
Reverse AdaBoost Algorithm to do Segmental Linear
Regression

Xunxian Wang, David Brown

Intelligent systems and fault diagnostic group, University of Portsmouth, UK
Email: xunxian.wang@port.ac.uk

Abstract: An algorithm is proposed to separate
different linear part from each other. It can be
used in the linear dynamic systems with small
non-linear features such as dead zone and
saturation, which is very popular in DC motor
systems and vector converter controlled AC
motor systems. With the proposed algorithm,
the working linear part can be modelled without
the influence of the nonlinear features.

Keywords: Linear regression, Statistical
learning, Boosting, Clustering, Function
approximation; System modelling; Data mining

1. Introduction

As an easy and useful tool in data analysis and
data mining, linear regression occupies an
important position in data analysis. This paper
shows a research result on multi-segmental
linear regression by using boosting method.

Motor systems, both of DC and AC motors,
have a very important position in the industry
field. Due to its linear feature, DC motors have
been used a lot in high accurate speed control
systems. In this kind of systems, precisely
modelling the motor system becomes a key
technique, which can determine the
performance of the whole system. The
development of the microprocessor technique
and power electronic technique make the
availability of the vector converter. Based on
the converter, the combined system of vector
controller and AC motor becomes a linear
system. So modelling linear system precisely is
still a useful technique.

As an important boosting algorithm, AdaBoost
has obtained lot of attention in these days. Not
only this algorithm can be used in combining
thumb rules into a better one, but also it can be
used in many different areas as shown in [1]. In
system modelling, by given different samples
different weights, the boosting algorithm can
adjust the regression line goes through the
middle of the data.

In this paper, reversed AdaBoost algorithm is
used in multi-segmentation linear system

modelling. While normal AdaBoost algorithm
give the data points near to the current
regression line less weight, far points more
weight, the reverse algorithm give near more
weight and far less and by this the regression
line can be controlled to go through only one
part of the multi-segmented system.

The whole paper is consisted of five parts. In
section 2 the basic algorithm of the methods is
shown; while in section 3 the result is given and
the section 4 give some improvement methods
for the algorithm. A conclusion is given in
section 5.

2. Description of boosting linear
regression

2.1 The basic principle of boosting

Boosting is a method that can be used to
combine a number of available rules into one
single rule. One of the popular boosting
algorithms is AdaBoost[1], which can be
described in pseudo-code as follows

Input:

A sequence of N labelled examples
><),(),...,,(11 NN yxyx

Distribution D over the N examples.
Weak learning algorithm
Weaklearn[1]
Integer T specifying number of
iterations

Initialise:
The weight vector for)(1 iDwi =

Ni ,...,1=

Do for Tt ,...,1=
Set

1.
∑ =

= N

i
t
i

t
t

w
wp

1

r
r

2. Call Weaklearn, and provide it
with the distribution ; get back

a hypothesis .

tpr

]1,0[: →Xht

mailto:xunxian.wang@port.ac.uk

3. Calculate the error of

∑ =
−=

N

i iit
t
itt yxhph

1
)(: ε

4. Set
t

t
t ε

ε
β

−
=

1

5. Set the new weight vector to be
iit yxh

t
t
i

t
i ww −−+ =)(11 β (1)

The AdaBoost algorithm above is used to boost
the performance of weak learning algorithms.
The advantage of this method is that the
accuracy of the final hypothesis produced
depends on the accuracy of all the hypotheses
returned by WeakLearn[1] and so is able to
fully exploit the power of the weak learning
algorithm. The goal of the algorithm is to find a
final hypothesis with low error relative to a
given distribution D over the training examples.
Initially this D is appointed as NiD 1)(= .
The algorithm maintains a set of weights

over the training examples. On iteration t a
distribution is computed by normalising
these weights. This distribution is fed to the
weak learner WeakLearn which generates a
hypothesis that has small error with respect
to the distribution. Using the new hypothesis

, the boosting algorithm generates the next

weight vector , and process repeats.

tw
tp

th

th
1+tw

In above algorithm, the weight related to the big
loss example will increase while the low loss
example will decrease.
By using the above in an approximation
problem, the above algorithm can force the
approximation function to go through the
middle of the training data [1].

2.2 The algorithm of linear
regression with boosting

In linear system, the system input and output
relationship can be represented by

bxaxf +=
rr')((2)

Where T
naaaa),,,(21 L

r
= ,

T
nxxxx),,,(21 L

r
= . To do the linear

regression by using least square method as
follows

∑
=

−=
N

i

ii yxfE
1

2))((r
 (3)

Where is the training
data.

Niyx ii ,,1),,(L
r

=

The following formula can be obtained

(4)

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑

∑

∑

∑∑

=

=

−

=

==
N

i
i

N

i
i

i

N

i

i

N

i

i
N

i

ii

y

yx

x

xxx

b
a

1

1

1

1

11

'

1)'(

)(r

r

rrr
r

However, many linear systems especially linear
control system aren’t ideal linear. Normally
there are three linear parts in the system; they
are working part, saturation part and head zero.
To represent the whole system feature, all the
three parts needs to be modelled which needed
three linear sub-systems.
Linear regression method shown above can’t
give a satisfied answer to the above question.
By using boosting algorithm shown in 2.1, a
good result can be obtained.
First, the cost function (3) is modified as

∑∑
==

−+=−=
N

i

iii
N

i

iii ybxayxfE
1

2

1

2])'[())((rrr δδ

 (5)

Where with will

be determined by the boosting method.

Nii ,,1, L=δ 1
1

=∑
=

N

i

iδ

By using

⎪
⎩

⎪
⎨

⎧

=
∂
∂

=
∂
∂

0

0

b
E
a
E

 (6)

The following results can be obtained

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑

∑

∑∑

∑∑

=

=

−

==

==
N

i
i

i

N

i
i

ii

N

i

i
N

i

ii

N

i

ii
N

i

iii

y

yx

x

xxx

b
a

1

1

1

11

11

'

)'(

)(

δ

δ

δδ

δδ r

r

rrr
r

 (7)

2.3 The determination of the weight
by using boosting method

For a set of given training data, which consists
of two or more different linear parts, ordinary
linear regression will give a linear function
representing neither of the linear functions as
shown in Fig.1. Anyway, if the points which are
nearer to the available regression line are given
more weights than the far data, the next straight
line generated by the new weighted training
data will nearer to the first part of the straight
segments in Fig. 1. The weights given to each
data are determined by the modified boosting
algorithm, which is shown below.

• Step 1: Preparation

1. Set
N

N 1
0

2
0

1
0 ==== δδδ L .

• Step 4: Repeat from Step 2
εδδ <−+∈

i
k

i
kNi 1],1[

max , where ε is a

small value. 2. k = 0

• Stop
 • Step 2: Linear regression

1. Using (7) to calculate the
parameter ba,r noted as ba,r .

There are one modifications in the above
algorithm compared to Adaboost. First, In
AdaBoost, weights are updated by

 but here we use

. (in Adaboost,

)(1
1

indist
k

i
k

i
k ww −

+ = β
)(

1
jndist

k
i
k

i
k βδδ =+

10 << kβ) This means that the nearer data
points will get more weight on the next round
and the far data points will get less weight in
the next round.

2. Obtain the linear function
bxaxy +=

rr)(

• Step 3: Boosting
1. Calculate the distance between

each data and the function
bxaxy +=

rr)(.
 That is

Niyxyidist ii ,,1,ˆ)()(L=−=

2. Normalise the loss 3 Simulation results

∑
=

= N

i

idist

idistindist

1

)(

)()(3.1 Simulation results in scalar
system
 3. Use the following formula to

calculate tβ The training data is generated by

⎪
⎩

⎪
⎨

⎧

>+
≤<+

≤+
=

401.0
40203.0

022.0
)(

xx
xx

xx
xy

ω
ω
ω

 (10) ∑ =
=

N

i
i
kk indist

1
)(δε

)1(k

k
k ε

ε
β

−
=

Where ω is Gaussian noise with 0 mean and
0.1 variance. Fig.1 shows the result obtained by
the ordinary linear regression. The regression
line can’t represent the real data well. Fig.2 is
the result by using the modified boosting
algorithm and the regression line can be used to
represent the first part of the training data.

4. Update the weight vector
Niindist

k
i
k

i
k ,,1,)(

1 L==+ βδδ (8)
5. Normalise the weight vector

NiN

i

i
k

i
ki

k ,,1,

1
1

1
1 L==

∑
=

+

+
+

δ

δ
δ (9)

Fig.1. The regression result obtained by ordinary linear regression

Fig.2. The regression result obtained by boosting linear regression

Fig.3. The regression result obtained by boosting linear regression

3.2 Simulation results in vector
system
A three dimensional linear system training data
is generated by

⎪
⎪
⎩

⎪⎪
⎨

⎧

>>
+++
≤≤
+++

=

08,04
2.25.110

08,04
2.15.010

),(

21

21

21

21

21

xx
xx
xx
xx

xxy ω

ω

(11)
ω is the same noise as above.
The simulation result is shown in Fig. 3, in
which the left-up figure generated by the
function (11), right-up is the regression result to
the first part of the data. And the lower figures

are the error indication from axis and

respectively.
1x

1x

4. Some further consideration in
the boosting linear regression

4.1 The phenomena of local
focusing
Even if the boosting linear regression is used,
sometimes a satisfied result can’t be produced.
An example can be given by the following
function.

⎪
⎩

⎪
⎨

⎧

>++
≤<++

≤++
=

401.04
40203.01

022.07
)(

xx
xx

xx
xy

ω
ω
ω

(12)

The simulation result in left figure in Fig.4
shows a very bad final regression line. The
reason ca be stated as follows: because of all
the initial value of weights in the modified
AdaBoost is given the same, so the first
regression line is as the same as the result of
ordinary regression; further, because of the
regression line goes through the points belong
to different parts of the segments and the
distances between the regression line and these

points are small and so the weights of these
points will be strengthened by the boosting
algorithm, and this will fix the regression line
going through these points.
There are two methods to improve this
situation. One of them called label analysis
method is to monitor this situation and to
modify the weights to allow the line go out of
this position. Another method is to given
different initial value of the weight

.

Fig.4. A bad regression line example

4.2 Label analysis method
The phenomenon shown in Fig. 4 can be
checked out by analysing the weight
distribution of the label related to the training
data. The label here means i in . The
weights related to the data points near to the
regression will have big value, while others will
have small one. If a big gap is found between
the labels of the points with big values, an
decision can be made that the regression line
goes through different straight parts shown in
the left figure in Fig.4. If the above
phenomenon is found, the training data with big
weight will be segmented and the weight of one

of them with the longest length will be
remained and the others will be clear to zero.
The result by using this methods shown in right
of Fig.4 give an positive example of the
algorithm.

),(ii yx
4.3 Special Initial value method.
For a special training data, if some pre-
knowledge can be obtained before the system
modelling, different data can be appointed
different weight values. In details, if we know
the segmentation number and a rough position
of each segment part, we can appoint different
initial values to different part as desired.

Fig.5. Multiple segmentation simulation example

Here its an example, if 50 data points are given
and three line segments is in the training data,
then we can set the initial value three different
times as follows:
First the following weights are being used.

⎩
⎨
⎧ ≤

=
otherwise

i
i ,0

10,10/1
δ

After the first boosting regression finished, the
second initial values shown as the following are
being used.

⎩
⎨
⎧ ≤<

=
otherwise

i
i ,0

3020,10/1
δ

And the third of the weights are.

⎩
⎨
⎧ ≤<

=
otherwise

i
i ,0

5040,10/1
δ

The simulation results are shown in Fig. 5.

4.4 Termination condition of the
boosting regression
The linear regression method applied to the
weighted data will be used many times until a
satisfied result is produced. If the maximum
value of the weight, say 0.1 here is produced,
and the above gap between the big weights
hasn’t produced. Then the algorithm will
terminate its current segment linear regression.
Normally, the maximum weight value will be
determine by the number of the training data.

4.5 Numerical calculation of the
solution
many times, the solution calculated by using
function (7) will not get a satisfied answer due
to the limit data length of numerical
computation. In this research, the singular value
decomposition method is used and is stated
below.
For a function given by (13)

bAx = (13)
Assume , where U, V is
orthogonal matrix and

TVUA Σ=
)(idiag λ=Σ is

diagonal matrix , by using singular value
decomposition, we have , then bxVU T =Σ

bUVx T1−Σ= (14)
When 0=iλ , we use 0/1 =iλ in his
reverse from.

5 Conclusion
The algorithm shown in this paper can be
implemented by using neural network too. In a
typical multi-linear system, there will be some
slight non-linear feature between the linear
segmentation. By using a linear regression
method to model the linear parts, the linear
parts can be modelling by a very simple neural
network. This will reduce the model complexity
very much.

References
1. Y. Freund, R. E. Schapire, A decision-
theoretic generalization of on-line learning
and an application to boosting, Proceedings
of the Second European Conference on
Computational Learning Theory, March,
1995.
2. Numerical recipes in C: The art of
scientific computing; William H. press, 2ed
edition.

Authors:

Xunxian Wang: Ph.D, Research Fellow.
David. Brown: Ph.D Senior Lecture

All are in intelligent system and fault
diagnostic group, University of
Portsmouth, UK

Contact author: Xunxian Wang. Obtained
his Ph.D in Tsinghua University, Beijing,
China from Jul. 1999. He had been a post-
doc researcher in the above University
from Aug.1999 to Aug.2001. From Sep.
2001 he has been a research associate in
University of Portsmouth and University of
Leeds and currently a research fellow in
University of Portsmouth UK. His email
address is xunxian.wang@port.ac.uk

mailto:xunxian.wang@port.ac.uk

	Reverse AdaBoost Algorithm to do Segmental Linear Regression
	1. Introduction
	2. Description of boosting linear regression
	2.1 The basic principle of boosting
	2.2 The algorithm of linear regression with boosting
	2.3 The determination of the weight by using boosting method

	3 Simulation results
	3.1 Simulation results in scalar system
	3.2 Simulation results in vector system

	4. Some further consideration in the boosting linear regress
	4.1 The phenomena of local focusing
	4.2 Label analysis method
	4.3 Special Initial value method.
	4.4 Termination condition of the boosting regression
	4.5 Numerical calculation of the solution

	5 Conclusion
	References
	Authors:

