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Abstract: An algorithm is proposed to separate 
different linear part from each other. It can be 
used in the linear dynamic systems with small 
non-linear features such as dead zone and 
saturation, which is very popular in DC motor 
systems and vector converter controlled AC 
motor systems. With the proposed algorithm, 
the working linear part can be modelled without 
the influence of the nonlinear features.   
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1. Introduction 
 
As an easy and useful tool in data analysis and 
data mining, linear regression occupies an 
important position in data analysis. This paper 
shows a research result on multi-segmental 
linear regression by using boosting method.  
 
Motor systems, both of DC and AC motors, 
have a very important position in the industry 
field. Due to its linear feature, DC motors have 
been used a lot in high accurate speed control 
systems. In this kind of systems, precisely 
modelling the motor system becomes a key 
technique, which can determine the 
performance of the whole system. The 
development of the microprocessor technique 
and power electronic technique make the 
availability of the vector converter. Based on 
the converter, the combined system of vector 
controller and AC motor becomes a linear 
system. So modelling linear system precisely is 
still a useful technique. 
 
As an important boosting algorithm, AdaBoost 
has obtained lot of attention in these days. Not 
only this algorithm can be used in combining 
thumb rules into a better one, but also it can be 
used in many different areas as shown in [1].  In 
system modelling, by given different samples 
different weights, the boosting algorithm can 
adjust the regression line goes through the 
middle of the data.   
 
In this paper, reversed AdaBoost algorithm is 
used in multi-segmentation linear system 

modelling. While normal AdaBoost algorithm 
give the data points near to the current 
regression line less weight, far points more 
weight, the reverse algorithm give near more 
weight and far less and by this the regression 
line can be controlled to go through only one 
part of the multi-segmented system.  
 
The whole paper is consisted of five parts.  In 
section 2 the basic algorithm of the methods is 
shown; while in section 3 the result is given and 
the section 4 give some improvement methods 
for the algorithm. A conclusion is given in 
section 5. 

2. Description of boosting linear 
regression 

2.1 The basic principle of boosting 
 
Boosting is a method that can be used to 
combine a number of available rules into one 
single rule. One of the popular boosting 
algorithms is AdaBoost[1], which can be 
described in pseudo-code as follows  
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The AdaBoost algorithm above is used to boost 
the performance of weak learning algorithms. 
The advantage of this method is that the 
accuracy of the final hypothesis produced 
depends on the accuracy of all the hypotheses 
returned by WeakLearn[1] and so is able to 
fully exploit the power of the weak learning 
algorithm. The goal of the algorithm is to find a 
final hypothesis with low error relative to a 
given distribution D over the training examples. 
Initially this D is appointed as NiD 1)( = . 
The algorithm maintains a set of weights 

over the training examples. On iteration t a 
distribution is computed by normalising 
these weights. This distribution is fed to the 
weak learner WeakLearn which generates a 
hypothesis that has small error with respect 
to the distribution. Using the new hypothesis 

, the boosting algorithm generates the next 

weight vector , and process repeats. 
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In above algorithm, the weight related to the big 
loss example will increase while the low loss 
example will decrease. 
By using the above in an approximation 
problem, the above algorithm can force the 
approximation function to go through the 
middle of the training data [1].  

2.2 The algorithm of linear 
regression with boosting 
 
In linear system, the system input and output 
relationship can be represented by  
 

bxaxf +=
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regression by using least square method as 
follows 
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Where is the training 
data. 
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The following formula can be obtained  

                              

(4) 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∑

∑

∑

∑∑

=

=

−

=

==
N

i
i

N

i
i

i

N

i

i

N

i

i
N

i

ii

y

yx

x

xxx

b
a

1

1

1

1

11

'

1)'(

)( r

r

rrr
r

However, many linear systems especially linear 
control system aren’t ideal linear. Normally 
there are three linear parts in the system; they 
are working part, saturation part and head zero. 
To represent the whole system feature, all the 
three parts needs to be modelled which needed 
three linear sub-systems. 
Linear regression method shown above can’t 
give a satisfied answer to the above question. 
By using boosting algorithm shown in 2.1, a 
good result can be obtained. 
First, the cost function (3) is modified as  
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Where with  will 

be determined by the boosting method. 
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The following results can be obtained 
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2.3 The determination of the weight 
by using boosting method 
 
For a set of given training data, which consists 
of two or more different linear parts, ordinary 
linear regression will give a linear function 
representing neither of the linear functions as 
shown in Fig.1. Anyway, if the points which are 
nearer to the available regression line are given 
more weights than the far data, the next straight 
line generated by the new weighted training 
data will nearer to the first part of the straight 
segments in Fig. 1. The weights given to each 
data are determined by the modified boosting 
algorithm, which is shown below. 

• Step 1: Preparation  
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• Step 4: Repeat from Step 2 
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max , where ε  is a 

small value. 2. k = 0 
 

•  Stop  
 • Step 2: Linear regression 

1. Using (7) to calculate the 
parameter ba,r  noted as ba,r . 

There are one modifications in the above 
algorithm compared to Adaboost. First, In 
AdaBoost, weights are updated by 

 but here we use 
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10 << kβ ) This means that the nearer data 
points will get more weight on the next round 
and the far data points will get less weight in 
the next round.  

2. Obtain the linear function 
bxaxy +=

rr)(  

• Step 3: Boosting 
1. Calculate the distance between 

each data and the function 
bxaxy +=

rr)( . 
 That is  
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 3. Use the following formula to 

calculate tβ   The training data is generated by  

⎪
⎩

⎪
⎨

⎧

>+
≤<+

≤+
=

401.0
40203.0

022.0
)(

xx
xx

xx
xy

ω
ω
ω

    (10) ∑ =
=

N

i
i
kk indist

1
)(δε  

)1( k

k
k ε

ε
β

−
=  

Where ω is Gaussian noise with 0 mean and 
0.1 variance. Fig.1 shows the result obtained by 
the ordinary linear regression. The regression 
line can’t represent the real data well. Fig.2 is 
the result by using the modified boosting 
algorithm and the regression line can be used to 
represent the first part of the training data.  

4. Update the weight vector  
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Fig.1. The regression result obtained by ordinary linear regression  

 



 
Fig.2. The regression result obtained by boosting linear regression  

 

 
Fig.3. The regression result obtained by boosting linear regression  

 

3.2 Simulation results in vector 
system 
A three dimensional linear system training data 
is generated by   
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ω  is the same noise as above. 
The simulation result is shown in Fig. 3, in 
which the left-up figure generated by the 
function (11), right-up is the regression result to 
the first part of the data. And the lower figures 

are the error indication from axis and 

respectively. 
1x

1x

4. Some further consideration in 
the boosting linear regression 

4.1 The phenomena of local 
focusing 
Even if the boosting linear regression is used, 
sometimes a satisfied result can’t be produced. 
An example can be given by the following 
function.  
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The simulation result in left figure in Fig.4 
shows a very bad final regression line. The 
reason ca be stated as follows: because of all 
the initial value of weights in the modified 
AdaBoost is given the same, so the first 
regression line is as the same as the result of 
ordinary regression; further, because of the 
regression line goes through the points belong 
to different parts of the segments and the 
distances between the regression line and these 

points are small and so the weights of these 
points will be strengthened by the boosting 
algorithm, and this will fix the regression line 
going through these points.  
There are two methods to improve this 
situation. One of them called label analysis 
method is to monitor this situation and to 
modify the weights to allow the line go out of 
this position. Another method is to given 
different initial value of the weight

.   
 

 
Fig.4. A bad regression line example  

4.2 Label analysis method 
The phenomenon shown in Fig. 4 can be 
checked out by analysing the weight 
distribution of the label related to the training 
data. The label here means i in . The 
weights related to the data points near to the 
regression will have big value, while others will 
have small one. If a big gap is found between 
the labels of the points with big values, an 
decision can be made that the regression line 
goes through different straight parts shown in 
the left figure in Fig.4. If the above 
phenomenon is found, the training data with big 
weight will be segmented and the weight of one 

of them with the longest length will be 
remained and the others  will be clear to zero. 
The result by using this methods shown in right 
of Fig.4 give an positive example of the 
algorithm.    

),( ii yx
4.3 Special Initial value method. 
For a special training data, if some pre-
knowledge can be obtained before the system 
modelling, different data can be appointed 
different weight values. In details, if we know 
the segmentation number and a rough position 
of each segment part, we can appoint different 
initial values to different part as desired. 

 
Fig.5. Multiple segmentation simulation example  



 
Here its an example, if 50 data points are given 
and three line segments is in the training data, 
then we can set the initial value three different 
times as follows: 
First the following weights are being used. 
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After the first boosting regression finished, the 
second initial values shown as the following are 
being used. 
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And the third of the weights are. 
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i
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The simulation results are shown in Fig. 5. 

4.4 Termination condition of the 
boosting regression 
The linear regression method applied to the 
weighted data will be used many times until a 
satisfied result is produced. If the maximum 
value of the weight, say 0.1 here is produced, 
and the above gap between the big weights 
hasn’t produced. Then the algorithm will 
terminate its current segment linear regression. 
Normally, the maximum weight value will be 
determine by the number of the training data. 

4.5 Numerical calculation of the 
solution  
many times, the solution calculated by using 
function (7) will not get a satisfied answer due 
to the limit data length of numerical 
computation. In this research, the singular value 
decomposition method is used and is stated 
below.  
For a function given by  (13)  

bAx =                               (13) 
Assume , where U, V is 
orthogonal matrix and 

TVUA Σ=
)( idiag λ=Σ is 

diagonal matrix , by using singular value 
decomposition, we have , then  bxVU T =Σ

bUVx T1−Σ=                    (14) 
When 0=iλ , we use 0/1 =iλ  in his 
reverse from.  

5 Conclusion 
The algorithm shown in this paper can be 
implemented by using neural network too. In a 
typical multi-linear system, there will be some 
slight non-linear feature between the linear 
segmentation. By using a linear regression 
method to model the linear parts, the linear 
parts can be modelling by a very simple neural 
network. This will reduce the model complexity 
very much. 
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