hin Yeap

School of Information Technology and Engineering
University of Ottawa, 800 King Edward Avenue

Ottawa, Ontario, K1N 6N5 Canada
E-mail: {jchoi,bouchard,tet}@site.uottawa.ca

Ohshin Kwon

School of Electronics and Information Engineering
Kunsan National University

San 68, Miryong-dong, Kunsan, 573-701 Korea
E-mail: kos@kunsan.ac.kr

ABSTRACT: Recurrent neural networks (RNNs) trained with
gradient-based algorithms such as real-time recurrent learning
or back-propagation through time have a drawback of slow
convergence rate. These algorithms also need the derivative
calculation through the error back-propagation process. In this
paper, a derivative-free Kalman filter, so called the unscented
Kalman filter (UKF), for training a fully connected RNN is
presented in a state-space formulation of the system. The UKF
algorithm makes the RNN have fast convergence speed and
good tracking performance without the derivative computation.
Through experiments of nonlinear channel equalization, the
performance of the RNN with the UKF is evaluated.

1. INTRODUCTION

Recurrent neural networks (RNNs) are essentially dy-
namical systems where the states evolve according to cer-
tain nonlinear state equations. Due to their dynamic nature,
they have been successfully applied to many problems
including modeling and processing of temporal signals,
such as prediction, adaptive control, system identification,
and speech recognition [1]. In addition, the sequential
nature of inputs and outputs in many fields makes RNNs
attractive for the general task of sequence prediction,
sequence generation, or sequence transduction. In digital
communications, channel equalization is an example of
sequential data processing, and an adaptive filter used as
the equalizer in the communication receiver needs on-line
learning to update its free parameters. Recently, RNNs
have been successfully applied to channel equalization
with a variety of network structures and learning algo-
rithms [2],[3],[4],[5].

Many structures for RNNs have been developed, which
are ranging from fully connected to partially (or locally)
connected networks and ranging from single-layered to
multi-layered networks. However, common problems still
remained to be solved such as the analysis of the dy-
namical behavior of RNNs, and the capacity of learning
algorithms to cope with the complexity induced by the
network’s dynamics. Hence intensive research works on
dynamical network properties and the corresponding learn-
ing techniques have attained a good theoretical grounding
for many papular algorithms [6]. We hereby focus on

learning algorithms.

Typical learning algorithms for RNNs are real-time
recurrent learning (RTRL) [7] for on-line learning and
backpropagation through time (BPTT) [8] for off-line
learning. These algorithms are totally based on the gradient
method using first-order derivative information. The train-
ing problem is to update the free parameters of the net-
work. Since weight updating affects the states at all times
during the course of network state evolution, obtaining
the error gradient is a complicated procedure. Moreover,
due to the first-order derivative information, the RTRL
and BPTT may exhibit slow convergence speed relative
to learning techniques based on second-order derivative
information. The extended Kalman filter (EKF) forms the
basis of a second-order neural network training approach.
The essence of the recursive EKF procedure is that an
approximate covariance matrix that encodes second-order
information about the training problem is maintained and
evolved during training. However, the EKF is difficult to
implement, difficult to tune, and only reliable for systems
that are almost linear on the time scale of the update
intervals [9]. In addition, the EKF provides first-order
approximations to optimal nonlinear parameter estimation
and needs the computation of derivative matrices (or
Jacobians) in the linearization process of the nonlinear
system.

In this paper, a derivative-free Kalman filter, called the
unscented Kalman filter (UKF) [9],[10], is presented for
training RNNs. The UKF can be an alternative to the EKF
algorithm and may be easier to implement because it is not
necessary to evaluate the Jacobians, which are needed in
the EKF. We demonstrate the applicability of the UKF
to RNN training. The performance of the UKF algorithm
in nonlinear channel equalization applications is evaluated
and compared with the RTRL.

2. FULLY CONNECTED RECURRENT NEURAL

NETWORK

The formulation presented here is based on the standard
fully connected RNN. The fully connected RNN consists

of q neurons with l external inputs, as shown in Fig. 1. Let
the q-by-1 vector x(k) denotes the state of the network in
the form of a nonlinear discrete-time system, the (l + 1)-
by-1 vector u(k) denotes the input (including bias) applied
the network, and the p-by-1 vector y(k) denotes the output
of the network. The dynamic behavior of the network,
assumed to be noise free, is described by [11]

x(k + 1) = ϕ(Wx(k)x(k) + Wu(k)u(k))
= ϕ(W(k)z(k)) (1)

y(k) = Cx(k + 1) (2)

where Wx(k) is a q-by-q matrix, Wu(k) is a q-by-(l+1)
matrix, C is a p-by-q matrix; and ϕ : R

q → R
q is a

diagonal map. The two separate weight matrices can be
merged into a whole weight matrix W(k) with q-by-(q +
l + 1) dimension, that is,

W(k) = [Wx(k) Wu(k)] (3)

and the (q + l + 1)-by-1 vector z(k) can be defined as

z(k) =
[

x(k)
u(k)

]
(4)

where x(k) is the q-by-1 state vector and u(k) is (l +
1)-by-1 input vector. The first element of u(k) is unity,
which is the bias input, and in a corresponding way, the
first column of Wu(k) is bias terms applied neurons. The
dimensionality of the state space, namely q, is the order
of the system. Therefore the state-space model of Fig. 1
is an l-input, q-output recurrent model of order q. Eq. (1)
is the process equation of the model and Eq. (2) is the
measurement equation. The process equation (Eq. (1)) in
the state-space description of the network is rewritten in
the following form:

x(k + 1) =

ϕ(wT
1 (k)z(k))

ϕ(wT
2 (k)z(k))

...
ϕ(wT

q (k)z(k))

 (5)

where ϕ(·) is an activation function, and the (q + l + 1)-
by-1 weight vector wi(k), which is connected to the ith
neuron in the recurrent network, corresponds to the ith
column of the transposed weight matrix WT (k).

3. RTRL ALGORITHM FOR THE RNN

The RTRL algorithm for training the RNN is briefly
described in this section. To simplify the presentation of
the RTRL, we define matrices as follows:

• The derivative matrix of the state vector x(k) with
respect to the weight vector wi:

Λi(k) =
∂x(k)

∂wi(k − 1)
(6)

...

State
Vector
x(k)

Input
Vector
u(k)

...
...

...
..
.

z I-1

z I-1
Output
Vector
y(k)

 x (k+1)1

 x (k+1)i

 x (k+1)i+1

...

x (k+1)q

ϕ(.)

ϕ(.)

ϕ(.)

ϕ(.) y (k)p

y (k)1
Bias

Figure 1. A layout of fully connected recurrent neural network.

• Zi(k) is a q-by-(q + l + 1) matrix whose rows are
all zero, except for the ith row that is equal to the
transpose of vector z(k):

Zi(k) =

 0T

zT (k)
0T

← ith row i = 1, 2, · · · , q.

(7)
• Φ(k) is a q-by-q diagonal matrix:

Φ(k + 1) = diag
[
ϕ′(wT

1 (k)z(k)), ϕ′(wT
2 (k)z(k)),

· · · , ϕ′(wT
q (k)z(k))

]
. (8)

With these definitions, the following recursive equation Λi

for the neuron i can be obtained by differentiating Eq. (5)
with respect to wi and using the chain rule of calculus:

Λi(k + 1) = Φ(k + 1)
[
Wx(k)Λi(k) + Zi(k)

]
(9)

The objective of the learning process is to minimize a
cost function obtained by the instantaneous sum of squared
errors at time k, which is defined in terms of e(k) by

J (k) =
1
2

eT (k) e(k) (10)

where the p-by-1 error vector e(k) is defined by using the
measurement equation (Eq. (2)):

e(k) = ỹ(k)− y(k) (11)

where ỹ(k) denotes the desired output vector. The adjust-
ment for the weight vector of the ith neuron, ∆wi(k),
is:

∆wi(k) = η
∂J (k)
∂wi(k)

= ηCΛi(k)e(k), i = 1, 2, · · · , q. (12)

4. A DERIVATIVE-FREE KALMAN FILTER FOR

PARAMETER ESTIMATION

The Kalman filter has been a widely used filtering
strategy, for over 30 years in the control and signal
processing community. The EKF, which simply linearizes

all nonlinear models, could be a popular method, when
the liner Kalman filter is applied to nonlinear systems.
However, the EKF is difficult to implement, difficult
to tune, and only reliable for systems that are almost
linear on the time scale of the update intervals [9]. In
parameter estimation of neural networks, the EKF provides
first-order approximations to optimal nonlinear estima-
tion through the linearization of the nonlinear system.
These approximations can include large errors in the
true a posteriori mean and covariance of the transformed
Gaussian random variable, which may lead to suboptimal
performance and sometimes filter divergence [12]. The
UKF, first proposed by Julier and Uhlmann [10] and
further extended by Wan and van der Merwe [12],[13], is
an alternative to the EKF algorithm. The UKF provides
third-order approximation of process and measurement
errors for Gaussian distributions and at least second-order
approximation for non-Gaussian distributions [14]. The
UKF may have more accurate estimation features over
the EKF in some applications [9],[12]. In addition, the
UKF does not require the computation of Jacobians, for
linearizing the process and measurement equations. This
leads to a simpler implementation devoid of inverse matrix
errors.

A. Unscented Transformation

Foundation to the UKF is the unscented transformation
(UT). The UT is a method for calculating the statistics
of a random variable which undergoes a nonlinear trans-
formation [10]. Consider an L-by-1 random variable x
that is nonlinearly transformed to yield a random variable
y through a nonlinear function, y = f(x). In order to
calculate the statistics of y, a matrix χ of 2L + 1 sigma
vectors χi is formed as the followings:

χi =

x̄, i = 0
x̄ + (

√
(L + λ)Pxx)i, i = 1, . . . , L

x̄− (
√

(L + λ)Pxx)i−L, i = L + 1, . . . , 2L
(13)

where x̄ and covariance Pxx are the mean and covariance
of x, respectively, and λ = α2(L + κ) − L is a scaling
factor. The constant α determines the spread of the sigma
points around x̄; it is set to a small positive value, typically
in the range 0.001 < α < 1. The constant κ is a secondary
scaling factor that is usually set to 3−L. The sigma points
{χi}2L

i=0 are propagated through the nonlinear function

Yi = f(χi), i = 0, . . . , 2L. (14)

This propagation produces a corresponding vector set that
can be used to estimate the mean and covariance matrix of
the nonlinear transformed vector y. We can approximate
the mean and covariance matrix of y using a weighted
sample mean and covariance of the a posteriori sigma

points [12],

ȳ =
2L∑
i=0

Wm
i Yi (15)

Pyy =
2L∑
i=0

W c
i (Yi − ȳ)(Yi − ȳ)T (16)

where the weighting factors are given by

Wm
0 =

λ

L + λ

W c
0 =

λ

L + λ
+ (1− α2 + β) (17)

Wm
i = W c

i =
1

2(L + λ)
, i = 1, 2, . . . , 2L.

In the above equations, the superscripts m and c refer to
the mean and covariance, respectively. β is used to take
account of prior knowledge on the distribution of x, and
β = 2 is the optimal choice for Gaussian distributions.

B. On-Line Parameter Estimation by the UKF

To enable the Kalman filter for training the RNN, the
network’s behavior can be recast as the following nonlinear
discrete-time system :

w(k + 1) = w(k) + ω(k) (18)

y(k) = h (w(k), z(k)) + ν(k) (19)

where the nonlinear function h(·) is given by

h (w(k), z(k)) = Cϕ (w(k)z(k)) , (20)

and the weight vector w(k) is defined by

w(k) =

w1(k)
w2(k)

...
wq(k)

 (21)

where wi(k)(i = 1, 2, · · · , q) is the ith column of the
transposed weight matrix WT (k). Eq. (18), known as the
process equation, specifies that the state of the system
is given by the network’s weight parameter values w(k)
and is characterized as a stationary process corrupted by
process noise ω(k). The measurement equation, given in
Eq. (19), represents the network’s output vector y(k) as the
nonlinear function ϕ(·) of the weight vector w(k) and the
vector z(k) which include both the input vector u(k) and
the recurrent node activations x(k). This equation is buried
by random measurement noise ν(k). The process noise
ω(k) is typically characterized as zero-mean, white noise
with covariance given by E[ωiω

T
j] = δijQ(k)1. Similarly,

the measurement noise ν(k) is also characterized as zero-
mean, white noise with covariance given by E[νiν

T
j] =

δijR(k).

1δ denotes the Kronecker delta.

From the state-space model of the RNN given in equa-
tions (18) and (19), the cost function to be minimized in
the mean-squared error (MSE) sense is:

J(w) = e(k)T R−1(k)e(k) (22)

where the error vector e(k) is given in Eq. (11). If the
measurement-noise covariance R(k) is a constant diagonal
matrix, it cancels out in the algorithm, and therefore can
be set arbitrarily. The process-noise covariance Q(k) =
E[ω(k)ω(k)T] affects the convergence rate and the track-
ing performance. We define R(k) and Q(k) as

R(k) = µI (23)

Q(k) = (λ−1
RLS − 1)P(k) (24)

where µ can be set arbitrarily, and λRLS ∈ (0, 1] is
often referred to as the forgetting factor, in recursive least-
squares (RLS) algorithms [14].

The UKF effectively evaluates the Jacobian through its
sigma-point propagation, without the need to perform any
analytical derivative calculation. Specific equations for the
RNN using the UKF algorithm are summarized below. The
weight vector in the network and the covariance matrix are
initialized with

ŵ(0) = E [w] (25)

P(0) = E[(w − ŵ(0))(w − ŵ(0)T]. (26)

The sigma-point calculation is given by

Γ(k) = (L + λ)(P(k) + Q(k)) (27)

W(k) = [ŵ(k), ŵ(k) +
√

Γ(k), ŵ(k)−
√

Γ(k)] (28)

D(k) = h(W(k), z(k)) (29)

y(k) = h(ŵ(k), z(k)). (30)

The measurement-update equations are

Pyy(k) =
2L∑
i=0

W c
i (Di(k)− y(k))(Di(k)− y(k))T

+R(k) (31)

Pwy(k) =
2L∑
i=0

W c
i (Wi(k)− ŵ(k))(Wi(k)− ŵ(k))T

(32)

Υ(k) = Pwy(k)P−1
yy (k) (33)

ŵ(k + 1) = ŵ(k) + Υ(k)e(k) (34)

P(k + 1) = P(k)−Υ(k)Pyy(k)ΥT (k). (35)

The weight vector of the RNN is updated on-line with the
above equations.

5. NONLINEAR CHANNEL EQUALIZATION

A. Communications System Model

A general model of a digital communications system
with a decision feedback equalizer (DFE) is displayed
in Fig. 2. It includes both linear and nonlinear distor-
tions. A sequence, {s(k)}, extracted from a source of
information is transmitted, and the transmitted symbols
are then corrupted by channel distortion and buried in
additive white Gaussian noise (AWGN). The channel with
nonlinear distortion is modelled as

r(k) = g(r̂(k)) + ν(k)

= g

(
N−1∑
i=0

his(k − i)

)
+ ν(k) (36)

where g(·) is a nonlinear distortion, hi is the linear finite
impulse response of the channel with length N , s(k)
is the sequence of transmitted symbols, and ν(k) is the
AWGN with zero mean and variance σ2

0 . The DFE is
characterized by the three integers, m, n and d, known as
the feedforward order, feedback order, and decision delay,
respectively. The inputs to the DFE therefore consist of the
feedforward inputs r(k) = [r(k), r(k−1), · · · , r(k−m+
1)]T and feedback inputs u(k) = [u(k − 1), · · · , u(k −
n)]T . The output of the DFE is y(k) and it is passed
through a decision device to determine the estimated
symbol ŝ(k − d). It is sufficient to use feedback order
n [15],[16],

n = N + m− d− 2 (37)

since the transmitted symbols contributing to decision of
the equalizer at time k are given by s(k) = [s(k), s(k −
1), . . . , s(k−m−N +2)]T for the feedforward order m =
d + 1. The decision-feedback recurrent neural equalizer
(DFRNE) using the fully connected RNN is used as the
DFE in the following experiments. When the RNN is used
as the DFRNE, the input vector u(k) includes the received
signals from the channel and the decision feedback inputs,
as well as the bias input.

B. Experiment 1: Convergence Rate

Channel Model 1: A linear channel model with a
nonminimum phase has the transfer function:

H1(z) = 0.3482 + 0.8704z−1 + 0.3482z−2

which is generally used for channel equalization in the
literature [2],[3],[17]. The nonlinear channel is modeled
as

r(k) = tanh(r̂(k)) + ν(k)

where a nonlinearity is applied to the output of the linear
channel. This nonlinear distortion of the channel may take
into account saturation effects due to transmission ampli-
fiers. The learning rate of the RTRL is chosen empirically
as η = 0.1 and this value ensures a stable convergence.

Decision Feedback Equalizer Decision

Source of
Information

Linear
Filter

Nonlinear
Function +

1−z 1−z

)(ks

)1(−kr)1(+−mkr

)(kr...

)(ky)(ˆ dks −

1−z 1−z...)(ku
)1(−ku
1−z

)(dks −

)(kv

)(nku −)2(−ku

))(ˆ(krg)(ˆ kr

Channel

Training

Figure 2. A communications system with decision feedback equalizer.

The parameters for the UKF are chosen empirically as
α = 0.1, µ = 0.5 and λRLS = 0.99. The decision delay
is d = 2.

Convergence properties of the DFRNEs used in the
simulations are depicted in Fig. 3, with log and linear
scales of MSE values. These results are ensemble-averaged
over 200 independent runs. Each run has a different
BPSK random sequence and random initial weights for the
DFRNEs, and is performed at a SNR of 14 dB. The UKF
outperforms the RTRL in terms of convergence speed. For
instance, MSE value of the UKF reaches around −50 dB
after 103 training symbols, while MSE value of the RTRL
reaches −27 dB. As shown in Fig. 3(b), the UKF reaches
steady state after 100 iterations. These results confirm
that the UKF algorithm provides an improvement with
regard to both the convergence speed and the steady-state
MSE. Fig. 4 shows the bit-error rate (BER) performance,
averaged over 100 independent trials. In each trial, the
first 100 symbols are used for training and the next 104

symbols are used for testing. The weight vectors of the
DFRNEs are frozen after the training, and the transmission
symbols are evaluated at the decision-directed mode. The
UKF attains about 1.3 dB of improvement over the RTRL
at 10−4 of BER. We have observed that the RTRL requires
more than 200 training symbols to achieve the same BER
performance of the UKF.

C. Experiment 2: Tracking Capability

Channel tracking performance of the DFRNEs is tested
for a time-varying channel, because tracking is a steady-
state phenomenon, in contrast with convergence which is
a transient phenomenon [14]. A nonlinear channel with
time-varying coefficients is considered here.

Channel Model 2: A time-varying discrete-time channel
is described by

H2(z) = 1.0 + a1(k)z−1 + a2(k))z−2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−80

−70

−60

−50

−40

−30

−20

−10

0

Iterations (k)

M
S

E
 (

dB
)

RTRL

UKF

(a) y-axis: Log scale (10 log10(MSE))

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Iterations (k)

M
S

E

RTRL

UKF

(b) y-axis: Linear scale

Figure 3. Convergence properties for Channel Model 1 under
SNR=14dB.

The nonlinear distortion employed in Channel Model 1
is applied to this channel. This channel model represents
a nonlinear time-varying channel with ai(k)(i = 1, 2)
varying with time k. These time-varying coefficients are
generated by convolving white Gaussian noise and a But-
terworth filter response. The bandwidth of the Butterworth
filter determines the relative bandwidth (fading rate) of the
channel. A nominal 2 kHz channel with a 2400 symbols/s
sampling rate is assumed, and a second-order Butterworth
filter having a 3 dB bandwidth of 0.5 Hz is used [18].

The parameters are set to the same values as those used
in Channel Model 1. Fig. 5(a) shows the time-varying
coefficients a1(k) and a2(k) drawn for a fading rate of
0.5 Hz. The DFRNEs are in training phase until k = 2000
and then they are switched to tracking phase at k = 2001.
Unlike simulations for Channel Model 1, the DFRNEs still

4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

RTRL
UKF

Figure 4. BER performance for Channel Model 1 using 100 training
symbols.

update their weight vectors during testing (tracking) phase
in order to track fading characteristic of the channel. In
Fig. 5(b), the channel tracking property is evaluated in
both training phase and decision-directed tracking phase
at a SNR of 15 dB. As expected, the UKF provides
faster channel tracking capability than the corresponding
RTRL. This result verifies that the MSE value of the UKF
is much lower than that of the RTRL for both training
and tracking phases. Fig. 6 shows eye diagrams during
decision-directed tracking mode for 2 × 103 symbols.
The equalized outputs of the UKF have no spots near
the decision boundary. In contrast, some of the RTRL’s
equalized outputs are located in the decision boundary,
which creates wrong symbol detections.

D. Comparison of Computational Complexity

We represent the computational complexity in terms of
the number of states (q) and weights (L). The computa-
tional time of the RTRL increases on the order O(L +
q), and that of the UKF increases on the order O(L3)
[11],[12]. Although the UKF is more expensive than the
RTRL in computational complexity, it leads to faster
convergence rates, lower MSE levels, and smaller BERs,
compared to the RTRL. There is an implementation versus
complexity trade-off in using the UKF. As the network
size grows, the computational expense required to train
the transmitted symbols also increases. Fortunately, the
DFRNE employing the UKF uses only a small number of
neurons, and also needs relatively short training (or pilot)
symbols.

6. CONCLUSIONS

A derivative-free Kalman filter, called the UKF, was de-
rived for on-line parameter estimation of recurrent neural
networks, and its performance was tested through channel

0 500 1000 1500 2000 2500 3000 3500 4000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Iterations (k)

C
ha

nn
el

 C
oe

ffi
ci

en
ts

a
2
(k)

a
1
(k)

(a) Time-varying coefficients at 0.5Hz.

0 500 1000 1500 2000 2500 3000 3500 4000
−120

−100

−80

−60

−40

−20

0

Iterations (k)

M
S

E
 (

dB
)

RTRL

UKF

Training Mode Tracking Mode

(b) Convergence at SNR=15dB.

Figure 5. Channel tracking capability for Channel Model 3.

equalization experiments with ISI and nonlinear distor-
tions. In regard of convergence rate, the UKF is superior
to the RTRL, which only uses first-order information in
the learning process. This means that the fast conver-
gence rate of the UKF requires less training symbols and
leads to better BER and pattern classification performance
than the RTRL technique. In terms of channel tracking
ability compared with the RTRL, the UKF algorithm has
shown rapid tracking property for the channel with time-
varying coefficients in both the training mode and the
decision-directed tracking mode. The superiority of the
UKF algorithm compared with the RTRL was consistent
in convergence rate, channel tracking capability, as well
as BER performance.

Regardless of the attractive performance of the UKF,
there are some issues to be researched: the computational
complexity and parameter selection. In terms of the com-

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

r(k+1)

r(
k)

Received Signals

(a) Received Signals.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y(k+1)

y(
k)

Outputs of RTRL

(b) Outputs of RTRL.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

y(k+1)

y(
k)

Outputs of UKF

(c) Outputs of UKF.

Figure 6. Eye diagrams for Channel Model 2 during tracking mode
(SNR=15dB).

putational cost, the UKF algorithm is relatively expensive.
Reducing computational cost for the UKF would be a
further research topic. The UKF is more sensitive to initial
parameter values to be set than the RTRL. Developing a
systematical method for parameter selection of the UKF
is still an open question for researchers.

REFERENCES

[1] A. F. Atiya and A. G. Parlos, “New results on recurrent network
training: Unifying the algorithms and accelerating convergence,”
IEEE Transactions on Neural Networks, vol. 11, pp. 697–709, May
2000.

[2] G. Kechriotis, E. Zervas, and E. S. Manolakos, “Using recurrent
neural networks for adaptive communication channel equaliza-
tions,” IEEE Transactions on Neural Networks, vol. 5, pp. 267–278,
March 1994.

[3] R. Parisi, E. D. Di Claudio, G. Orlandi, and B. D. Rao, “Fast
adaptive digital equalization by recurrent neural networks,” IEEE
Transactions on Signal Processing, vol. 45, pp. 2731–2739, Novem-
ber 1997.

[4] S. Ong, C. You, S. Choi, and D. Hong, “A decision feedback
recurrent neural equalizer as an infinite impulse response filter,”
IEEE Transactions on Signal Processing, vol. 45, pp. 2851–2858,
November 1997.

[5] H. R. Jiang and K. S. Kwak, “On modified complex recurrent
neural network adaptive equalizer,” Journal of Circuits, Systems,
and Computers, vol. 11, no. 1, pp. 93–101, 2002.

[6] B. Hammer and J. J. Steil, “Tutorial: Perspective on learning with
RNNs,” in Proc. of the European Symposium on Artificial Neural
Networks (ESANN), pp. 357–369, 2002.

[7] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation,
vol. 1, pp. 270–280, 1989.

[8] P. J. Werbos, “Backpropagation through time: What it does and
how to do it,” Proceedings of the IEEE, vol. 78, pp. 1550–1560,
October 1990.

[9] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method
for the nonlinear transformation of means and covariances in filters
and estimators,” IEEE Transactions on Automatic Control, vol. 45,
pp. 477–482, March 2000.

[10] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman
filter to nonlinear systems,” in Proceedings of AeroSence: The 11th
International Symposium on Aerospace/Defence Sensing, Simula-
tion and Controls, 1997.

[11] S. Haykin, Neural Networks: a Comprehensive Foundation, 2nd Ed.
Upper Saddle River, NJ: Prentice Hall, 1999.

[12] E. A. Wan and R. van der Merwe, “The unscented Kalman filter,”
in Kalman Filtering and Neural Networks, Edited by S. Haykin.
John Wiley and Sons, Inc., 2001.

[13] E. A. Wan and R. van der Merwe, “The unscented Kalman filter
for nonlinear estimation,” in Proceedings of the IEEE 2000 Adap-
tive Systems for Signal Processing, Communications and Control
Symposium (AS-SPCC), pp. 153–158, 2000.

[14] S. Haykin, Adaptive Filter Theory, 4th Ed. Upper Saddle River,
NJ: Prentice Hall, 2002.

[15] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive Bayesian
equalizer with decision feedback,” IEEE Transactions on Signal
Processing, vol. 41, pp. 2918–2927, September 1993.

[16] M. Solazzi, A. Uncini, E. D. Di Claudio, and R. Parisi, “Complex
discriminative learning Bayesian neural equalizer,” Signal Process-
ing, vol. 81, pp. 2493–2502, 2001.

[17] S. Chen, G. J. Gibson, B. Mulgrew, and S. McLaughlin, “Adaptive
equalization of finite nonlilear channels using multilayer percep-
trons,” Signal Processing, vol. 20, pp. 107–119, 1990.

[18] C. Cowan and S. Semnani, “Time-variant equalization using a novel
non-linear adaptive structure,” International Journal of Adaptive
Control and Signal Processing, vol. 12, no. 2, pp. 195–206, 1998.

