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Abstract- The inter-neural connectivity plays a major role
in the various regions of the brain affecting their functional-
ity. In this regard, the knowledge of the dendritic interconnect
structure is imperative. There are quite a few experimental
approaches currently available to explore the dendritic con-
nectivity which have their own shortcomings. On the other
hand, a theoretical approach would be helpful in developing
simulation and fault models for the dendritic tree structure
which has wide applications in research and diagnostic pur-
poses. In this paper, we propose a powerful approach based
on a randomized algorithm, to predict the dendritic tree struc-
ture connectivity. This approach involves two finite steps, one
dealing with the topological aspects and the other dealing with
the fixing up of the physical length of each of the dendritic
branches. The randomized algorithm employed is the simu-
lated annealing[kigv83] and it is powerful in the sense that it
can overcome local minima to achieve global minima to ob-
tain near optimal solution. We also propose in this paper
an integrated approach in which simulated annealing[kigv83]
algorithm is simultaneously employed on both the dendritic
structure prediction and the length prediction with dynamic
scheduling[vanaa87]. This ensures faster convergence towards
optimal solution. Extensive simulation have been carried out
and results are presented demonstrating the efficacy of the
method.

Index terms- algorithm, biological neural networks, cable the-
ory, dendrites, dendritic prediction, morphology, simulated
annealing, unrestricted partition.

1 Introduction

Understanding the brain’s function, requires the knowledge
of inter-neural connectivity. These connections are estab-
lished through Dendrites and the Telodendria. The dendrites
receive the vast bulk of cell’s synaptic input and perform
sub-linear summation. The telodendria is complementary
to dendrites, having divergent structure. For some neu-
ron types, spatially extended dendritic trees exist to pro-
vide space for a large number of quasi-independent den-
dritic compartments where the synaptic input to each com-
partment is boosted by an expansive non-linearity. The con-
nectivity is complex. This can be appreciated by the fact
that a microliter of a cortex contains approximately105

neurons,109 synapses and 4kms of axons, with the axons
and the dendrites together occupying (3/5)th of the neuropil
volume[chk2002]. To understand the overall information
processing in any region of the brain it is imperative that we
to know the exact connectivity across neurons. However it
is very difficult to access most neurons and determine their
dendritic structures precisely. Experimental approaches to
determine dendritic structures include imaging techniques,
neuron staining techniques, radioactive tracers and voltage
sensitive dyes. Each of these techniques have their own
advantages and disadvantages. Imaging techniques have a
comparatively low resolution while staining techniques like
silver staining are hazardous and less compatible with mass
spectroscopy. Colloidal Coomassie Staining has a detection
limit 10 to 50 times lesser than silver staining whereas Nissl
stains detect only those portion of the cell which contained
large amounts of RNA. Radioactive tracing is an invasive
technique that leads to degeneration of cell bodies. How-
ever, these techniques are employed by experimental neuro-
scientists.

This paper embraces a theoretical approach towards



the investigation of dendritic structural connectivity. The-
oretical prediction of dendritic structure is a Non-
Polynomial(NP) complete[hor78] problem eluding conver-
gence to a near optimal solution. This necessitates evo-
lution of algorithmic techniques to determine the den-
dritic structures. Here application of a randomized algo-
rithm, the simulated annealing[kigv83] is proposed to de-
termine the complex dendritic structures. A two step ap-
proach, SPLP(Structure Prediction and Length Prediction)is
adopted with the first step involving the determination of the
connectivity details and the second, for fixing the individ-
ual branch lengths to match the observed input-output volt-
age transients which is dealt in section 3. Section 5 deals
with a more powerful approach InSPLP(Integrated Struc-
ture Prediction and Length Prediction)integrating both the
processes is evolved to achieve faster convergence towards
a near optimal solution.

2 Mathematical Modeling of Arbitrary Den-
dritic Trees

The voltage transients at any point in the dendritic tree
is modeled as a system of Partial Differential Equations
(PDEs) derived from cable theory[tuckwell88]. By Laplace
Transformation, these PDEs are transformed to s-domain.
The boundary conditions give rise to a system of simulta-
neous equations which is solved by matrix methods. The
following is a general set of equations for an arbitrary den-
dritic tree:

∂Vj,k(x, t)
∂t

=
∂2Vj,k(x, t)

∂x2
− Vj,k(x, t) + Ij,k(x, t) (1)

j = 1 . . . n , k = 1 . . . kj for each j, where j is the node
number andkj is the total number of converging branches
at the node j,(refer fig.1)
and the boundary conditions are

∂Vj,k(0, t)
∂x

= 0 (2)

where j is the node upon which thekth input con-
verges(refer fig.1).

Vj,1(Lj,1, t) = Vj,2(Lj,2, t)
= ..

= Vj,kj
(Lj,kj

, t)
= Vjj,p(0, t) (3)

where j is any node from which a branch converges to jj, p
is thepth converging branch to the node jj(refer fig.1).
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∂x
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Vjj,p(x, t) (4)

where j is any node from which a branch converges to jj,
p is thepth converging branch to the node jj,rm,n is the
axial resistance of thenth branch converging on themth

node(refer fig.1).

∂Vj,1(Lj1, t)
∂x

= 0 (5)

where j is the output terminal node. The structure of a

Figure 1: Model Representation for the generic dendritic
equations:j, jj are nodes.

Figure 2: Incidence matrix representation and its interpreta-
tion as structure.

dendritic tree is represented by incidence matrix as in graph
theory[nar74]. The dendritic branches form the edges while
the dendritic nodes form the vertices. Incidence matrix
representation for an arbitrary tree with 5 inputs is given
in fig.2. The rows correspond to the branches while the
columns correspond to the nodes of the tree. The given tree
thus has 8 dendritic branches and 3 nodes. The incidence
matrix represents only the arborescence of the dendritic tree
and does not convey details about the physical length of in-
dividual branches.



Step 1 : Obtain the number of inputs
as N.

Step 2 : Determine the unrestricted
partitions of all numbers
from N to 2. Let them be
represented as levels from
N to 2 respectively.

Step 3 : Take the first partition
of N and find the number of
summands.

Step 4 : Go to that level that
equals the number of
summands.

Step 5 : Take the partition at that
level and find the number of
summands.

Step 6 : Repeat the steps 4 and 5
until the number of
summands is two. This
determines one tree
structure.

Step 7 : Now perform the entire
procedure exhaustively
to find all combinations
for every partition of N.

Step 8 : Stop.

Table 1: Structure prediction algorithm for the SPLP ap-
proach

3 Structural and Length Prediction Algorithm
for Dendritic Tree-the SPLP approach

In this paper two approaches towards dendritic tree predic-
tion are put forth. The first, SPLP involves a two step pro-
cess while the second, InSPLP marries the two process into
an integrated approach. The following sub-sections are de-
voted towards discussing the first approach while the sub-
sequent section presents an algorithm for the second ap-
proach.

3.1 Structural Prediction

The prediction of the dendritic tree structure does not lead
to a unique solution due to its Non-Polynomial (NP)[hor78]
characteristics. Given the number of inputs to be N, an
algorithmic approach is devised to predict arbitrary den-
dritic tree structures. The number of ways of forming
the first level of nodes is in fact a problem in unrestricted
partitioning[apos98] of N into positive integers i, such that
for all i, 1 ≤ i ≤ N-1. This step is carried out recursively
till the final node is reached. Thus partition matrices (refer
fig.3) are obtained. The algorithm is given in Table 1.

Figure 3: Structural prediction flow:from partition matrix to
incidence matrix to structure interpretation.

3.2 Length Prediction

The determination of the structural geometry involves the
prediction of length as well. In the previous subsection we
had obtained the dendritic structural solution space. The
branch lengths of the obtained dendritic structures are pre-
dicted employing simulated annealing[kigv83] to match the
observed transient input and output signals. The dendritic
branch is modeled as a Linear Time Invariant (LTI) system
and the phase response corresponding to each input are de-
termined. Path length for each input is determined from
the pseudo-propagation velocity(eqn.(6)) and their respec-
tive phase response to achieve faster convergence and better
accuracy. The algorithm is presented in Table.2.

v =

√
d

RmRiC2
m

(6)

where
d - diameter of the cable
Ri - axial resistance
Rm - membrane resistance.

Figure 4: input currents at input terminals 1,2 for the refer-
ence structure in fig.7

4 An Integrated Approach for Predicting Den-
dritic Tree Structure along with their Branch
Lengths(InSPLP)

The SPLP procedure for dendritic tree prediction is
suitable for small number of inputs due to the NP
completeness[hor78] of the structure prediction process.



obtain individual path lengths from
each input to the output;

initial state length = L;
V0 = output required;
while(not all structures are

completed)
begin

initial state_structure = S;
initial state_length = L;

//corresponds to temperature
//in the simulated
//annealing algorithm.

while(d > optimum value)
begin

while(d < d_pre)
begin

L’ = neighbour of L such
that total path
length condition is

satisfied;
V = output voltage for

the state(L,S);
d_pre = d;
d = function of

correlation(V,V0);
//d corresponds to energy
//in the simulated
//annealing algorithm.
//problem is to minimize d.
prob = min(1,exp{-d/L})
if (random(0,1) >= prob)

L = L’;
end

end
update L;

end
output best solution;

end

Table 2: Simulated annealing[kigv83] algorithm for Length
prediction through the SPLP approach. Path length were
obtained using fig 7, output voltage (fig.6) was obtained by
using a reference structure with individual branch lengths
with input currents (fig.4,5,6)

Figure 5: input currents at input terminals 3,4 for the refer-
ence structure in fig.7

Figure 6: input currents at input terminals 5, voltage at the
output terminal for the reference structure in fig.7

Thus an integrated approach (InSPLP) for combining both
the structure prediction and branch length prediction is
proposed towards obtaining a near-optimal solution with
a faster convergence. The path length constraint is de-
termined as in the case of the SPLP algorithm using
eqn.6. The InSPLP algorithm(table 3) employs dynamic
scheduling[vanaa87] to incorporate simultaneous structure
as well as length prediction as opposed to the sequential
prediction of structure followed by length in the SPLP ap-
proach . Superior performance of the InSPLP approach is
attributed to the direct convergence to a single optimal so-
lution without predicting all the structures separately as op-
posed to the SPLP. It may be recalled that in the SPLP ap-
proach we obtain optimal branch lengths for all the possible
structures permissible for a given number of inputs. The
algorithm for InSPLP is given in Table.3.

The structure prediction part of the SPLP approach is
NP complete[hor78] with respect to the number of inputs to

Figure 7: Phase plot for the reference structure (figure in
the right). The length of individual branches is in terms of
λ, the electrotonic length chosen to be 0.01cm.



obtain path length from each input to
the output;

Input to the tree defined;
Initial state :

Initial length = L;
Initial structure = S; T_L = L;

//corresponds to temperature 1 in the
//multi-temperature simulated annealing
//algorithm.
T_S = S;
//corresponds to temperature 2 in the
//multi-temperature simulated annealing
//algorithm.
V0 = Required output voltage waveform;
count = 1;
V= Output voltage for the state(L,S);
d = function of correlation(V,V0);

//d corresponds to energy in the
//simulated annealing algorithm.
//problem is to minimize d

while (d > optimum value )
begin

while(d < d_pre)
begin

if(count == 1)
L’ = neighbouring solution of L

such that the path length
condition is satisfied;

S’ = S;
end
if (count == 0)

S’ = neighbouring solution of S;
L’ = L;

end
d_pre = d;
V = output voltage for state(L’,S’);
d = f(correlation(V,V0));
prob =

min(1,exp(-d/T_L),exp(-d/T_S))
if ( random(0,1) >= prob)

y =
min(exp(-d/T_L),exp(-d/T_S))
if ( y == exp(-d/T_L))

count = 0;
end
if ( y == exp(-d/T_S))

count = 1;
end

end
end

end\\

Table 3: Simulated annealing algorithm for Integrated
Structure Prediction and Length Prediction(InSPLP). Path
length were obtained using fig 7, output voltage (fig.6)
was obtained by using a reference structure with individual
branch lengths with input currents (fig.4,5,6)

the tree structure. This problem of NP completeness[hor78]
is overcome in the InSPLP approach. The InSPLP ap-
proach thus offers faster convergence towards the solution
making it suitable for predicting connectivity in large neu-
ral networks including synaptic contacts. Predicting the
structure of an entire neural assembly may need a differ-
ent partitioning approaches involving multiple scheduling
parameters which may be difficult to model. The com-
putation intensiveness of the problem necessitates a hard-
ware based solution. To meet this end the DDNAM Array
Architecture[ψnam2] proposed by the authors are under in-
vestigation for parallel simulation of these methodologies.

5 Simulation Results

This section presents the simulation results for SPLP and
InSPLP approach.

Figure 8: Intermediate results of the simulation flow from
the partition matrix to the incidence matrix to the final
predicted structure having optimized branch lengths for 4
out of 12 (of the remaining 8, 4 are in fig.9 and 4 are in
fig.10)distinct structures using SPLP approach.



5.1 Simulation Results for the SPLP approach

The simulation results presented were performed for a five
input tree. For five inputs twelve distinct structures are
possible and permutation of the terminal input locations
further yields 246 possibilities. Here simulation results
for the 12 distinct structures are presented in figures (8),
(9) and (10). The results of the NEURON Simulation
Environment[hica97] is taken as the experimental standard.
The dendritic tree used as reference for the simulation is
shown in fig(7). The output signals obtained from the
SPLP algorithm are correlated with the output simulated
on NEURON[hica97], when this correlation is best the cor-
responding matrix yields the predicted structure. The fig-
ures (8), (9) and (10) depict the optimized length values for
each branch of the predicted structures obtained using the
SPLP procedure. Each figure gives the intermediate results
of the simulation flow from the partition matrix to the in-
cidence matrix to the final predicted structure having opti-
mized branch lengths. All the dimensions are in terms of
electrotonic length,λ, which is chosen to be 0.01cm.

Figure 9: Intermediate results of the simulation flow from
the partition matrix to the incidence matrix to the final
predicted structure having optimized branch lengths for 4
out of 12 (of the remaining 8, 4 are in fig.8 and 4 are in
fig.10)distinct structures using SPLP approach.

5.2 Simulation Results for the InSPLP approach

The simulation results presented for the InSPLP were per-
formed for a five input tree as in the SPLP approach. Except
for the algorithm of the InSPLP (table 3) the simulation pro-
cedure is same as described for the SPLP approach. Here
only a single best solution is obtained due to the nature of
the InSPLP algorithm. Figure (11) depicts the optimized
length values for each branch of the predicted structure ob-
tained using the InSPLP procedure. The figure gives the in-
termediate results of the simulation flow from the partition
matrix to the incidence matrix to the final predicted struc-
ture having optimized branch lengths.

Figure 10: Intermediate results of the simulation flow from
the partition matrix to the incidence matrix to the final
predicted structure having optimized branch lengths for 4
out of 12 (of the remaining 8, 4 are in fig.8 and 4 are in
fig.9)distinct structures using SPLP approach.

6 Conclusion

This paper presents a simulated annealing[kigv83] based
methodology for predicting the complex morphology of
dendritic structures. We have presented two simulated
annealing[kigv83] based algorithms, SPLP and the InSPLP.
It has been shown that InSPLP is more efficient with re-
spect to solution convergence and also easily amenable for
extending the same technique for predicting complex neural



Figure 11: Intermediate results of the simulation flow from
the partition matrix to the incidence matrix to the final pre-
dicted structure having optimized branch lengths using In-
SPLP approach.

assembly including the synaptic contacts. Extensive sim-
ulation results are presented to demonstrate the capability
of the presented methodologies for predicting the dendritic
morphology. The experimental structure used as reference
was simulated using the NEURON[hica97] software pack-
age. The accuracy of both the presented approaches are
very well brought out by correlating the simulation results
namely the output signal variation with that of the output
simulated by the NEURON[hica97]. It is our earnest opin-
ion that these prediction algorithms will be useful and also
can supplement to a large extent, the structural prediction
carried out using imaging techniques which have certain
drawbacks. Further the most important application of the
prediction methodologies is in fault simulation. The pre-
dicted structure can be altered according to the requirements
of fault simulation and the behaviour of the neural assembly
can be investigated.
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