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ABSTRACT

We present optimality conditions for real-time
multiserver system with large number of identical
servers and several non-identical channels working
under maximum load regime with limited maintenance
facilities. We calculate limiting values of system
availability and its loss penalty function and show how
to obtain optimal assignment probabilities which
optimize these performance measures.
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1. INTRODUCTION

Real-time systems (RTS) are defined as those for
which correctness depends not only on the logical
properties of the computed results, but also on the
temporal properties of these results. In RTS an action
performed too early/late, may be useless, and sometimes
harmful. Examples include industrial automation, traffic
control, robotics, intelligence and defense systems, etc.

There is a growing consensus that the use of
analytical methods of queueing theory [2] together with
modern computation approaches (such as Artificial
Intelligence AI [9], Genetic algorithms [10], Neural
Networks NN [5,12] and Evolutionary Computations
EC [1]) and simulation techniques (such as Score
Function [11] and Perturbation Analysis [3] could have
significant benefits in developing RTS.

The particular interest in RTS with a zero deadline
for the beginning of job processing was aroused by
military intelligence problems involving unmanned air
vehicles (UAV). Kreimer and Mehrez have proved [8]
that the non-mix policy maximizes the availability of a
multiserver single-channel RTS. In [6] and [7] Kreimer
have applied birth-and-death processes in analysis of a
multiserver RTS with different channels operating under
a maximum load regime. lanovsky and Kreimer [4]
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have obtained optimal assignment probabilities to
maximize availability of RTS with two different
channels. This paper considers the model developed in
[7] and extends the results of [4] for arbitrary number of
different channels.

Our purpose is to calculate limiting values of
availability and loss penalty function for RTS with large
number of servers, and then to obtain optimal
assignment  probabilities ~which  optimize these
performance measures.

2. DESCRIPTION OF THE SYSTEM

We consider a RTS with a zero deadline for the
beginning of job processing. As a matter of fact most of
monitoring RTS are of this type.
The most important characteristics of RTS are
summarized in [8]. Jobs in RTS are executed
immediately upon arrival, conditional on system
availability. Storage of non-completed jobs or their parts
is  impossible.  Nevertheless, queueing theory
methodology can be successfully applied in analysis of
RTS.

A RTS under consideration consists of N servers
that provide service for the requests of real-time jobs,
arriving via r different channels. The system works
under a maximum load of nonstop data arrival. Thus
there is exactly one request of real-time job in each
channel at any instant, and therefore one server at most
is used to process the job in the channel. The total
number of working servers is at most » (as a number of
channels). The i-th server can provide S, time units of

service before requiring R continuos time units of
maintenance, after which it is again available, and so on.
Both S, (i=1....,N) and R are independent exponentially
distributed random values with parameters u, (i= I,_r)
and 1 respectively. Service of a job continues while
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there are available servers in the system. Different parts
of the same job can be processed by different servers.
Any part of the job that is not served immediately in
real-time is lost.

Each channel has its own specifications and
requires different kinds of service. Server, which was
sent to maintenance, is assigned to the i-th channel with
probability p, (i=1,r). It gets the appropriate kind of
maintenance, and therefore cannot be sent to another
channel. The duration R of maintenance work is
exponentially distributed with parameter 1, and does
not depend on the assigned channel. After maintenance,
the server will either be on stand-by or serving the
assigned channel.

It is assumed that there are only K (K< N)
maintenance teams. Thus a shortage of maintenance
teams occurs when there are more than K servers out of
order. Then the server will wait for repair in the queue.

3. THE PROBLEM AND ITS SOLUTION

Kreimer [7] has shown that steady state
probabilities of the RTS under consideration are given
by the following formulae:
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where n, (i=Lr) is a number of fixed servers
assigned to the i-th channel, p,, ., the
corresponding steady state probability, and p, =1, /,

(4 =4p,).

For a multichannel system (r>1) operating under
maximum load regime, the availability is given by the
following formula (see [6]):

Av = E[number of busy servers]/ r. 3)
Taking into account equations (1)-(2), we obtain

Ay (o9, )= X (- PP oy, ))/r, €)

k=1

where P,\(,k)(pl,..., p,) is the probability that channel &

(k= l,_r) is not served.
1€y (proves )= 3 CPO oy, ®
]

is an average loss penalty cost, where C, (k= l,_r) is

the cost of the time unit during which the &-th channel is
not served (penalty).

Assertion:  Avy(py.....p,)=1=TC, (py..... p, )r . for
C,=1,i=Lr.

Functions (4) and (5) can be maximized and
minimized respectively for any finite value of N, but
only numerically — analytical solutions are available.
When N — oo, analytical expressions of availability
and loss penalty function as well as optimal values for
assignment probabilities can be obtained.
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Using (1), (6), and the following Lemmas and
Corollaries will help us to obtain the main results.
Lemma I:

S (012, ) =[085 (Procs 12, )
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Our main results can be formulated as follows:
Theorem 1:
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—m p
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Proof:

For Kp > 1, we consider two cases.

Case I: If there is n e {1, 2, ...,r} such that p, # p, then
forany kand i (i, k e {1, 2,..., r} ) such that p, # p and

p, = p itcan be written
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Therefore, from (7), (8) and (9), it can be concluded that
for r > 2 the following equality
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when Kp > 1, in both cases.

Let m is a number of parameters p, such that p, = p

for the denominator of (10). Consequently, a number of
parameters p, suchthat p, = p for the numerator of

(10) is m-1 and from (7), (8) and (9) we have that
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Using the inequalities —— <1 for i =m,t -1,

Kpi(3)<1 for Kp=1and i=m,t—-1,and L<1,
Kp

when Kp > 1, we obtain for i =m,t—-1
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From (13) and the Corollaries 2 and 3 we conclude that
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When Kp <1, we have, by Corollary 4, that

© S]rvl(pw 9p]—13p]+13 9pr)
St (proepy)

PI\(Ij)(pls ;pr)

o) !
(1-&p,) [10-%p,)
i=l i=1
. L of)-
Loiofy) —! 2

—1-Kp, +0la ), (16)
for any a, suchthat Kp <a, <1.

Formula (16) proves this Theorem when Kp <1.
O.E.D.
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Proof:
This Theorem follows from (4), (5) and Theorem 1.
Q.E.D.

Theorem 3: The rate of convergence
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Proof:

For Kp>1. we consider the two cases.

Case I: If there is ne {l, 2., r} such that p, # p, then
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(17), (18) and (19) prove this Theorem when Kp >1.
Theorem 1 and (16) prove this Theorem, when Kp <1.
O.E.D.

Theorem 4: In real-time system with N servers, K
(K <N) maintenance crews, r (r=2) different
channels operating under a maximum load regime, and
exponentially distributed operating and maintenance
(i=1Lr) and 1

times (with parameters g,

respectively) optimal assignment probabilities p,.*

(i=1r), which minimize system loss penalty function

when N — oo are determined as follows:
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where the channels are numbered such that
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Corresponding optimal value of loss penalty function is

@  TC(p e p))=0iE K2 Y
i=1
®  1C(plp]) =Y C (- Kp )it K <Y a,
i=1 i=1
where p,‘zﬂ, izl,_r.
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